Abstract

The implementation of photoinduced linkage isomerism in molecular-based optical materials represents a promising approach for the synthesis of high-contrast, high-resolution photosensitive materials that are necessary for high-density (holographic) data storage and/or real-three-dimensional (holographic) displays. The unsolved task of embedding a photofunctional coordination complex into a matrix like polymer polydimethylsiloxane (PDMS) with photoinduced isomerism of a SO-bond in the sulfoxide compound [Ru(bpy)2OSO]PF6 is addressed. This approach allows to preserve the spectral properties within the solid dielectric environment, with an impact of PDMS on population and relaxation dynamics. All data are discussed in the framework of photofunctionality, storage, and display applications.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Gütlich, Y. Garcia, and Th. Woike, “Photoswitchable coordination compounds,” Coord. Chem. Rev. 219, 839–879 (2001).
    [CrossRef]
  2. D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
    [CrossRef]
  3. M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
    [CrossRef]
  4. P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, 2006).
  5. N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).
  6. F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).
  7. M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.
  8. V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012).
    [CrossRef]
  9. S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995).
    [CrossRef]
  10. P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
    [CrossRef]
  11. D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).
  12. J. M. Cole, “Applications of photocrystallography: a future perspective,” Z. Kristallogr. 223, 259–271 (2008).
    [CrossRef]
  13. T. Woike and D. Schaniel, “Photocrystallography,” Z. Kristallogr. 223, 4–5 (2008), Special Issue.
  14. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
    [CrossRef]
  15. M. Irie, “Photoresponsive polymers,” Adv. Polym. Sci. 94, 27–67 (1990).
  16. P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
    [CrossRef]
  17. A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polymer J. 42, 525–533 (2010).
    [CrossRef]
  18. N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
    [CrossRef]
  19. V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
    [CrossRef]
  20. A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009).
    [CrossRef]
  21. J. J. Rack, “Electron transfer triggered sulfoxide isomerization in ruthenium and osmium complexes,” Coord. Chem. Rev. 253, 78–85 (2009).
    [CrossRef]
  22. V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009).
    [CrossRef]
  23. D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
    [CrossRef]
  24. M. J. Root and E. Deutsch, “Synthesis and characterization of (bipyridine)(terpyridine)(chalcogenoether)ruthenium(ii) complexes—kinetics and mechanism of the hydrogen-peroxide oxidation of [(bpy)(tpy)RuS(CH3)2]2+ to [(bpy)(tpy)RuS(O)(CH3)2]2+—kinetics of the aquation of [(bpy)(tpy)RuS(O)(CH3)2]2+,” Inorg. Chem. 24, 1464–1471 (1985).
    [CrossRef]
  25. J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003).
    [CrossRef]
  26. T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
    [CrossRef]
  27. S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).
  28. V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010).
    [CrossRef]

2012

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012).
[CrossRef]

2011

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

2010

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polymer J. 42, 525–533 (2010).
[CrossRef]

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
[CrossRef]

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010).
[CrossRef]

2009

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009).
[CrossRef]

A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009).
[CrossRef]

J. J. Rack, “Electron transfer triggered sulfoxide isomerization in ruthenium and osmium complexes,” Coord. Chem. Rev. 253, 78–85 (2009).
[CrossRef]

2008

J. M. Cole, “Applications of photocrystallography: a future perspective,” Z. Kristallogr. 223, 259–271 (2008).
[CrossRef]

T. Woike and D. Schaniel, “Photocrystallography,” Z. Kristallogr. 223, 4–5 (2008), Special Issue.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

2007

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

2006

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
[CrossRef]

2003

D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef]

2001

P. Gütlich, Y. Garcia, and Th. Woike, “Photoswitchable coordination compounds,” Coord. Chem. Rev. 219, 839–879 (2001).
[CrossRef]

1999

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
[CrossRef]

1998

P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
[CrossRef]

1995

S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995).
[CrossRef]

1990

M. Irie, “Photoresponsive polymers,” Adv. Polym. Sci. 94, 27–67 (1990).

1985

M. J. Root and E. Deutsch, “Synthesis and characterization of (bipyridine)(terpyridine)(chalcogenoether)ruthenium(ii) complexes—kinetics and mechanism of the hydrogen-peroxide oxidation of [(bpy)(tpy)RuS(CH3)2]2+ to [(bpy)(tpy)RuS(O)(CH3)2]2+—kinetics of the aquation of [(bpy)(tpy)RuS(O)(CH3)2]2+,” Inorg. Chem. 24, 1464–1471 (1985).
[CrossRef]

1969

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Abe, J.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).

Angelov, V.

