Abstract

A novel polarimetric dehazing method is proposed based on three linear polarization images (0°, 45°, and 90°). The polarization orientation angle of the light scattered by the haze particles is introduced in the algorithm. No additional image-processing algorithm is needed in the postprocessing. It is found that the dehazed image suffers from little noise and the details of the objects close to the observer can be preserved well. In addition, this algorithm is also proved to be useful for preserving image colors. Experimental results demonstrate that such an algorithm has some universality in handling all kinds of haze. We think that this robust algorithm might be very suitable for real-time dehazing.

© 2014 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. A. Sadjadi and C. S. L. Chun, “Remote sensing using passive infrared Stokes parameters,” Opt. Eng. 43, 2283–2291 (2004).
    [CrossRef]
  2. D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
    [CrossRef]
  3. T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
    [CrossRef]
  4. N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
    [CrossRef]
  5. J. Mudge and M. Virgen, “Near-infrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation,” Proc. SPIE 8160, 81600B (2011).
    [CrossRef]
  6. T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
    [CrossRef]
  7. G. Myhre, W. L. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, and S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012).
    [CrossRef]
  8. K. A. Bachman, J. J. Peltzer, P. D. Flammer, T. E. Furtak, R. T. Collins, and R. E. Hollingsworth, “Spiral plasmonic nanoantennas as circular polarization transmission filters,” Opt. Express 20, 1308–1319 (2012).
    [CrossRef]
  9. J. D. Perreault, “Triple Wollaston-prism complete-Stokes imaging polarimeter,” Opt. Lett. 38, 3874–3877 (2013).
    [CrossRef]
  10. Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant dehazing of images using polarization,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001), Vol. 1, pp. 325–332.
  11. E. Namer and Y. Y. Schechner, “Advanced visibility improvement based on polarization filtered images,” Proc. SPIE 5888, 588805 (2005).
    [CrossRef]
  12. S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006), Vol. 2, pp. 1984–1991.
  13. E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17, 472–493 (2009).
    [CrossRef]
  14. J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52, 1932–1938 (2013).
    [CrossRef]
  15. L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image dehazing using the near-infrared,” in 16th IEEE International Conference on Image Processing (ICIP) (2009), pp. 1629–1632.
  16. K. M. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011).
    [CrossRef]
  17. K. Nishino, L. Kratz, and S. Lombardi, “Bayesian defogging,” Int. J. Comput. Vis. 98, 263–278 (2012).
    [CrossRef]
  18. Y. Y. Schechner, S. G. Narasimhan, and K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511–525 (2003).
    [CrossRef]

2013 (2)

2012 (4)

2011 (3)

J. Mudge and M. Virgen, “Near-infrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation,” Proc. SPIE 8160, 81600B (2011).
[CrossRef]

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

K. M. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011).
[CrossRef]

2009 (2)

E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17, 472–493 (2009).
[CrossRef]

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[CrossRef]

2008 (1)

N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
[CrossRef]

2005 (1)

E. Namer and Y. Y. Schechner, “Advanced visibility improvement based on polarization filtered images,” Proc. SPIE 5888, 588805 (2005).
[CrossRef]

2004 (1)

F. A. Sadjadi and C. S. L. Chun, “Remote sensing using passive infrared Stokes parameters,” Opt. Eng. 43, 2283–2291 (2004).
[CrossRef]

2003 (1)

Bachman, K. A.

Benali, A.

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
[CrossRef]

Bernier, A.-P.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Breton, M.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Breugnot, S.

N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
[CrossRef]

Brock, N.

Charette, J.-F.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Chipman, R. A.

Chun, C. S. L.

F. A. Sadjadi and C. S. L. Chun, “Remote sensing using passive infrared Stokes parameters,” Opt. Eng. 43, 2283–2291 (2004).
[CrossRef]

Clemenceau, P.

N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
[CrossRef]

Collins, R. T.

De Martino, A.

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
[CrossRef]

Flammer, P. D.

Fournier, G.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Fredembach, C.

L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image dehazing using the near-infrared,” in 16th IEEE International Conference on Image Processing (ICIP) (2009), pp. 1629–1632.

Furtak, T. E.

He, K. M.

K. M. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011).
[CrossRef]

Hollingsworth, R. E.

