Abstract

Coupled plasmonic nanoparticles of Au and nanorods of ZnTe are modeled and fabricated. Full-wave simulation is performed to obtain an optimum design for enhanced light absorption and to explain scattering properties of the structure. The fabrication method of such arrays is described. Modeling the spectral properties using equivalent circuit theory is also implemented to provide an intuitive approach regarding the design of optical metamaterials with predetermined properties.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
    [CrossRef]
  2. Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.
  3. K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
    [CrossRef]
  4. Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
    [CrossRef]
  5. Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
    [CrossRef]
  6. S. Valette, G. Labrunie, and J. Lizet, “Optical waveguides in ion-implanted ZnTe,” J. Appl. Phys. 46, 2731–2732 (1975).
    [CrossRef]
  7. Y. Kumagai and M. Kobayashi, “Growth of ZnMgTe/ZnTe waveguide structures and analysis of the light polarization with the electric field,” Jpn. J. Appl. Phys. 51, 02BH06 (2012).
  8. L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [CrossRef]
  9. F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
    [CrossRef]
  10. M. S. Litz, D. C. Judy, and N. Tesny, “A ZnTe electro-optic electric field sensor,” Proc. SPIE 3702, 30–35 (1999).
    [CrossRef]
  11. H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
    [CrossRef]
  12. W. I. Wang, “The problem of doping wide gap II–VI compound semiconductors and its solutions,” MRS Proc. 228, 319–326 (1991).
    [CrossRef]
  13. U. V. Desnica, “Doping limits in II–VI compounds—challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36, 291–357 (1998).
    [CrossRef]
  14. Y. Zhang, L.-W. Wang, and A. Mascarenhas, “Quantum coaxial cables for solar energy harvesting,” Nano Lett. 7, 1204–1269 (2007).
  15. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Science Rep. 3, 1546 (2013).
  16. Z. Li, J. Wang, N. Singh, and S. Lee, “Optical and electrical study of core-shell silicon nanowires for solar applications,” Opt. Express 19, A1057–A1066 (2011).
    [CrossRef]
  17. Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).
  18. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
    [CrossRef]
  19. K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
    [CrossRef]
  20. S. A. Maier, ed. Plasmonics: Fundamentals and Applications (Springer, 2007).
  21. P. J. Flatau and B. T. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
    [CrossRef]
  22. A. Alú, A. Salandrino, and N. Engheta, “Coupling of optical lumped nanocircuit elements and effects of substrates,” Opt. Express 15, 13865–13876 (2007).
    [CrossRef]
  23. C. Huang, X. Yin, H. Huang, and Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17, 6407–6413 (2009).
    [CrossRef]
  24. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]

2013 (1)

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Science Rep. 3, 1546 (2013).

2012 (3)

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Y. Kumagai and M. Kobayashi, “Growth of ZnMgTe/ZnTe waveguide structures and analysis of the light polarization with the electric field,” Jpn. J. Appl. Phys. 51, 02BH06 (2012).

2011 (1)

2009 (2)

C. Huang, X. Yin, H. Huang, and Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17, 6407–6413 (2009).
[CrossRef]

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

2007 (2)

Y. Zhang, L.-W. Wang, and A. Mascarenhas, “Quantum coaxial cables for solar energy harvesting,” Nano Lett. 7, 1204–1269 (2007).

A. Alú, A. Salandrino, and N. Engheta, “Coupling of optical lumped nanocircuit elements and effects of substrates,” Opt. Express 15, 13865–13876 (2007).
[CrossRef]

2003 (1)

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

2000 (1)

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

1999 (1)

M. S. Litz, D. C. Judy, and N. Tesny, “A ZnTe electro-optic electric field sensor,” Proc. SPIE 3702, 30–35 (1999).
[CrossRef]

1998 (1)

U. V. Desnica, “Doping limits in II–VI compounds—challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36, 291–357 (1998).
[CrossRef]

1996 (2)

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

1994 (2)

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

P. J. Flatau and B. T. Draine, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Am. A 11, 1491–1499 (1994).
[CrossRef]

1991 (1)

W. I. Wang, “The problem of doping wide gap II–VI compound semiconductors and its solutions,” MRS Proc. 228, 319–326 (1991).
[CrossRef]

1984 (1)

H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
[CrossRef]

1975 (1)

S. Valette, G. Labrunie, and J. Lizet, “Optical waveguides in ion-implanted ZnTe,” J. Appl. Phys. 46, 2731–2732 (1975).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1964 (1)

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

Adachi, M. M.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Science Rep. 3, 1546 (2013).

Alú, A.

Anantram, M. P.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Science Rep. 3, 1546 (2013).

Arakawa, A.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Arbiol, J.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Asahi, T.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Bhutto, W. A.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Cao, Y.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Coronado, E.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

de la Mata, M.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

De Loach, L. D.

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Desnica, U. V.

U. V. Desnica, “Doping limits in II–VI compounds—challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36, 291–357 (1998).
[CrossRef]

Ding, D.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.

