Abstract

The quasi-phase-matching (QPM) technique has drawn increasing attention due to its promising applications in areas such as nonlinear frequency conversion for generating new laser light sources. In this paper, we will briefly review the main achievements in this field. We give a brief introduction of the invention of QPM theory, followed by the QPM-material fabrication techniques. When combing QPM with the solid-state laser techniques, various laser light sources, such as single-wavelength visible lasers and ultraviolet lasers, red–green–blue three-fundamental-color lasers, optical parametric oscillators in different temporal scales, and passive mode-locking lasers based on cascaded second-order nonlinearity, have been presented. The QPM technique has been extended to quantum optics recently, and prospects for the studies are bright.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
    [CrossRef]
  2. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [CrossRef]
  3. D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128, 1761–1775 (1962).
    [CrossRef]
  4. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [CrossRef]
  5. M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976).
    [CrossRef]
  6. A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976).
    [CrossRef]
  7. D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
    [CrossRef]
  8. M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976).
    [CrossRef]
  9. N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982).
    [CrossRef]
  10. Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
    [CrossRef]
  11. D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
    [CrossRef]
  12. W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
    [CrossRef]
  13. M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
    [CrossRef]
  14. Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
    [CrossRef]
  15. G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
    [CrossRef]
  16. D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
    [CrossRef]
  17. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
    [CrossRef]
  18. E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
    [CrossRef]
  19. J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989).
    [CrossRef]
  20. S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
    [CrossRef]
  21. J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
    [CrossRef]
  22. C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
    [CrossRef]
  23. M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
    [CrossRef]
  24. H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
    [CrossRef]
  25. G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).
  26. S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
    [CrossRef]
  27. W. P. Risk and S. D. Lau, “Periodic electric field poling of KTiOPO4 using chemical patterning,” Appl. Phys. Lett. 69, 3999–4001 (1996).
    [CrossRef]
  28. Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
    [CrossRef]
  29. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [CrossRef]
  30. L. E. Myers, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. thesis (Stanford University, 1995).
  31. G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
    [CrossRef]
  32. R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
    [CrossRef]
  33. A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
    [CrossRef]
  34. A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
    [CrossRef]
  35. G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO,” in Proceedings of the 11th International Quantum Electronics Conference (1980), pp. 631–635.
  36. A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996).
    [CrossRef]
  37. S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997).
    [CrossRef]
  38. T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
    [CrossRef]
  39. H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
    [CrossRef]
  40. H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003).
    [CrossRef]
  41. H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm × 5  mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
    [CrossRef]
  42. H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18, 253–258 (2010).
    [CrossRef]
  43. H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012).
    [CrossRef]
  44. K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
    [CrossRef]
  45. C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
    [CrossRef]
  46. Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
    [CrossRef]
  47. H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
    [CrossRef]
  48. G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
    [CrossRef]
  49. C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006).
    [CrossRef]
  50. C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
    [CrossRef]
  51. C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
    [CrossRef]
  52. C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
    [CrossRef]
  53. L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
    [CrossRef]
  54. S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching,” Opt. Mater. Express 1, 1367–1375 (2011).
    [CrossRef]
  55. J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
    [CrossRef]
  56. X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
    [CrossRef]
  57. X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
    [CrossRef]
  58. R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780  nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11, 1709–1713 (2003).
    [CrossRef]
  59. S. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43  W of quasi-continuous 780  nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37, 3861–3863 (2012).
    [CrossRef]
  60. D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999).
    [CrossRef]
  61. J. Boullet, L. Lavoute, A. Desfarges Berthelemot, V. Kermène, P. Roy, V. Couderc, B. Dussardier, and A.-M. Jurdyc, “Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser,” Opt. Express 14, 3936–3941 (2006).
    [CrossRef]
  62. P. A. Champert, S. V. Popov, M. A. Solodyankin, and J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
    [CrossRef]
  63. J. Melkonian, T. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518–520 (2007).
    [CrossRef]
  64. W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
    [CrossRef]
  65. G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
    [CrossRef]
  66. N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004).
    [CrossRef]
  67. S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007).
    [CrossRef]
  68. S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009).
    [CrossRef]
  69. I. Ricciardi, M. Rosa, A. Rocco, P. Ferraro, and P. Natale, “Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3,” Opt. Express 18, 10985–10994 (2010).
    [CrossRef]
  70. S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19, 11152–11169 (2011).
    [CrossRef]
  71. G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990).
    [CrossRef]
  72. V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St, J. Russell, and D. C. Hanna, “49  mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
    [CrossRef]
  73. R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
    [CrossRef]
  74. X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
    [CrossRef]
  75. D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, “250  mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP,” Opt. Lett. 27, 1055–1057 (2002).
    [CrossRef]
  76. P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
    [CrossRef]
  77. G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave, single-frequency, solid-state blue source for the 425–489  nm spectral range,” Opt. Lett. 33, 1228–1230 (2008).
    [CrossRef]
  78. C.-M. Lai, I.-N. Hu, Y.-Y. Lai, Z.-X. Huang, L.-H. Peng, A. Boudrioua, and A.-H. Kung, “Upconversion blue laser by intracavity frequency self-doubling of periodically poled lithium tantalate parametric oscillator,” Opt. Lett. 35, 160–162 (2010).
    [CrossRef]
  79. J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J. Meyn, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27, 604–606 (2002).
    [CrossRef]
  80. J. D. Vance, C. Y. She, and H. Moosmüller, “Continuous-wave, all-solid-state, single-frequency 400-mW source at 589  nm based on doubly resonant sum-frequency mixing in a monolithic lithium niobate resonator,” Appl. Opt. 37, 4891–4896 (1998).
    [CrossRef]
  81. J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34, 1093–1095 (2009).
    [CrossRef]
  82. A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook, and S. J. Sharpe, “Generation of high-average-power visible light in periodically poled nearly stoichiometric lithium tantalite,” Appl. Opt. 48, 964–968 (2009).
    [CrossRef]
  83. E. Mimoun, L. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589  nm light with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008).
    [CrossRef]
  84. L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
    [CrossRef]
  85. Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002).
    [CrossRef]
  86. Y. F. Chen, “Cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B. 70, 475–478 (2000).
    [CrossRef]
  87. D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589  nm,” Opt. Express 13, 6772–6776 (2005).
    [CrossRef]
  88. Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
    [CrossRef]
  89. R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
    [CrossRef]
  90. K. Mizuuchi, T. Sugita, and K. Yamamoto, “Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3,” Opt. Lett. 28, 935–937 (2003).
    [CrossRef]
  91. J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,” Opt. Lett. 22, 1214–1216 (1997).
    [CrossRef]
  92. K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
    [CrossRef]
  93. P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384  nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source,” Opt. Lett. 25, 1252–1254 (2000).
    [CrossRef]
  94. Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
    [CrossRef]
  95. S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, and H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
    [CrossRef]
  96. S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998).
    [CrossRef]
  97. B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010).
    [CrossRef]
  98. E. G. Víllora, K. Shimamura, K. Sumiya, and H. Ishibashi, “Birefringent and quasi phase-matching with BaMgF4for vacuum-UV/UV and mid-IR all solid-state lasers,” Opt. Express 17, 12362–12378 (2009).
    [CrossRef]
  99. D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
    [CrossRef]
  100. J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990).
    [CrossRef]
  101. B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
    [CrossRef]
  102. H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
    [CrossRef]
  103. M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structure in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
    [CrossRef]
  104. V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
    [CrossRef]
  105. B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
    [CrossRef]
  106. L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
    [CrossRef]
  107. R. K. P. Zia and W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985).
    [CrossRef]
  108. S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
    [CrossRef]
  109. K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
    [CrossRef]
  110. F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993).
    [CrossRef]
  111. M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
    [CrossRef]
  112. P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
    [CrossRef]
  113. E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
    [CrossRef]
  114. D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999).
    [CrossRef]
  115. J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
    [CrossRef]
  116. J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78, 144–146 (2001).
    [CrossRef]
  117. J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
    [CrossRef]
  118. J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
    [CrossRef]
  119. H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
    [CrossRef]
  120. X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
    [CrossRef]
  121. X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
    [CrossRef]
  122. B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.
  123. Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
    [CrossRef]
  124. Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
    [CrossRef]
  125. P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009).
    [CrossRef]
  126. S. T. Lin, Y. Y. Lin, R. Y. Tu, T. D. Wang, and Y. C. Huang, “Fiber-laser-pumped CW OPO for red, green, blue laser generation,” Opt. Express 18, 2361–2367 (2010).
    [CrossRef]
  127. R. S. Cudney, M. Robles-Agudo, and L. A. Rois, “RGB source based on simultaneous quasi-phasematched second and third harmonic generation in periodically poled lithium niobate,” Opt. Express 14, 10663–10668 (2006).
    [CrossRef]
  128. P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
    [CrossRef]
  129. L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
    [CrossRef]
  130. L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
    [CrossRef]
  131. M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
    [CrossRef]
  132. A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
    [CrossRef]
  133. V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031 (1996).
    [CrossRef]
  134. A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
    [CrossRef]
  135. S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
    [CrossRef]
  136. S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19, 26660–26665 (2011).
    [CrossRef]
  137. C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahim-Zadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
    [CrossRef]
  138. M. V. O’Connor, M. A. Watson, D. P. hepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27, 1052–1054(2002).
    [CrossRef]
  139. T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric osicalltor,” Opt. Lett. 26, 304–306 (2001).
    [CrossRef]
  140. N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, “25-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 um and 4.1-4.9  μm,” Opt. Express 20, 22042–22047 (2012).
    [CrossRef]
  141. L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.
  142. S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5  W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B. 102, 31–35 (2011).
    [CrossRef]
  143. R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
    [CrossRef]
  144. R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009).
    [CrossRef]
  145. U. Strossner, J. P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Roseman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830  nm,” J. Opt. Soc. Am. B 19, 1419–1424 (2002).
    [CrossRef]
  146. T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-soild-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
    [CrossRef]
  147. J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
    [CrossRef]
  148. K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
    [CrossRef]
  149. G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segaka, and V. Magni, “Self-starting mode-locking of a CW Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
    [CrossRef]
  150. Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periocailly-poled KTP,” Appl. Phys. B 72, 395–397 (2001).
    [CrossRef]
  151. S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
    [CrossRef]
  152. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite,” Opt. Lett. 35, 1016–1018 (2010).
    [CrossRef]
  153. S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, “Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal,” Opt. Express 14, 6675–6680 (2006).
    [CrossRef]
  154. H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18, 5754–5762 (2010).
    [CrossRef]
  155. Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
    [CrossRef]
  156. H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalite,” Opt. Express 19, 21754–21759 (2011).
    [CrossRef]
  157. V. Y. Shur, “Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family,” Ferroelectrics 443, 71–82 (2013).
    [CrossRef]
  158. J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007).
    [CrossRef]
  159. P. Xu and S. N. Zhu, “Quasi-phase-matching engineering of entangled photons,” AIP Adv. 2, 041401 (2012).
    [CrossRef]
  160. Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
    [CrossRef]
  161. X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
    [CrossRef]
  162. H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
    [CrossRef]
  163. P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
    [CrossRef]
  164. H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
    [CrossRef]
  165. Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
    [CrossRef]
  166. S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
    [CrossRef]