Hsu, W. L.

Kratz, L.

K. Nishino, L. Kratz, and S. Lombardi, “Bayesian defogging,” Int. J. Comput. Vis. 98, 263–278 (2012).
[CrossRef]

LaCasse, C.

Lavigne, D. A.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Lecochinski, N.

N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
[CrossRef]

Lefaudeux, N.

N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
[CrossRef]

Lombardi, S.

K. Nishino, L. Kratz, and S. Lombardi, “Bayesian defogging,” Int. J. Comput. Vis. 98, 263–278 (2012).
[CrossRef]

Mudge, J.

J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52, 1932–1938 (2013).
[CrossRef]

J. Mudge and M. Virgen, “Near-infrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation,” Proc. SPIE 8160, 81600B (2011).
[CrossRef]

Myhre, G.

Namer, E.

E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17, 472–493 (2009).
[CrossRef]

E. Namer and Y. Y. Schechner, “Advanced visibility improvement based on polarization filtered images,” Proc. SPIE 5888, 588805 (2005).
[CrossRef]

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006), Vol. 2, pp. 1984–1991.

Narasimhan, S. G.

Y. Y. Schechner, S. G. Narasimhan, and K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511–525 (2003).
[CrossRef]

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant dehazing of images using polarization,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001), Vol. 1, pp. 325–332.

Nayar, K.

Nayar, S. K.

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant dehazing of images using polarization,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001), Vol. 1, pp. 325–332.

Nishino, K.

K. Nishino, L. Kratz, and S. Lombardi, “Bayesian defogging,” Int. J. Comput. Vis. 98, 263–278 (2012).
[CrossRef]

Novikova, T.

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
[CrossRef]

Pau, S.

Peinado, A.

Peltzer, J. J.

Perreault, J. D.

Pichette, M.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Pierangelo, A.

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
[CrossRef]

Rivet, V.

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

Sadjadi, F. A.

F. A. Sadjadi and C. S. L. Chun, “Remote sensing using passive infrared Stokes parameters,” Opt. Eng. 43, 2283–2291 (2004).
[CrossRef]

Schaul, L.

L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image dehazing using the near-infrared,” in 16th IEEE International Conference on Image Processing (ICIP) (2009), pp. 1629–1632.

Schechner, Y. Y.

E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17, 472–493 (2009).
[CrossRef]

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[CrossRef]

E. Namer and Y. Y. Schechner, “Advanced visibility improvement based on polarization filtered images,” Proc. SPIE 5888, 588805 (2005).
[CrossRef]

Y. Y. Schechner, S. G. Narasimhan, and K. Nayar, “Polarization-based vision through haze,” Appl. Opt. 42, 511–525 (2003).
[CrossRef]

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006), Vol. 2, pp. 1984–1991.

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant dehazing of images using polarization,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001), Vol. 1, pp. 325–332.

Shwartz, S.

E. Namer, S. Shwartz, and Y. Y. Schechner, “Skyless polarimetric calibration and visibility enhancement,” Opt. Express 17, 472–493 (2009).
[CrossRef]

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006), Vol. 2, pp. 1984–1991.

Sun, J.

K. M. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011).
[CrossRef]

Süsstrunk, S.

L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image dehazing using the near-infrared,” in 16th IEEE International Conference on Image Processing (ICIP) (2009), pp. 1629–1632.

Tang, X.

K. M. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011).
[CrossRef]

Treibitz, T.

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[CrossRef]

Validire, P.

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
[CrossRef]

Virgen, M.

J. Mudge and M. Virgen, “Real time polarimetric dehazing,” Appl. Opt. 52, 1932–1938 (2013).
[CrossRef]

J. Mudge and M. Virgen, “Near-infrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation,” Proc. SPIE 8160, 81600B (2011).
[CrossRef]

Appl. Opt. (2)

IEEE Trans. Pattern Anal. Mach. Intell. (2)

K. M. He, J. Sun, and X. Tang, “Single image haze removal using dark channel prior,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2341–2353 (2011).
[CrossRef]

T. Treibitz and Y. Y. Schechner, “Active polarization descattering,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 385–399 (2009).
[CrossRef]

Int. J. Comput. Vis. (1)