Draine, B. T.

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

Engheta, N.

Flatau, P. J.

Furdyna, J. K.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Gebhardt, W.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Hanafusa, M.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Huang, C.

Huang, H.

Huang, K.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Johnson, S. R.

Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.

Judy, D. C.

M. S. Litz, D. C. Judy, and N. Tesny, “A ZnTe electro-optic electric field sensor,” Proc. SPIE 3702, 30–35 (1999).
[CrossRef]

Kalt, H.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Kang, J.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Karim, K. S.

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Science Rep. 3, 1546 (2013).

Kelly, K. L.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Klingshirn, C.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Kobayashi, M.

Y. Kumagai and M. Kobayashi, “Growth of ZnMgTe/ZnTe waveguide structures and analysis of the light polarization with the electric field,” Jpn. J. Appl. Phys. 51, 02BH06 (2012).

Krupke, W. F.

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Kumagai, Y.

Y. Kumagai and M. Kobayashi, “Growth of ZnMgTe/ZnTe waveguide structures and analysis of the light polarization with the electric field,” Jpn. J. Appl. Phys. 51, 02BH06 (2012).

Labrunie, G.

S. Valette, G. Labrunie, and J. Lizet, “Optical waveguides in ion-implanted ZnTe,” J. Appl. Phys. 46, 2731–2732 (1975).
[CrossRef]

Lee, S.

Li, H. H.

H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
[CrossRef]

Li, J.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Li, S.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Li, Z.

Litz, M.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Litz, M. S.

M. S. Litz, D. C. Judy, and N. Tesny, “A ZnTe electro-optic electric field sensor,” Proc. SPIE 3702, 30–35 (1999).
[CrossRef]

Liu, X.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Lizet, J.

S. Valette, G. Labrunie, and J. Lizet, “Optical waveguides in ion-implanted ZnTe,” J. Appl. Phys. 46, 2731–2732 (1975).
[CrossRef]

Majumder, F. A.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Mascarenhas, A.

Y. Zhang, L.-W. Wang, and A. Mascarenhas, “Quantum coaxial cables for solar energy harvesting,” Nano Lett. 7, 1204–1269 (2007).

Naumov, A.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Ni, J.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Noda, A.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Oda, O.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Page, R. H.

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Payne, S. A.

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Peng, B.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Salandrino, A.

Sato, K.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Schatz, G. C.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Singh, N.

Smith, D. J.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Stanzi, H.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Tesny, N.

M. S. Litz, D. C. Judy, and N. Tesny, “A ZnTe electro-optic electric field sensor,” Proc. SPIE 3702, 30–35 (1999).
[CrossRef]

Uchida, M.

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

Utama, M. I. B.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Valette, S.

S. Valette, G. Labrunie, and J. Lizet, “Optical waveguides in ion-implanted ZnTe,” J. Appl. Phys. 46, 2731–2732 (1975).
[CrossRef]

Wagner, R. S.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

Wang, J.

Wang, L.-W.

Y. Zhang, L.-W. Wang, and A. Mascarenhas, “Quantum coaxial cables for solar energy harvesting,” Nano Lett. 7, 1204–1269 (2007).

Wang, S.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Wang, W. I.

W. I. Wang, “The problem of doping wide gap II–VI compound semiconductors and its solutions,” MRS Proc. 228, 319–326 (1991).
[CrossRef]

Westphäling, R.

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Wilke, G. D.

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

Wu, Q.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Wu, S.-N.

Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.

Wu, Z.

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Xiong, Q.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Yin, X.

Yu, S.-Q.

Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.

Zhang, J.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Zhang, Q.

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Zhang, X.-B.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Zhang, X.-C.

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

Zhang, Y.

Y. Zhang, L.-W. Wang, and A. Mascarenhas, “Quantum coaxial cables for solar energy harvesting,” Nano Lett. 7, 1204–1269 (2007).

Zhang, Y. H.

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

Zhang, Y.-H.

Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.

Zhao, L.

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

Zhu, Y.

Appl. Phys. Lett. (2)

Q. Wu, M. Litz, and X.-C. Zhang, “Broadband detection capability of ZnTe electro-optic field detectors,” Appl. Phys. Lett. 68, 2924–2926 (1996).
[CrossRef]

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[CrossRef]

IEEE J. Quantum Electron. (1)

L. D. De Loach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser determination of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[CrossRef]

J. Appl. Phys. (1)

S. Valette, G. Labrunie, and J. Lizet, “Optical waveguides in ion-implanted ZnTe,” J. Appl. Phys. 46, 2731–2732 (1975).
[CrossRef]

J. Cryst. Growth (2)

S. Wang, D. Ding, X. Liu, X.-B. Zhang, D. J. Smith, J. K. Furdyna, and Y. H. Zhang, “MBE growth of II–VI materials on GaSb substrates for photovoltaic applications,” J. Cryst. Growth 311, 2116–2119 (2009).
[CrossRef]