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

Barachevsky, V. A.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Berg, R. H.

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
[CrossRef]

Bieringer, T.

M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Bruder, F. K.

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

Butcher, D. P.

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
[CrossRef]

Carducci, M. D.

P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
[CrossRef]

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Cole, J. M.

J. M. Cole, “Applications of photocrystallography: a future perspective,” Z. Kristallogr. 223, 259–271 (2008).
[CrossRef]

Coppens, P.

P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
[CrossRef]

Culp, K.

P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
[CrossRef]

Deutsch, E.

M. J. Root and E. Deutsch, “Synthesis and characterization of (bipyridine)(terpyridine)(chalcogenoether)ruthenium(ii) complexes—kinetics and mechanism of the hydrogen-peroxide oxidation of [(bpy)(tpy)RuS(CH3)2]2+ to [(bpy)(tpy)RuS(O)(CH3)2]2+—kinetics of the aquation of [(bpy)(tpy)RuS(O)(CH3)2]2+,” Inorg. Chem. 24, 1464–1471 (1985).
[CrossRef]

Dieckmann, V.

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012).
[CrossRef]

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010).
[CrossRef]

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009).
[CrossRef]

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Dunaev, A. A.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Eicke, S.

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012).
[CrossRef]

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010).
[CrossRef]

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009).
[CrossRef]

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Facke, T.

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

Fomitchev, D. V.

P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
[CrossRef]

Garcia, Y.

P. Gütlich, Y. Garcia, and Th. Woike, “Photoswitchable coordination compounds,” Coord. Chem. Rev. 219, 839–879 (2001).
[CrossRef]

Grusenmeyer, T. A.

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
[CrossRef]

Gudel, H. U.

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

Günter, P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, 2006).

Gütlich, P.

P. Gütlich, Y. Garcia, and Th. Woike, “Photoswitchable coordination compounds,” Coord. Chem. Rev. 219, 839–879 (2001).
[CrossRef]

Hagen, R.

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

Haussühl, S.

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995).
[CrossRef]

Huignard, J.-P.

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, 2006).

Hvilsted, S.

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
[CrossRef]

Imlau, M.

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012).
[CrossRef]

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010).
[CrossRef]

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009).
[CrossRef]

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Irie, M.

M. Irie, “Photoresponsive polymers,” Adv. Polym. Sci. 94, 27–67 (1990).

Ishii, N.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).

Izmailov, B. A.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

Kato, T.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).

Keshtov, M. L.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Kramer, K. W.

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

Krayushkin, M. M.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Kruse, A.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Lee, J. N.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef]

Lepski, R.

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

McClung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

McClure, B. A.

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
[CrossRef]

Odoulov, S.

M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.

Park, C.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef]

Petersen, J. L.

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
[CrossRef]

Rachford, A. A.

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
[CrossRef]

Rack, J. J.

V. Dieckmann, K. Springfeld, S. Eicke, M. Imlau, and J. J. Rack, “Thermal stability, photochromic sensitivity and optical properties of [Ru(bpy)2(OSOR)]+ compounds with R = Bn, BnCl, BnMe,” Opt. Express 18, 23495–23503 (2010).
[CrossRef]

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
[CrossRef]

J. J. Rack, “Electron transfer triggered sulfoxide isomerization in ruthenium and osmium complexes,” Coord. Chem. Rev. 253, 78–85 (2009).
[CrossRef]

V. Dieckmann, S. Eicke, J. J. Rack, Th. Woike, and M. Imlau, “Pronounced photosensitivity of molecular [Ru(bpy)2(OSO)]+ solutions based on two photoinduced linkage isomers,” Opt. Express 17, 15052–15060 (2009).
[CrossRef]

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
[CrossRef]

Ramanujam, P. S.

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
[CrossRef]

Rasmussen, P. H.

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
[CrossRef]

Rolle, T.

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

Root, M. J.

M. J. Root and E. Deutsch, “Synthesis and characterization of (bipyridine)(terpyridine)(chalcogenoether)ruthenium(ii) complexes—kinetics and mechanism of the hydrogen-peroxide oxidation of [(bpy)(tpy)RuS(CH3)2]2+ to [(bpy)(tpy)RuS(O)(CH3)2]2+—kinetics of the aquation of [(bpy)(tpy)RuS(O)(CH3)2]2+,” Inorg. Chem. 24, 1464–1471 (1985).
[CrossRef]

Rupp, R. A.

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

Schaniel, D.

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009).
[CrossRef]

T. Woike and D. Schaniel, “Photocrystallography,” Z. Kristallogr. 223, 4–5 (2008), Special Issue.

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).

Schefer, J.

D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).

Schetter, G.