2013

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

V. Y. Shur, “Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family,” Ferroelectrics 443, 71–82 (2013).
[CrossRef]

2012

P. Xu and S. N. Zhu, “Quasi-phase-matching engineering of entangled photons,” AIP Adv. 2, 041401 (2012).
[CrossRef]

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, “25-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 um and 4.1-4.9  μm,” Opt. Express 20, 22042–22047 (2012).
[CrossRef]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012).
[CrossRef]

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

S. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43  W of quasi-continuous 780  nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37, 3861–3863 (2012).
[CrossRef]

2011

S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching,” Opt. Mater. Express 1, 1367–1375 (2011).
[CrossRef]

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5  W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B. 102, 31–35 (2011).
[CrossRef]

L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
[CrossRef]

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
[CrossRef]

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19, 26660–26665 (2011).
[CrossRef]

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19, 11152–11169 (2011).
[CrossRef]

Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
[CrossRef]

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalite,” Opt. Express 19, 21754–21759 (2011).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

2010

H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18, 5754–5762 (2010).
[CrossRef]

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite,” Opt. Lett. 35, 1016–1018 (2010).
[CrossRef]

C.-M. Lai, I.-N. Hu, Y.-Y. Lai, Z.-X. Huang, L.-H. Peng, A. Boudrioua, and A.-H. Kung, “Upconversion blue laser by intracavity frequency self-doubling of periodically poled lithium tantalate parametric oscillator,” Opt. Lett. 35, 160–162 (2010).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010).
[CrossRef]

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[CrossRef]

S. T. Lin, Y. Y. Lin, R. Y. Tu, T. D. Wang, and Y. C. Huang, “Fiber-laser-pumped CW OPO for red, green, blue laser generation,” Opt. Express 18, 2361–2367 (2010).
[CrossRef]

I. Ricciardi, M. Rosa, A. Rocco, P. Ferraro, and P. Natale, “Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3,” Opt. Express 18, 10985–10994 (2010).
[CrossRef]

H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18, 253–258 (2010).
[CrossRef]

2009

S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009).
[CrossRef]

P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009).
[CrossRef]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
[CrossRef]

R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Sumiya, and H. Ishibashi, “Birefringent and quasi phase-matching with BaMgF4for vacuum-UV/UV and mid-IR all solid-state lasers,” Opt. Express 17, 12362–12378 (2009).
[CrossRef]

J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34, 1093–1095 (2009).
[CrossRef]

A. J. Tracy, C. Lopez, A. Hankla, D. J. Bamford, D. J. Cook, and S. J. Sharpe, “Generation of high-average-power visible light in periodically poled nearly stoichiometric lithium tantalite,” Appl. Opt. 48, 964–968 (2009).
[CrossRef]

2008

2007

S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef]

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007).
[CrossRef]

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

J. Melkonian, T. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518–520 (2007).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[CrossRef]

2006

C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006).
[CrossRef]

J. Boullet, L. Lavoute, A. Desfarges Berthelemot, V. Kermène, P. Roy, V. Couderc, B. Dussardier, and A.-M. Jurdyc, “Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser,” Opt. Express 14, 3936–3941 (2006).
[CrossRef]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

R. S. Cudney, M. Robles-Agudo, and L. A. Rois, “RGB source based on simultaneous quasi-phasematched second and third harmonic generation in periodically poled lithium niobate,” Opt. Express 14, 10663–10668 (2006).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, “Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal,” Opt. Express 14, 6675–6680 (2006).
[CrossRef]

2005

2004

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

2003

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

K. Mizuuchi, T. Sugita, and K. Yamamoto, “Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3,” Opt. Lett. 28, 935–937 (2003).
[CrossRef]

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780  nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11, 1709–1713 (2003).
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[CrossRef]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

2002

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

P. A. Champert, S. V. Popov, M. A. Solodyankin, and J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002).
[CrossRef]

J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J. Meyn, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27, 604–606 (2002).
[CrossRef]

D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, “250  mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP,” Opt. Lett. 27, 1055–1057 (2002).
[CrossRef]

J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
[CrossRef]

U. Strossner, J. P. Meyn, R. Wallenstein, P. Urenski, A. Arie, G. Roseman, J. Mlynek, S. Schiller, and A. Peters, “Single-frequency continuous-wave optical parametric oscillator system with an ultrawide tuning range of 550 to 2830  nm,” J. Opt. Soc. Am. B 19, 1419–1424 (2002).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahim-Zadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
[CrossRef]

M. V. O’Connor, M. A. Watson, D. P. hepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27, 1052–1054(2002).
[CrossRef]

2001

T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric osicalltor,” Opt. Lett. 26, 304–306 (2001).
[CrossRef]

T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-soild-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
[CrossRef]

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78, 144–146 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periocailly-poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[CrossRef]

2000

1999

S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, and H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
[CrossRef]

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structure in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

1998

1997

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,” Opt. Lett. 22, 1214–1216 (1997).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
[CrossRef]

1996

W. P. Risk and S. D. Lau, “Periodic electric field poling of KTiOPO4 using chemical patterning,” Appl. Phys. Lett. 69, 3999–4001 (1996).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
[CrossRef]

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996).
[CrossRef]

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031 (1996).
[CrossRef]

K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
[CrossRef]

1995

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St, J. Russell, and D. C. Hanna, “49  mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef]

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segaka, and V. Magni, “Self-starting mode-locking of a CW Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
[CrossRef]

1994

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
[CrossRef]

1993

F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

1991

H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
[CrossRef]

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

1990

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990).
[CrossRef]

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

1989

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[CrossRef]

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989).
[CrossRef]

1988

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[CrossRef]

1986

W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
[CrossRef]

1985

R. K. P. Zia and W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985).
[CrossRef]

1984

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

1982

N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982).
[CrossRef]

1980

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

1979

S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
[CrossRef]

1976

M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976).
[CrossRef]

A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976).
[CrossRef]

D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
[CrossRef]

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976).
[CrossRef]

1962

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128, 1761–1775 (1962).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

1961

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

1960

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Acott, P. E.