K. Sato, M. Hanafusa, A. Noda, A. Arakawa, M. Uchida, T. Asahi, and O. Oda, “ZnTe pure green light-emitting diodes fabricated by thermal diffusion,” J. Cryst. Growth 214, 1080–1084 (2000).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. Chem. B (1)

K. L. Kelly, E. Coronado, L. Zhao, and G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107, 668–677 (2003).
[CrossRef]

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of ZnS, ZnSe, ZnTe and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 13, 103–150 (1984).
[CrossRef]

Jpn. J. Appl. Phys. (1)

Y. Kumagai and M. Kobayashi, “Growth of ZnMgTe/ZnTe waveguide structures and analysis of the light polarization with the electric field,” Jpn. J. Appl. Phys. 51, 02BH06 (2012).

MRS Proc. (1)

W. I. Wang, “The problem of doping wide gap II–VI compound semiconductors and its solutions,” MRS Proc. 228, 319–326 (1991).
[CrossRef]

Nano Lett. (1)

Y. Zhang, L.-W. Wang, and A. Mascarenhas, “Quantum coaxial cables for solar energy harvesting,” Nano Lett. 7, 1204–1269 (2007).

Nano-Micro Lett. (1)

Y. Cao, Z. Wu, J. Ni, W. A. Bhutto, J. Li, S. Li, K. Huang, and J. Kang, “Type-II core/shell nanowire heterostructures and their photovoltaic applications,” Nano-Micro Lett. 4, 135–141 (2012).

Opt. Express (3)

Phys. Rev. B (2)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Q. Zhang, J. Zhang, M. I. B. Utama, B. Peng, M. de la Mata, J. Arbiol, and Q. Xiong, “Exciton-phonon coupling in individual ZnTe nanorods studied by resonant Raman spectroscopy,” Phys. Rev. B 85, 085418 (2012).
[CrossRef]

Phys. Status Solidi B (1)

F. A. Majumder, C. Klingshirn, R. Westphäling, H. Kalt, A. Naumov, H. Stanzi, and W. Gebhardt, “Grain processes in ZnTe epilayers on GaAs,” Phys. Status Solidi B 186, 591–599 (1994).
[CrossRef]

Proc. SPIE (1)

M. S. Litz, D. C. Judy, and N. Tesny, “A ZnTe electro-optic electric field sensor,” Proc. SPIE 3702, 30–35 (1999).
[CrossRef]

Prog. Cryst. Growth Charact. Mater. (1)

U. V. Desnica, “Doping limits in II–VI compounds—challenges, problems and solutions,” Prog. Cryst. Growth Charact. Mater. 36, 291–357 (1998).
[CrossRef]

Science Rep. (1)

M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Science Rep. 3, 1546 (2013).

Other (2)

S. A. Maier, ed. Plasmonics: Fundamentals and Applications (Springer, 2007).

Y.-H. Zhang, S.-Q. Yu, S. R. Johnson, D. Ding, and S.-N. Wu, “A proposal of monolithically integrated multijunction solar cells using lattice-matched II/VI and III/V semiconductors,” Proceedings of the 33rd IEEE Photovoltaic Energy Specialist Conference (2008), pp. 1–5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Extinction spectra of incident light as functions of the spacing between nanorod structures. The Au diameter is 100 nm, and the ZnTe diameter and length are 60 and 500 nm, respectively. The inset shows the unit cell of simulation.

Fig. 2.
Fig. 2.

Power dissipation in the plasmonic nanorod structure as a function the light wavelength: (a) 1000 nm, (b) 750 nm, (c) 600 nm, (d) 550 nm. The neighboring nanorods are placed with a spacing of 60 nm. Scattering profiles of the Au–ZnTe element at λ=600nm for directions (e) perpendicular and (f) parallel to the polarization plane of light.

Fig. 3.
Fig. 3.

Normalized extinction spectra as a function of nanorod length with a constant 60 nm spacing between structures.

Fig. 4.
Fig. 4.

Power dissipation (filled) and enhancement factor (empty) versus ZnTe length at wavelengths of 600 (diamonds) and 550 nm (circles). Insets: absorption distribution at 550 (left) and 600 nm (right).

Fig. 5.
Fig. 5.

(a) Schematic of Au–ZnTe array with equivalent circuit model elements and (b) calculation of the induced relative dipole moment in the gold spheres. The white line is the LSPR in air for and isolated sphere. (c) Comparison of LCR circuit response and simulation data points for a 60 nm separated array of Fig. 1.

Fig. 6.
Fig. 6.

Scanning electron microscope image of the large-scale fabricated composite nanostructure. The scale bar is 10 μm. Insets show a dark field image of the Au islands (left) and selected nanostructure elements at 200 nm scale (right).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

Csca=8π3k4a6|εεhε+2εh|2,Cabs=4πka3Im[εεhε+2εh],

Metrics