S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995).
[CrossRef]

Schieder, R.

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

Schuy, A.

A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009).
[CrossRef]

Schwarz, K.

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

Shimkina, N. G.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Shishido, A.

A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polymer J. 42, 525–533 (2010).
[CrossRef]

Springfeld, K.

Taffa, D. H.

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

Vasnev, V. A.

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Voit, K.-M.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Walder, L.

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Weisemöller, T.

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

Weiser, M. S.

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

Whitesides, G. M.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef]

Woike, T.

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009).
[CrossRef]

T. Woike and D. Schaniel, “Photocrystallography,” Z. Kristallogr. 223, 4–5 (2008), Special Issue.

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995).
[CrossRef]

M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.

Woike, Th.

Ziegler, C. J.

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
[CrossRef]

Adv. Mater.

D. Schaniel, M. Imlau, T. Weisemöller, T. Woike, K. W. Kramer, and H. U. Gudel, “Photoinduced nitrosyl linkage isomers uncover a variety of unconventional photorefractive media,” Adv. Mater. 19, 723–726 (2007).
[CrossRef]

Adv. Polym. Sci.

M. Irie, “Photoresponsive polymers,” Adv. Polym. Sci. 94, 27–67 (1990).

Anal. Chem.

J. N. Lee, C. Park, and G. M. Whitesides, “Solvent compatibility of poly(dimethylsiloxane)-based microfluidic devices,” Anal. Chem. 75, 6544–6554 (2003).
[CrossRef]

Angew. Chem., Int. Ed. Engl.

F. K. Bruder, R. Hagen, T. Rolle, M. S. Weiser, and T. Facke, “From the surface to volume: concepts for the next generation of optical-holographic data-storage materials,” Angew. Chem., Int. Ed. Engl. 50, 4552–4573 (2011).

Appl. Phys. B

M. Imlau, S. Haussühl, T. Woike, R. Schieder, V. Angelov, R. A. Rupp, and K. Schwarz, “Holographic recording by excitation of metastable electronic states in Na2Fe(CN)5NO.2H2O a new photorefractive effect,” Appl. Phys. B 68, 877–885 (1999).
[CrossRef]

Appl. Phys. Lett.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recording on photopolymer materials,” Appl. Phys. Lett. 14, 159–160 (1969).
[CrossRef]

ARKIVOC

N. G. Shimkina, M. M. Krayushkin, V. A. Barachevsky, A. A. Dunaev, B. A. Izmailov, V. A. Vasnev, and M. L. Keshtov, “Photochromic silicone polymers based on 1,2-dihetarylethenes,” ARKIVOC iv, 112–119 (2008).
[CrossRef]

Coord. Chem. Rev.

P. Gütlich, Y. Garcia, and Th. Woike, “Photoswitchable coordination compounds,” Coord. Chem. Rev. 219, 839–879 (2001).
[CrossRef]

J. J. Rack, “Electron transfer triggered sulfoxide isomerization in ruthenium and osmium complexes,” Coord. Chem. Rev. 253, 78–85 (2009).
[CrossRef]

Inorg. Chem.

D. P. Butcher, A. A. Rachford, J. L. Petersen, and J. J. Rack, “Phototriggered S→O isomerization of a ruthenium-bound chelating sulfoxide,” Inorg. Chem. 45, 9178–9180 (2006).
[CrossRef]

M. J. Root and E. Deutsch, “Synthesis and characterization of (bipyridine)(terpyridine)(chalcogenoether)ruthenium(ii) complexes—kinetics and mechanism of the hydrogen-peroxide oxidation of [(bpy)(tpy)RuS(CH3)2]2+ to [(bpy)(tpy)RuS(O)(CH3)2]2+—kinetics of the aquation of [(bpy)(tpy)RuS(O)(CH3)2]2+,” Inorg. Chem. 24, 1464–1471 (1985).
[CrossRef]

T. A. Grusenmeyer, B. A. McClure, C. J. Ziegler, and J. J. Rack, “Solvent effects on isomerization in a ruthenium sulfoxide complex,” Inorg. Chem. 49, 4466–4470 (2010).
[CrossRef]

J. Am. Chem. Soc.

P. H. Rasmussen, P. S. Ramanujam, S. Hvilsted, and R. H. Berg, “A remarkably efficient azobenzene peptide for holographic information storage,” J. Am. Chem. Soc. 121, 4738–4743 (1999).
[CrossRef]

J. Chem. Soc. Dalton Trans.

P. Coppens, D. V. Fomitchev, M. D. Carducci, and K. Culp, “Crystallography of molecular excited states: transition-metal nitrosyl complexes and the study of transient species,” J. Chem. Soc. Dalton Trans. (6), 865–872 (1998).
[CrossRef]

J. Sol. Gel Sci. Technol.

A. Schuy, T. Woike, and D. Schaniel, “Photoisomerisation in single molecules of nitroprusside embedded in mesopores of xerogels,” J. Sol. Gel Sci. Technol. 50, 403–408 (2009).
[CrossRef]

Materials

V. Dieckmann, S. Eicke, K. Springfeld, and M. Imlau, “Transition metal compounds towards holography,” Materials 5, 1155–1175 (2012).
[CrossRef]

Opt. Commun.