Adachi, M.

Alexander, J. I.

W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
[CrossRef]

L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.

Anderson, D. B.

D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
[CrossRef]

Apostolopoulos, V.

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Arbore, M. A.

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
[CrossRef]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef]

L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.

Arie, A.

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Arvidsson, G.

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989).
[CrossRef]

Aus der Au, J.

Aveline, D.

Bai, Y. F.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

Baldi, P.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Bamford, D. J.

Batchko, R. G.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
[CrossRef]

Baxter, G. W.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

Becouarn, L.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Bencheikh, K.

Berger, V.

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

Bhar, G. C.

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990).
[CrossRef]

Bierlein, J. D.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
[CrossRef]

F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993).
[CrossRef]

J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Blech, I.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[CrossRef]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Bortz, M. L.

Bosenberg, W. R.

Boudrioua, A.

Boullet, J.

Boyd, R. L.

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

Bretenaker, F.

Breunig, I.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
[CrossRef]

Broderick, N. G. R.

Brown, J. B.

F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993).
[CrossRef]

J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
[CrossRef]

Brown Co., J. B.

C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Buchvarov, I.

Burns, W. K.

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999).
[CrossRef]

Busacca, A. C.

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Buse, K.

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[CrossRef]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
[CrossRef]

Butterworth, S. D.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef]

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031 (1996).
[CrossRef]

Byer, R.

Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
[CrossRef]

Byer, R. L.

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.

Cahn, J. W.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[CrossRef]

Canalias, C.

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[CrossRef]

C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

Cantelar, E.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

Cantrell, C. D.

M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976).
[CrossRef]

Capmany, J.

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78, 144–146 (2001).
[CrossRef]

D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

Cerullo, G.

Cha, M.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003).
[CrossRef]

Chaitanya Kumar, S.

Champert, P. A.

P. A. Champert, S. V. Popov, M. A. Solodyankin, and J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384  nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source,” Opt. Lett. 25, 1252–1254 (2000).
[CrossRef]

Chatterjee, U.

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990).
[CrossRef]

Cheah, K. W.

Chen, C. D.

Chen, Q.

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Chen, X. F.

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

Chen, Y. B.

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Chen, Y. F.

Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002).
[CrossRef]

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periocailly-poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[CrossRef]

Y. F. Chen, “Cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B. 70, 475–478 (2000).
[CrossRef]

Cheng, B. Y.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Chiow, S.

Chou, M. H.

Chuchumishev, D.

Clarkson, W. A.

Clemens, R.

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

Colak, S.

C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Coluccelli, N.

Conroy, R. S.

Cook, D. J.

Couderc, V.

Cudney, R. S.

Cusso, F.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

Dalibard, J.

Dallas, W. J.

R. K. P. Zia and W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985).
[CrossRef]

Das, R.

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5  W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B. 102, 31–35 (2011).
[CrossRef]

R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009).
[CrossRef]

Datta, P.

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990).
[CrossRef]

De Micheli, M. P.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

De Silvestri, S.

Delacourt, D.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Desfarges Berthelemot, A.

Devi, K.

Ding, Y. J.

B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010).
[CrossRef]

Dong, B. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Drag, C.

Dronov, A. G.

Du, J.

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

Du, Y.

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Dussardier, B.

Eason, R. W.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Ebert, C. B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Ebrahim-Zadeh, M.

Eckardt, R. C.

Eger, D.

Englander, A.

Erman, L.

Eyres, L. A.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Falk, M.

Fan, X. W.

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
[CrossRef]

Fan, Y. X.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

Feigelson, R. S.

Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
[CrossRef]

Fejer, M. M.

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[CrossRef]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structure in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,” Opt. Lett. 22, 1214–1216 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[CrossRef]

Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.

Feng, D.

W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982).
[CrossRef]

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Feng, J.

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990).
[CrossRef]

Feng, Y.

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

Fermann, M. E.

Ferraro, P.

Fokine, M.

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
[CrossRef]

Fonnum, H.

Fragemann, A.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Fu, J. S.

Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
[CrossRef]

Galvanauskas, A.

Galzerano, G.

Gambetta, A.

Gao, Z. D.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

Gapontsev, V. P.

Gatti, D.

Ge, C. Z.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Geng, Z. H.

W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Georgiev, D.

Gerard, B.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Gerbier, F.

Goldberg, L.

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999).
[CrossRef]

Gong, Y. X.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

Gratias, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[CrossRef]

Gu, B. Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Haakestad, M.

Hankla, A.

Hanna, D. C.

Harada, M.

Harris, J. S.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Harris, S. E.

S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef]

Hart, D. L.

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999).
[CrossRef]

Harter, D.

Hatori, M.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997).
[CrossRef]

He, J. L.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Hellstrã, J.

Henrich, B.

B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.

hepherd, D. P.

Herrmann, T.

B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Hofmann, M. R.

Hogan, J. M.

Holmgren, S. J.

Hong, J. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982).
[CrossRef]

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Hordvik, A.

A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976).
[CrossRef]

Hoyt, C. W.

Hsu, C. C.

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Hu, I.-N.

Hu, X. P.

L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
[CrossRef]

Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

Huang, H. T.

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
[CrossRef]

Huang, Y. C.

Huang, Z.-X.

Ieiri, S.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976).
[CrossRef]

Iliev, H.

Inaba, H.

H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

Ioakeimidi, K.

Ishibashi, H.

Ishizuki, H.

Ito, H.

H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

Jaque, D.

J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
[CrossRef]

D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

Jethwa, J.

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[CrossRef]

Ji, S. H.

Jian, J.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO,” in Proceedings of the 11th International Quantum Electronics Conference (1980), pp. 631–635.

Jin, H.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

Jundt, D. H.

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
[CrossRef]

Jurdyc, A.-M.

Kajiyama, M. C. C.

Kaminskii, A. A.

J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
[CrossRef]

Karlsson, H.

Kasevich, M. A.

Katz, M.

Kawahara, T. D.

Kazansky, P. G.

Keller, U.

Kermène, V.

Kiessling, J.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
[CrossRef]

Kitamura, K.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

Kitaoka, Y.

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Kleilbauer, J.

B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.

Kleinman, D. A.

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128, 1761–1775 (1962).
[CrossRef]

Knappe, R.

B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.

Koch, R.

Kovachy, T.

Kozlovsky, W. J.

E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[CrossRef]

Kumar, S. C.

Kung, A. H.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

Kung, A.-H.

Kurimura, S.

S. Kurimura, M. Harada, K. Muramatsu, M. Ueda, M. Adachi, T. Yamada, and T. Ueno, “Quartz revisits nonlinear optics: twinned crystal for quasi-phase matching,” Opt. Mater. Express 1, 1367–1375 (2011).
[CrossRef]

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalite,” Opt. Express 19, 21754–21759 (2011).
[CrossRef]

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite,” Opt. Lett. 35, 1016–1018 (2010).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003).
[CrossRef]

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996).
[CrossRef]

Kuroda, A.

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996).
[CrossRef]

Lai, C.-M.

Lai, Y.-Y.

Lallier, E.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Laporta, P.

Lau, S. D.

W. P. Risk and S. D. Lau, “Periodic electric field poling of KTiOPO4 using chemical patterning,” Appl. Phys. Lett. 69, 3999–4001 (1996).
[CrossRef]

Laubacher, D. B.

J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
[CrossRef]

Laurell, F.