K. Nishino, L. Kratz, and S. Lombardi, “Bayesian defogging,” Int. J. Comput. Vis. 98, 263–278 (2012).
[CrossRef]

Opt. Eng. (1)

F. A. Sadjadi and C. S. L. Chun, “Remote sensing using passive infrared Stokes parameters,” Opt. Eng. 43, 2283–2291 (2004).
[CrossRef]

Opt. Express (3)

Opt. Lett. (1)

Opt. Photon. News (1)

T. Novikova, A. Pierangelo, A. De Martino, A. Benali, and P. Validire, “Polarimetric imaging for cancer diagnosis and staging,” Opt. Photon. News 23(10), 26–33 (2012).
[CrossRef]

Proc. SPIE (4)

N. Lefaudeux, N. Lecochinski, S. Breugnot, and P. Clemenceau, “Compact and robust linear Stokes polarization camera,” Proc. SPIE 6972, 69720B (2008).
[CrossRef]

J. Mudge and M. Virgen, “Near-infrared simultaneous Stokes imaging polarimeter: integration, field acquisitions, and instrument error estimation,” Proc. SPIE 8160, 81600B (2011).
[CrossRef]

D. A. Lavigne, M. Breton, G. Fournier, J.-F. Charette, M. Pichette, V. Rivet, and A.-P. Bernier, “Target discrimination of man-made objects using passive polarimetric signatures acquired in the visible and infrared spectral bands,” Proc. SPIE 8160, 816007 (2011).
[CrossRef]

E. Namer and Y. Y. Schechner, “Advanced visibility improvement based on polarization filtered images,” Proc. SPIE 5888, 588805 (2005).
[CrossRef]

Other (3)

S. Shwartz, E. Namer, and Y. Y. Schechner, “Blind haze separation,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2006), Vol. 2, pp. 1984–1991.

L. Schaul, C. Fredembach, and S. Süsstrunk, “Color image dehazing using the near-infrared,” in 16th IEEE International Conference on Image Processing (ICIP) (2009), pp. 1629–1632.

Y. Y. Schechner, S. G. Narasimhan, and S. K. Nayar, “Instant dehazing of images using polarization,” in Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2001), Vol. 1, pp. 325–332.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Defining the axes according to the rotating angle of the polarizer. The x and y axes represent 0° and 90°, respectively. θ is the included angle between the direction of the polarization and the x axis. The arrow represents the polarized direction of the air light.

Fig. 2.
Fig. 2.

(a)–(c) are the images directly snapped by the black-and-white industrial camera, where the rotating angle of the polarizer is set to 0°, 45°, and 90°, respectively. (d) is the dehazed image using our algorithm without any additional image-processing algorithms. (e) and (f) are the histograms of (a) and (c), respectively.

Fig. 3.
Fig. 3.

Dehazed image based on Schechner’s algorithm without any additional image-processing algorithm.

Fig. 4.
Fig. 4.

(a)–(c) are the images directly snapped by the color industrial camera, where the rotating angle of the polarizer is set to 0°, 45°, and 90°, respectively. (d) is the dehazed image using our algorithm without any additional image-processing algorithm.

Fig. 5.
Fig. 5.

(a)–(c) are the images directly snapped in light hazy weather, where the rotating angle of the polarizer is set to 0°, 45°, and 90°, respectively. (d) is the dehazed image using our algorithm without any image-processing algorithm.

Fig. 6.
Fig. 6.

(a)–(c) are the images directly snapped in dense hazy weather, where the rotating angle of the polarizer is set to 0°, 45°, and 90°, respectively. (d) is the dehazed image using our algorithm without any image-processing algorithm.

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

I = D + A .
A = A [ 1 exp ( β z ) ] ,
D = L exp ( β z ) ,
L = I A 1 A / A .
S 0 = I ( 0 ) + I ( 90 ) , S 1 = I ( 0 ) I ( 90 ) , S 2 = 2 I ( 45 ) S 0 .
θ = 1 2 arctan S 2 S 1 ,
p = S 1 2 + S 2 2 S 0 .
I ( θ ) = I ( 0 ) cos 2 ( θ ) .
I ( θ ) = S 0 I ( θ ) .
A p = 2 I ( 0 ) cos 2 ( θ ) S 0 .
A = A p ε 1 p ,
L Squ = L 2 ε 2 ,

Metrics