S. Haussühl, G. Schetter, and T. Woike, “Nitroprussides, a new group of materials for holographic information-storage on the basis of metastable electronic states,” Opt. Commun. 114, 219–222 (1995).
[CrossRef]

Opt. Express

Phys. Chem. Chem. Phys.

V. Dieckmann, M. Imlau, D. H. Taffa, L. Walder, R. Lepski, D. Schaniel, and T. Woike, “Phototriggered NO and CN release from [Fe(CN)(5)NO](2-) molecules electrostatically attached to TiO2 surfaces,” Phys. Chem. Chem. Phys. 12, 3283–3288 (2010).
[CrossRef]

Phys. Rev. B

D. Schaniel, J. Schefer, M. Imlau, and T. Woike, “Light-induced structural changes by excitation of metastable states in Na2[Fe(CN)5NO]·2H2O single crystals,” Phys. Rev. B 68, 104108 (2003).

Polymer J.

A. Shishido, “Rewritable holograms based on azobenzene-containing liquid-crystalline polymers,” Polymer J. 42, 525–533 (2010).
[CrossRef]

Sci. Rep.

N. Ishii, T. Kato, and J. Abe, “A real-time dynamic holographic material using a fast photochromic molecule,” Sci. Rep. 2, 819–823 (2012).

Z. Kristallogr.

J. M. Cole, “Applications of photocrystallography: a future perspective,” Z. Kristallogr. 223, 259–271 (2008).
[CrossRef]

T. Woike and D. Schaniel, “Photocrystallography,” Z. Kristallogr. 223, 4–5 (2008), Special Issue.

Other

P. Günter and J.-P. Huignard, Photorefractive Materials and Their Applications 1 (Springer, 2006).

M. Imlau, T. Woike, S. Odoulov, and T. Bieringer, “Holographic data storage,” in Nanoelectronics and Information Technology, R. Waser, ed. (Wiley-VCH, 2012), pp. 727–750.

S. Eicke, V. Dieckmann, A. Kruse, K.-M. Voit, M. Imlau, and L. Walder, “Dynamics of the light-induced absorption in photochromic [Ru(bpy)2(OSO)]+,” J. Spectrosc. Dyn. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

Solid-state sample of OSO embedded in PDMS (left) and the commonly studied solution of OSO in DCM in a cuvette (right).

Fig. 2.
Fig. 2.

Extinction spectra ε(ν)=α(ν)/c of OSO embedded in PDMS (left) compared to a solution of OSO in DCM (right), modeled by a sum of Voigt and Gaussian profiles [22].

Fig. 3.
Fig. 3.

(a) Extinction characteristics of the OSO-PDMS sample as a function of time when exposed to a white-light source at room temperature. (b) Characteristics of (a) for the experimental data (o) at λ=500nm and the fit according to Eq. (1) (black line).

Fig. 4.
Fig. 4.

Double population-thermal relaxation-cycle of the OSO-PDMS sample at λ=500nm: (a) Optical population of the molecules from the ground state into the metastable structural isomers with (b) subsequent thermal relaxation back to the ground state. (c) Afterward, the molecules are transferred back to the metastable states by a second optical excitation. The following thermal relaxation to the ground state is shown in part (d), indicating a reproducible excitation cycle.

Fig. 5.
Fig. 5.

(a) Spatial homogeneity of the extinction coefficient ε at λ=400nm in top view of a 3D OSO-PDMS sample and related to its average value. (b) ε at λ=500nm after illumination of a dot with a diameter of 2.6 mm.

Fig. 6.
Fig. 6.

(a) Emblem of the Osnabrück University being illuminated in an OSO-PDMS sample. (b) Transmitted light intensity for the wavelengths λ=(632±10)nm, λ=(532±10)nm, and λ=(488±10)nm at the dashed line in (a).

Fig. 7.
Fig. 7.

Structures of a 1951 USAF target are transferred into an OSO-PDMS sample and analyzed by a microscope.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δεfit(t)=δε0+A1exp(tτ1)+A2exp(tτ2),

Metrics