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
[CrossRef]

C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006).
[CrossRef]

S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, “Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal,” Opt. Express 14, 6675–6680 (2006).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
[CrossRef]

S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, and H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
[CrossRef]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993).
[CrossRef]

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989).
[CrossRef]

Lavoute, L.

Lefort, L.

Leng, H. Y.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

Li, H. X.

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

Li, J. J.

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007).
[CrossRef]

Li, K.

Li, K. F.

Li, Z. Y.

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007).
[CrossRef]

Liang, X. Y.

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Liao, J.

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

Lifante, G.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

Lim, E. J.

E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

Lin, S. T.

Lin, T. C.

Lin, X. C.

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

Lin, Y. Y.

Ling, W. J.

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

Liu, H.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Liu, Y. H.

Liu, Z. W.

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Lopez, C.

Lu, J.

Lu, P.

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

Lu, X. J.

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

Lu, Y. L.

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

Lu, Y. Q.

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

Luh, Y. S.

Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
[CrossRef]

Lundblad, N.

Luo, G. P.

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

Luo, G. Z.

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Luo, L.

Lv, X. J.

Ma, B. Q.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Magel, G. A.

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Magni, V.

Mailis, S.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Maiman, T. H.

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Maleki, L.

Malinowski, A.

Marangoni, M.

McKinnie, I. T.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

McMullen, J. D.

D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
[CrossRef]

Melkonian, J.

Meyn, J.

Meyn, J. P.

Meyn, J.-P.

Miller, G. D.

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef]

G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).

Mimoun, E.

Ming, N. B.

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990).
[CrossRef]

N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982).
[CrossRef]

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Miyazawa, S.

S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
[CrossRef]

Mizuuchi, K.

Mlynek, J.

Monguzzi, A.

Moosmüller, H.

Morikawa, A.

N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004).
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[CrossRef]

Mu, S. Y.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Muir, A. C.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

Muramatsu, K.

My, T.

Myers, L. E.

W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
[CrossRef]

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef]

L. E. Myers, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. thesis (Stanford University, 1995).

L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.

Nada, N.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Natale, P.

Nebel, A.

B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.

Ni, P. G.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Nightingale, J. L.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Nilsson, J.

O’Connor, M. V.

Okada, M.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976).
[CrossRef]

Oron, M.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Ostrowsky, D. B.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Pan, S. D.

Papuchon, M.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Parameswaran, K. R.

Paschotta, R.

Pasiskevicius, V.

A. Zukauskas, N. Thilmann, V. Pasiskevicius, F. Laurell, and C. Canalias, “5  mm thick periodically poled Rb-doped KTP for high energy optical parametric frequency conversion,” Opt. Mater. Express 1, 201–206 (2011).
[CrossRef]

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[CrossRef]

C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006).
[CrossRef]

S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, “Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal,” Opt. Express 14, 6675–6680 (2006).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
[CrossRef]

S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, and H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
[CrossRef]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998).
[CrossRef]

Pavel, N.

Peng, L. H.

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Peng, L.-H.

Pernas, P. L.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Petelski, T.

Peters, A.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Petrov, V.

Phillips, C. R.

Pierce, J. W.

Piltch, M. S.

M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976).
[CrossRef]

Pinguet, T. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Popov, S. V.

Price, J. H. V.

Pruneri, V.

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031 (1996).
[CrossRef]

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St, J. Russell, and D. C. Hanna, “49  mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

Qi, Z.

Qin, Y. Q.

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Ricciardi, I.

Richardson, D. J.

Risk, W. P.

W. P. Risk and S. D. Lau, “Periodic electric field poling of KTiOPO4 using chemical patterning,” Appl. Phys. Lett. 69, 3999–4001 (1996).
[CrossRef]

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Ro, J. H.

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003).
[CrossRef]

Robertson, A.

Robles-Agudo, M.

Rocco, A.

Rois, L. A.

Romero, J. J.

J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
[CrossRef]

Rosa, M.

Roseman, G.

Rosenman, G.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Ross, G. W.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric osicalltor,” Opt. Lett. 26, 304–306 (2001).
[CrossRef]

Roy, P.

Rulkov, A. B.

Russell, J.

Saitoh, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Samanta, G. K.

Sanz-García, J. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

Sarlo, L.

Schiller, S.

Schlossberg, H.

A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976).
[CrossRef]

Schumacher, J.

Schwesyg, J. R.

Segaka, D.

Sharpe, S. J.

She, C. Y.

She, C.-Y.

Shechtman, D.

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[CrossRef]

Sheik-Bahae, M.

Sheng, Y.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Shih, Y. C.

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

Shimamura, K.

Shoji, I.

Shu, H.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Shur, V. Y.

V. Y. Shur, “Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family,” Ferroelectrics 443, 71–82 (2013).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

Skliar, A.

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

Smith, P. G. R.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric osicalltor,” Opt. Lett. 26, 304–306 (2001).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef]

Soergel, E.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

Sole, J. F.

J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
[CrossRef]

Sole, J. G.

D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

Solodyankin, M. A.

P. A. Champert, S. V. Popov, M. A. Solodyankin, and J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

Sones, C. L.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

Sonoda, S.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997).
[CrossRef]

Sowade, R.

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
[CrossRef]

St, P.

Stankov, K. A.

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[CrossRef]

Stegeman, G. I.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
[CrossRef]

Steigerwald, H.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

Strossner, U.

Struckmeier, J.

Su, J.

Sudmeyer, T.

Sugita, T.

N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004).
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[CrossRef]

K. Mizuuchi, T. Sugita, and K. Yamamoto, “Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3,” Opt. Lett. 28, 935–937 (2003).
[CrossRef]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

Sumiya, K.

Sundheimer, M. L.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
[CrossRef]

Sze, R. C.

M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976).
[CrossRef]

Szilagyi, A.

A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976).
[CrossRef]

Taira, T.

Takizawa, K.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976).
[CrossRef]

Takyu, C.

H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

Taniuchi, T.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

Taylor, J. R.

Thilmann, N.

Thompson, D. E.

D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
[CrossRef]

Thompson, R.

Torchia, G. A.

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

Tourreau, P. J.

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

Tovstonog, S. V.

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

Tracy, A. J.

Tremont, M. A.

Trevino-Palacios, C. G.

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Tsai, S. W.

Tsuruma, I.

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997).
[CrossRef]

Tu, M.

Tu, R. Y.

Tu, S. Y.

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

Tulloch, W. M.

Ueda, M.

Ueno, T.

Uesu, Y.

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996).
[CrossRef]

Urenski, P.

Valdivia, C. E.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

van der Poel, C. J.

J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

Vance, J. D.

Villeneuve, A.

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
[CrossRef]

Víllora, E. G.

Vyatkin, M. Y.

Wallace, R. W.

Wallenstein, R.

Wang, H. F.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Wang, H. T.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Wang, J. F.

Wang, S.

Wang, S. C.

Wang, T.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Wang, T. D.

Wang, W. S.

W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Wang, X.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

Wang, Y. N.

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Wang, Y. Q.

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Warrington, D. M.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

Watanabe, K.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Watson, M. A.

Webjörn, J.

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989).
[CrossRef]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Weise, D. R.

White, R. T.

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

Williams, B. P.

Woll, D.

Wong, B. C.

Wong, G. K. L.

Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
[CrossRef]

Wu, Z.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO,” in Proceedings of the 11th International Quantum Electronics Conference (1980), pp. 631–635.

Xiao, R. F.

Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
[CrossRef]

Xie, Z. D.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

Xu, F.

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

Xu, P.

P. Xu and S. N. Zhu, “Quasi-phase-matching engineering of entangled photons,” AIP Adv. 2, 041401 (2012).
[CrossRef]

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

Xu, Z. Y.

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Xue, C. C.

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

Xue, L.

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
[CrossRef]

Yamada, M.

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

Yamada, T.

Yamamoto, H.

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

Yamamoto, K.

N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004).
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[CrossRef]

K. Mizuuchi, T. Sugita, and K. Yamamoto, “Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3,” Opt. Lett. 28, 935–937 (2003).
[CrossRef]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
[CrossRef]

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

Yan, Z.

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

Yang, G. Z.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Yang, Y. S.

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Yang, Z.

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Yao, A. Y.

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

Yao, H. M.

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

Ying, C. Y. J.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

Yu, X. Q.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

Yu, Y. B.

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

Yuan, Y.

Yue, J.

Zhang, B.

B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010).
[CrossRef]

Zhang, C.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

Zhang, D. Z.

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007).
[CrossRef]

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

Zhang, L.

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

Zhang, Y.

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

Zhang, Z. Y.

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zhao, G.

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
[CrossRef]

Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009).
[CrossRef]

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

Zhao, J. S.

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

Zhao, L. N.

Zhong, G.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO,” in Proceedings of the 11th International Quantum Electronics Conference (1980), pp. 631–635.

Zhong, M. L.

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

Zhu, J. S.

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

Zhu, S. N.

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

P. Xu and S. N. Zhu, “Quasi-phase-matching engineering of entangled photons,” AIP Adv. 2, 041401 (2012).
[CrossRef]

L. N. Zhao, Z. Qi, Y. Yuan, J. Lu, Y. H. Liu, C. D. Chen, X. J. Lv, Z. D. Xie, X. P. Hu, G. Zhao, P. Xu, and S. N. Zhu, “Integrated noncollinear red–green–blue laser light source using a two-dimensional nonlinear photonic quasicrystal,” J. Opt. Soc. Am. B 28, 608–612 (2011).
[CrossRef]

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009).
[CrossRef]

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

Zhu, Y. Y.

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990).
[CrossRef]

Zhu, Z. H.

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Zia, R. K. P.

R. K. P. Zia and W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985).
[CrossRef]

Zimmermann, J.

Zondy, J.

Zotova, I. B.

B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010).
[CrossRef]

Zou, Q.

W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

Zukauskas, A.

AIP Adv.

P. Xu and S. N. Zhu, “Quasi-phase-matching engineering of entangled photons,” AIP Adv. 2, 041401 (2012).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. C. Bhar, U. Chatterjee, and P. Datta, “Enhancement of second harmonic generation by double-pass configuration in barium borate,” Appl. Phys. B 51, 317–319 (1990).
[CrossRef]

R. T. White, I. T. McKinnie, S. D. Butterworth, G. W. Baxter, D. M. Warrington, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Tunable single-frequency ultraviolet generation from a continuous-wave Ti:sapphire laser with an intracavity PPLN frequency doubler,” Appl. Phys. B 77, 547–550 (2003).
[CrossRef]

B. Zhang, Y. J. Ding, and I. B. Zotova, “Efficient ultrafast ultraviolet generation based on frequency doubling in short-period periodically-poled KTiOPO4 crystal,” Appl. Phys. B 99, 629–632 (2010).
[CrossRef]

J. L. He, G. Z. Luo, H. T. Wang, S. N. Zhu, Y. Y. Zhu, Y. B. Chen, and N. B. Ming, “Generation of 840  mW of red light by frequency doubling a diode-pumped 1342  nm Nd:YVO4 laser with periodically-poled LiTaO3,” Appl. Phys. B 74, 537–539 (2002).
[CrossRef]

X. P. Hu, X. Wang, Z. Yan, H. X. Li, J. L. He, and S. N. Zhu, “Generation of red light at 660  nm by frequency doubling a Nd:YAG laser with periodically-poled stoichiometric LiTaO3,” Appl. Phys. B 86, 265–268 (2007).
[CrossRef]

X. P. Hu, G. Zhao, C. Zhang, Z. D. Xie, J. L. He, and S. N. Zhu, “High-power, blue-light generation in a dual-structure, periodically poled, stoichiometric LiTaO3 crystal,” Appl. Phys. B 87, 91–94 (2007).
[CrossRef]

Y. F. Chen, S. W. Tsai, and S. C. Wang, “High-power diode-pumped nonlinear mirror mode-locked Nd:YVO4 laser with periocailly-poled KTP,” Appl. Phys. B 72, 395–397 (2001).
[CrossRef]

Appl. Phys. B.

Y. F. Chen, “Cw dual-wavelength operation of a diode-end-pumped Nd:YVO4 laser,” Appl. Phys. B. 70, 475–478 (2000).
[CrossRef]

S. C. Kumar, R. Das, G. K. Samanta, and M. Ebrahim-Zadeh, “Optimally-output-coupled, 17.5  W, fiber-laser-pumped continuous-wave optical parametric oscillator,” Appl. Phys. B. 102, 31–35 (2011).
[CrossRef]

R. Sowade, I. Breunig, J. Kiessling, and K. Buse, “Influence of the pump threshold on the single-frequency output power of singly resonant optical parametric oscillators,” Appl. Phys. B. 96, 25–28 (2009).
[CrossRef]

Appl. Phys. Lett.

V. Pruneri, S. D. Butterworth, and D. C. Hanna, “Low-threshold picosecond optical parametric oscillation in quasi-phase-matched lithium niobate,” Appl. Phys. Lett. 69, 1029–1031 (1996).
[CrossRef]

E. Cantelar, G. A. Torchia, J. A. Sanz-García, P. L. Pernas, G. Lifante, and F. Cusso, “Red, green, and blue simultaneous generation in aperiodically poled Zn-diffused LiNbO3:Er3+/Yb3+ nonlinear channel waveguides,” Appl. Phys. Lett. 83, 2991–2993 (2003).
[CrossRef]

D. Jaque, J. Capmany, and J. G. Sole, “Red, green, and blue laser light from a single Nd:YAl3(BO3)4 crystal based on laser oscillation at 1.3  μm,” Appl. Phys. Lett. 75, 325–327 (1999).
[CrossRef]

J. J. Romero, D. Jaque, J. F. Sole, and A. A. Kaminskii, “Simultaneous generation of coherent light in the three fundamental colors by quasicylindrical ferroelectric domains in Sr0.6Ba0.4(NbO3)2,” Appl. Phys. Lett. 81, 4106–4108 (2002).
[CrossRef]

J. Capmany, “Simultaneous generation of red, green, and blue continuous-wave laser radiation in Nd3+-doped aperiodically poled lithium niobate,” Appl. Phys. Lett. 78, 144–146 (2001).
[CrossRef]

J. L. He, J. Liao, H. Liu, J. Du, F. Xu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous cw red, yellow, and green light generation, “traffic signal lights,” by frequency doubling and sum-frequency mixing in an aperiodically poled LiTaO3,” Appl. Phys. Lett. 83, 228–230 (2003).
[CrossRef]

J. Liao, J. L. He, H. Liu, H. T. Wang, S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Simultaneous generation of red, green, and blue quasi-continuous-wave coherent radiation based on multiple quasi-phase-matched interactions from a single, aperiodically-poled LiTaO3,” Appl. Phys. Lett. 82, 3159–3161 (2003).
[CrossRef]

Z. D. Gao, S. N. Zhu, S. Y. Tu, and A. H. Kung, “Monolithic red-green-blue laser light source based on cascaded wavelength conversion in periodically poled stoichiometric lithium tantalite,” Appl. Phys. Lett. 89, 181101 (2006).
[CrossRef]

B. Y. Gu, B. Z. Dong, Y. Zhang, and G. Z. Yang, “Enhanced harmonic generation in aperiodic optical superlattice,” Appl. Phys. Lett. 75, 2175–2177 (1999).
[CrossRef]

H. Liu, S. N. Zhu, Y. Y. Zhu, N. B. Ming, X. C. Lin, W. J. Ling, A. Y. Yao, and Z. Y. Xu, “Multiple-wavelength second-harmonic generation in aperiodic optical superlattices,” Appl. Phys. Lett. 81, 3326–3328 (2002).
[CrossRef]

B. Q. Ma, T. Wang, Y. Sheng, P. G. Ni, Y. Q. Wang, B. Y. Cheng, and D. Z. Zhang, “Quasiphase matched harmonic generation in a two-dimensional octagonal photonics superlattice,” Appl. Phys. Lett. 87, 251103 (2005).
[CrossRef]

L. H. Peng, C. C. Hsu, and Y. C. Shih, “Second-harmonic green generation from two-dimensional х(2) nonlinear photonic crystal with orthorhombic lattice structure,” Appl. Phys. Lett. 83, 3447–3449 (2003).
[CrossRef]

K. Yamamoto, H. Yamamoto, and T. Taniuchi, “Simultaneous sum-frequency and second-harmonic generation from a proton-exchanged MgO-doped LiNbO3 waveguide,” Appl. Phys. Lett. 58, 1227–1229 (1991).
[CrossRef]

F. Laurell, J. B. Brown, and J. D. Bierlein, “Simultaneous generation of UV and visible light in segmented KTP waveguides,” Appl. Phys. Lett. 62, 1872–1874 (1993).
[CrossRef]

S. V. Tovstonog, S. Kurimura, and K. Kitamura, “High power continuous-wave green light generation by quasiphase matching in Mg stoichiometric lithium tantalite,” Appl. Phys. Lett. 90, 051115 (2007).
[CrossRef]

X. P. Hu, X. Wang, J. L. He, Y. X. Fan, S. N. Zhu, H. T. Wang, Y. Y. Zhu, and N. B. Ming, “Efficient generation of red light by frequency doubling in a periodically-poled nearly-stoichiometric LiTaO3 crystal,” Appl. Phys. Lett. 85, 188–190 (2004).
[CrossRef]

L. A. Eyres, P. J. Tourreau, T. J. Pinguet, C. B. Ebert, J. S. Harris, M. M. Fejer, L. Becouarn, B. Gerard, and E. Lallier, “All-epitaxial fabrication of thick, orientation-patterned GaAs films for nonlinear optical frequency conversion,” Appl. Phys. Lett. 79, 904–906 (2001).
[CrossRef]

H. Karlsson and F. Laurell, “Electric field poling of flux grown KTiOPO4,” Appl. Phys. Lett. 71, 3474–3476 (1997).
[CrossRef]

G. Rosenman, A. Skliar, D. Eger, M. Oron, and M. Katz, “Low temperature periodic electrical poling of flux-grown KTiOPO4 and isomorphic crystals,” Appl. Phys. Lett. 73, 3650–3652 (1998).
[CrossRef]

C. Canalias, V. Pasiskevicius, R. Clemens, and F. Laurell, “Submicron periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 82, 4233–4235 (2003).
[CrossRef]

C. Canalias, V. Pasiskevicius, M. Fokine, and F. Laurell, “Backward quasi-phase-matched second-harmonic generation in submicrometer periodically poled flux-grown KTiOPO4,” Appl. Phys. Lett. 86, 181105 (2005).
[CrossRef]

A. Kuroda, S. Kurimura, and Y. Uesu, “Domain inversion in ferroelectric MgO:LiNbO3 by applying electric fields,” Appl. Phys. Lett. 69, 1565–1567 (1996).
[CrossRef]

S. Sonoda, I. Tsuruma, and M. Hatori, “Second harmonic generation in electric poled X-cut MgO-doped LiNbO3 waveguides,” Appl. Phys. Lett. 70, 3078–3080 (1997).
[CrossRef]

H. Ishizuki, I. Shoji, and T. Taira, “Periodical poling characteristics of congruent MgO:LiNbO3 crystals at elevated temperature,” Appl. Phys. Lett. 82, 4062–4064 (2003).
[CrossRef]

D. E. Thompson, J. D. McMullen, and D. B. Anderson, “Second-harmonic generation in GaAs ‘‘stack of plates’’ using high-power CO2 laser radiation,” Appl. Phys. Lett. 29, 113–115 (1976).
[CrossRef]

Y. L. Lu, Y. Q. Lu, X. F. Chen, G. P. Luo, C. C. Xue, and N. B. Ming, “Formation mechanism for ferroelectric domain structures in a LiNbO3 optical superlattice,” Appl. Phys. Lett. 68, 2642–2644 (1996).
[CrossRef]

D. Feng, N. B. Ming, J. F. Hong, Y. S. Yang, J. S. Zhu, Z. Yang, and Y. N. Wang, “Enhancement of second-harmonic generation in LiNbO3 crystals with periodic laminar ferroelectric domains,” Appl. Phys. Lett. 37, 607–609 (1980).
[CrossRef]

G. A. Magel, M. M. Fejer, and R. L. Byer, “Quasi-phase-matched second-harmonic generation of blue light in periodically poled LiNbO3,” Appl. Phys. Lett. 56, 108–110 (1990).
[CrossRef]

D. H. Jundt, G. A. Magel, M. M. Fejer, and R. L. Byer, “Periodically poled LiNbO3 for high-efficiency second-harmonic generation,” Appl. Phys. Lett. 59, 2657–2659 (1991).
[CrossRef]

J. D. Bierlein, D. B. Laubacher, J. B. Brown, and C. J. van der Poel, “Balanced phase matching in segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 56, 1725–1727 (1990).
[CrossRef]

C. J. van der Poel, J. D. Bierlein, J. B. Brown Co., and S. Colak, “Efficient type I blue second-harmonic generation in periodically segmented KTiOPO4 waveguides,” Appl. Phys. Lett. 57, 2074–2076 (1990).
[CrossRef]

M. Yamada, N. Nada, M. Saitoh, and K. Watanabe, “First-order quasi-phase matched LiNbO3 waveguide periodically poled by applying an external field for efficient blue second-harmonic generation,” Appl. Phys. Lett. 62, 435–436 (1993).
[CrossRef]

W. P. Risk and S. D. Lau, “Periodic electric field poling of KTiOPO4 using chemical patterning,” Appl. Phys. Lett. 69, 3999–4001 (1996).
[CrossRef]

Y. Y. Zhu, J. S. Fu, R. F. Xiao, and G. K. L. Wong, “Second harmonic generation in periodically domain-inverted Sr0.6Ba0.4Nb2O6 crystal plate,” Appl. Phys. Lett. 70, 1793–1795 (1997).
[CrossRef]

R. G. Batchko, V. Y. Shur, M. M. Fejer, and R. L. Boyd, “Backswitch poling in lithium niobate for high-fidelity domain patterning and efficient blue light generation,” Appl. Phys. Lett. 75, 1673–1675 (1999).
[CrossRef]

A. C. Busacca, C. L. Sones, V. Apostolopoulos, R. W. Eason, and S. Mailis, “Surface domain engineering in congruent lithium niobate single crystals: a route to submicron periodic poling,” Appl. Phys. Lett. 81, 4946–4948 (2002).
[CrossRef]

A. C. Busacca, C. L. Sones, R. W. Eason, and S. Mailis, “First-order quasi-phase-matched blue light generation in surface-poled Ti:indiffused lithium niobate waveguides,” Appl. Phys. Lett. 84, 4430–4432 (2004).
[CrossRef]

H. Jin, P. Xu, J. S. Zhao, H. Y. Leng, M. L. Zhong, and S. N. Zhu, “Observation of quantum Talbot effect from a domain-engineered nonlinear photonic crystal,” Appl. Phys. Lett. 101, 211115 (2012).
[CrossRef]

Electron. Lett.

H. Ito, C. Takyu, and H. Inaba, “Fabrication of periodic domain grating in LiNbO3 by electron beam writing for application of nonlinear optical processes,” Electron. Lett. 27, 1221–1222 (1991).
[CrossRef]

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically-poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[CrossRef]

E. J. Lim, M. M. Fejer, R. L. Byer, and W. J. Kozlovsky, “Blue light generation by frequency doubling in periodically poled lithium niobate channel waveguide,” Electron. Lett. 25, 731–732 (1989).
[CrossRef]

D. L. Hart, L. Goldberg, and W. K. Burns, “Red light generation by sum frequency mixing of Er/Yb fibre amplifier output in QPM LiNbO3,” Electron. Lett. 35, 52–53 (1999).
[CrossRef]

M. L. Sundheimer, A. Villeneuve, G. I. Stegeman, and J. D. Bierlein, “Simultaneous generation of red, green and blue light in a segmented KTP waveguide using a single source,” Electron. Lett. 30, 975–976 (1994).
[CrossRef]

P. Baldi, C. G. Trevino-Palacios, G. I. Stegeman, M. P. De Micheli, D. B. Ostrowsky, D. Delacourt, and M. Papuchon, “Simultaneous generation of red, green and blue light in room temperature periodically poled lithium niobate waveguides using single source,” Electron. Lett. 31, 1350–1351 (1995).
[CrossRef]

Q. Chen and W. P. Risk, “Periodic poling of KTiOPO4 using an applied electric field,” Electron. Lett. 30, 1516–1517 (1994).
[CrossRef]

Ferroelectrics

C. Canalias, V. Pasiskevicius, and F. Laurell, “Periodic poling of KTiOPO4: from micrometer to sub-micrometer domain gratings,” Ferroelectrics 340, 27–47 (2006).
[CrossRef]

V. Y. Shur, “Domain nanotechnology in ferroelectric single crystals: lithium niobate and lithium tantalate family,” Ferroelectrics 443, 71–82 (2013).
[CrossRef]

IEEE J. Quantum Electron.

X. W. Fan, J. L. He, H. T. Huang, and L. Xue, “An intermittent oscillation dual-wavelength diode-pumped Nd:YAG laser,” IEEE J. Quantum Electron. 43, 884–888 (2007).
[CrossRef]

IEEE Photon. Technol. Lett.

P. A. Champert, S. V. Popov, M. A. Solodyankin, and J. R. Taylor, “1.4-W red generation by frequency mixing of seeded Yb and Er fiber amplifiers,” IEEE Photon. Technol. Lett. 14, 1680–1682 (2002).
[CrossRef]

J. Webjörn, F. Laurell, and G. Arvidsson, “Blue light generated by frequency doubling of laser diode light in a lithium niobate channel waveguide,” IEEE Photon. Technol. Lett. 1, 316–318 (1989).
[CrossRef]

J. Appl. Phys.

S. Miyazawa, “Ferroelectric domain inversion in Ti-diffused LiNbO3 optical waveguide,” J. Appl. Phys. 50, 4599–4603 (1979).
[CrossRef]

M. S. Piltch, C. D. Cantrell, and R. C. Sze, “Infrared second-harmonic generation in nonbirefringent cadmium telluride,” J. Appl. Phys. 47, 3514–3517 (1976).
[CrossRef]

A. Szilagyi, A. Hordvik, and H. Schlossberg, “A quasi-phase-matching technique for efficient optical mixing and frequency doubling,” J. Appl. Phys. 47, 2025–2032 (1976).
[CrossRef]

S. N. Zhu, Y. Y. Zhu, Z. Y. Zhang, H. Shu, H. F. Wang, J. F. Hong, C. Z. Ge, and N. B. Ming, “LiTaO3 crystal periodically poled by applying an external pulsed field,” J. Appl. Phys. 77, 5481–5483 (1995).
[CrossRef]

H. X. Li, Y. X. Fan, P. Xu, S. N. Zhu, P. Lu, Z. D. Gao, H. T. Wang, Y. Y. Zhu, N. B. Ming, and J. L. He, “530-mW quasi-white-light generation using all-solid-state laser technique,” J. Appl. Phys. 96, 7756–7758 (2004).
[CrossRef]

J. Cryst. Growth

Y. S. Luh, R. S. Feigelson, M. M. Fejer, and R. Byer, “Ferroelectric domain structures in LiNbO3 single-crystal fibers,” J. Cryst. Growth 78, 135–143 (1986).
[CrossRef]

W. S. Wang, Q. Zou, Z. H. Geng, and D. Feng, “Study of LiTaO3 crystals grown with a modulated structure I. Second harmonic generation in LiTaO3 crystals with periodic laminar ferroelectric domains,” J. Cryst. Growth 79, 706–709 (1986).
[CrossRef]

J. Mater. Sci.

N. B. Ming, J. F. Hong, and D. Feng, “The growth striations and ferroelectric domain structures in Czochralski-grown LiNbO3 single crystals,” J. Mater. Sci. 17, 1663–1670 (1982).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. A

R. K. P. Zia and W. J. Dallas, “A simple derivation of quasi-crystalline spectra,” J. Phys. A 18, L341–L345 (1985).
[CrossRef]

Jpn. J. Appl. Phys.

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, Y. Q. Qin, J. L. He, C. Zhang, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “Quasi-Cw ultraviolet generation in a dual-periodic LiTaO3 superlattice by frequency tripling,” Jpn. J. Appl. Phys. 40, 6841–6844 (2001).
[CrossRef]

H. Ishizuki, T. Taira, S. Kurimura, J. H. Ro, and M. Cha, “Periodic poling in 3-mm-thick MgO:LiNbO3 crystals,” Jpn. J. Appl. Phys. 42, L108–L110 (2003).
[CrossRef]

T. Sugita, K. Mizuuchi, Y. Kitaoka, and K. Yamamoto, “Ultraviolet light generation in a periodically poled MgO:LiNbO3 waveguide,” Jpn. J. Appl. Phys. 40, 1751–1753 (2001).
[CrossRef]

K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Efficient second-harmonic generation of 340-nm light in a 1.4-μm periodically poled bulk MgO:LiNbO3,” Jpn. J. Appl. Phys. 42, L90–L91 (2003).
[CrossRef]

Laser Photon. Rev.

C. Y. J. Ying, A. C. Muir, C. E. Valdivia, H. Steigerwald, C. L. Sones, R. W. Eason, E. Soergel, and S. Mailis, “Light-mediated ferroelectric domain engineering and micro-structuring of lithium niobate crystals,” Laser Photon. Rev. 6, 526–548 (2012).
[CrossRef]

Nat. Commun.

H. Y. Leng, X. Q. Yu, Y. X. Gong, P. Xu, Z. D. Xie, H. Jin, C. Zhang, and S. N. Zhu, “On-chip steering of entangled photons in nonlinear photonic crystals,” Nat. Commun. 2, 429 (2011).
[CrossRef]

Nat. Photonics

C. Canalias and V. Pasiskevicius, “Mirrorless optical parametric oscillator,” Nat. Photonics 1, 459–462 (2007).
[CrossRef]

Nature

T. H. Maiman, “Stimulated optical radiation in ruby,” Nature 187, 493–494 (1960).
[CrossRef]

Opt. Commun.

M. Okada, K. Takizawa, and S. Ieiri, “Second harmonic generation by periodic laminar structure of nonlinear optical crystal,” Opt. Commun. 18, 331–334 (1976).
[CrossRef]

K. A. Stankov and J. Jethwa, “A new mode-locking technique using a nonlinear mirror,” Opt. Commun. 66, 41–46 (1988).
[CrossRef]

Opt. Express

N. Coluccelli, H. Fonnum, M. Haakestad, A. Gambetta, D. Gatti, M. Marangoni, P. Laporta, and G. Galzerano, “25-MHz synchronously pumped optical parametric oscillator at 2.25-2.6 um and 4.1-4.9  μm,” Opt. Express 20, 22042–22047 (2012).
[CrossRef]

S. Chaitanya Kumar and M. Ebrahim-Zadeh, “High-power, fiber-laser-pumped, picosecond optical parametric oscillator based on MgO:sPPLT,” Opt. Express 19, 26660–26665 (2011).
[CrossRef]

P. Xu, L. N. Zhao, X. J. Lv, J. Lu, Y. Yuan, G. Zhao, and S. N. Zhu, “Compact high-power red-green-blue laser light source generation from a single lithium tantalate with cascaded domain modulation,” Opt. Express 17, 9509–9514 (2009).
[CrossRef]

S. T. Lin, Y. Y. Lin, R. Y. Tu, T. D. Wang, and Y. C. Huang, “Fiber-laser-pumped CW OPO for red, green, blue laser generation,” Opt. Express 18, 2361–2367 (2010).
[CrossRef]

R. S. Cudney, M. Robles-Agudo, and L. A. Rois, “RGB source based on simultaneous quasi-phasematched second and third harmonic generation in periodically poled lithium niobate,” Opt. Express 14, 10663–10668 (2006).
[CrossRef]

D. Georgiev, V. P. Gapontsev, A. G. Dronov, M. Y. Vyatkin, A. B. Rulkov, S. V. Popov, and J. R. Taylor, “Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589  nm,” Opt. Express 13, 6772–6776 (2005).
[CrossRef]

E. Mimoun, L. Sarlo, J. Zondy, J. Dalibard, and F. Gerbier, “Sum-frequency generation of 589  nm light with near-unit efficiency,” Opt. Express 16, 18684–18691 (2008).
[CrossRef]

L. N. Zhao, J. Su, X. P. Hu, X. J. Lv, Z. D. Xie, G. Zhao, P. Xu, and S. N. Zhu, “Single-pass sum-frequency-generation of 589-nm yellow light based on dual-wavelength Nd:YAG laser with periodically-poled LiTaO3 crystal,” Opt. Express 18, 13331–13336 (2010).
[CrossRef]

E. G. Víllora, K. Shimamura, K. Sumiya, and H. Ishibashi, “Birefringent and quasi phase-matching with BaMgF4for vacuum-UV/UV and mid-IR all solid-state lasers,” Opt. Express 17, 12362–12378 (2009).
[CrossRef]

H. Ishizuki and T. Taira, “High energy quasi-phase matched optical parametric oscillation using Mg-doped congruent LiTaO3 crystal,” Opt. Express 18, 253–258 (2010).
[CrossRef]

H. Ishizuki and T. Taira, “Half-joule output optical-parametric oscillation by using 10-mm-thick periodically poled Mg-doped congruent LiNbO3,” Opt. Express 20, 20002–20010 (2012).
[CrossRef]

J. Boullet, L. Lavoute, A. Desfarges Berthelemot, V. Kermène, P. Roy, V. Couderc, B. Dussardier, and A.-M. Jurdyc, “Tunable red-light source by frequency mixing from dual band Er/Yb co-doped fiber laser,” Opt. Express 14, 3936–3941 (2006).
[CrossRef]

R. Thompson, M. Tu, D. Aveline, N. Lundblad, and L. Maleki, “High power single frequency 780  nm laser source generated from frequency doubling of a seeded fiber amplifier in a cascade of PPLN crystals,” Opt. Express 11, 1709–1713 (2003).
[CrossRef]

S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “High-power, single-frequency, continuous-wave second-harmonic-generation of ytterbium fiber laser in PPKTP and MgO:sPPLT,” Opt. Express 17, 13711–13726 (2009).
[CrossRef]

I. Ricciardi, M. Rosa, A. Rocco, P. Ferraro, and P. Natale, “Cavity-enhanced generation of 6  W cw second-harmonic power at 532  nm in periodically-poled MgO:LiTaO3,” Opt. Express 18, 10985–10994 (2010).
[CrossRef]

S. C. Kumar, G. K. Samanta, K. Devi, and M. Ebrahim-Zadeh, “High-efficiency, multicrystal, single-pass, continuous-wave second harmonic generation,” Opt. Express 19, 11152–11169 (2011).
[CrossRef]

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “1.34-μm Nd:YVO4 laser mode-locked by SHG-lens formation in periodically-poled stoichiometric lithium tantalite,” Opt. Express 19, 21754–21759 (2011).
[CrossRef]

S. J. Holmgren, V. Pasiskevicius, and F. Laurell, “Generation of 2.8  ps pulses by mode-locking a Nd:GdVO4 laser with defocusing cascaded Kerr lensing in periodically poled KTP,” Opt. Express 13, 5270–5278 (2005).
[CrossRef]

S. J. Holmgren, A. Fragemann, V. Pasiskevicius, and F. Laurell, “Active and passive hybrid mode-locking of a Nd:YVO4 laser with a single partially poled KTP crystal,” Opt. Express 14, 6675–6680 (2006).
[CrossRef]

H. Iliev, D. Chuchumishev, I. Buchvarov, and V. Petrov, “Passive mode-locking of a diode-pumped Nd:YVO4 laser by intracavity SHG in PPKTP,” Opt. Express 18, 5754–5762 (2010).
[CrossRef]

Opt. Lett.

Y. H. Liu, Z. D. Xie, S. D. Pan, X. J. Lv, Y. Yuan, X. P. Hu, J. Lu, L. N. Zhao, C. D. Chen, G. Zhao, and S. N. Zhu, “Diode-pumped passively mode-locked Nd:YVO4 laser at 1342  nm with periodically poled LiTaO3,” Opt. Lett. 36, 698–700 (2011).
[CrossRef]

H. Iliev, I. Buchvarov, S. Kurimura, and V. Petrov, “High-power picosecond Nd:GdVO4 laser mode locked by SHG in periodically poled stoichiometric lithium tantalite,” Opt. Lett. 35, 1016–1018 (2010).
[CrossRef]

D. Woll, J. Schumacher, A. Robertson, M. A. Tremont, R. Wallenstein, M. Katz, D. Eger, and A. Englander, “250  mW of coherent blue 460-nm light generated by single-pass frequency doubling of the output of a mode-locked high-power diode laser in periodically poled KTP,” Opt. Lett. 27, 1055–1057 (2002).
[CrossRef]

P. Xu, K. Li, G. Zhao, S. N. Zhu, Y. Du, S. H. Ji, Y. Y. Zhu, N. B. Ming, L. Luo, K. F. Li, and K. W. Cheah, “Quasi-phase-matched generation of tunable blue light in a quasi-periodic structure,” Opt. Lett. 29, 95–97 (2004).
[CrossRef]

G. K. Samanta and M. Ebrahim-Zadeh, “Continuous-wave, single-frequency, solid-state blue source for the 425–489  nm spectral range,” Opt. Lett. 33, 1228–1230 (2008).
[CrossRef]

C.-M. Lai, I.-N. Hu, Y.-Y. Lai, Z.-X. Huang, L.-H. Peng, A. Boudrioua, and A.-H. Kung, “Upconversion blue laser by intracavity frequency self-doubling of periodically poled lithium tantalate parametric oscillator,” Opt. Lett. 35, 160–162 (2010).
[CrossRef]

J. Zimmermann, J. Struckmeier, M. R. Hofmann, and J. Meyn, “Tunable blue laser based on intracavity frequency doubling with a fan-structured periodically poled LiTaO3 crystal,” Opt. Lett. 27, 604–606 (2002).
[CrossRef]

S. Chiow, T. Kovachy, J. M. Hogan, and M. A. Kasevich, “Generation of 43  W of quasi-continuous 780  nm laser light via high-efficiency, single-pass frequency doubling in periodically poled lithium niobate crystals,” Opt. Lett. 37, 3861–3863 (2012).
[CrossRef]

J. Melkonian, T. My, F. Bretenaker, and C. Drag, “High spectral purity and tunable operation of a continuous singly resonant optical parametric oscillator emitting in the red,” Opt. Lett. 32, 518–520 (2007).
[CrossRef]

W. R. Bosenberg, J. I. Alexander, L. E. Myers, and R. W. Wallace, “2.5-W, continuous-wave, 629-nm solid-state laser source,” Opt. Lett. 23, 207–209 (1998).
[CrossRef]

G. D. Miller, R. G. Batchko, W. M. Tulloch, D. R. Weise, M. M. Fejer, and R. L. Byer, “42%-efficient single-pass cw second-harmonic generation in periodically poled lithium niobate,” Opt. Lett. 22, 1834–1836 (1997).
[CrossRef]

N. Pavel, I. Shoji, T. Taira, K. Mizuuchi, A. Morikawa, T. Sugita, and K. Yamamoto, “Room-temperature, continuous-wave 1-W green power by single-pass frequency doubling in a bulk periodically poled MgO:LiNbO3 crystal,” Opt. Lett. 29, 830–832 (2004).
[CrossRef]

H. Ishizuki and T. Taira, “High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5  mm × 5  mm aperture,” Opt. Lett. 30, 2918–2920 (2005).
[CrossRef]

M. H. Chou, K. R. Parameswaran, and M. M. Fejer, “Multiple-channel wavelength conversion by use of engineered quasi-phase-matching structure in LiNbO3 waveguides,” Opt. Lett. 24, 1157–1159 (1999).
[CrossRef]

Y. F. Chen, S. W. Tsai, S. C. Wang, Y. C. Huang, T. C. Lin, and B. C. Wong, “Efficient generation of continuous-wave yellow light by single-pass sum-frequency mixing of a diode-pumped Nd:YVO4 dual-wavelength laser with periodically poled lithium niobate,” Opt. Lett. 27, 1809–1811 (2002).
[CrossRef]

V. Pruneri, R. Koch, P. G. Kazansky, W. A. Clarkson, P. St, J. Russell, and D. C. Hanna, “49  mW of cw blue light generated by first-order quasi-phasematched frequency doubling of a diode-pumped 946-nm Nd:YAG laser,” Opt. Lett. 20, 2375–2377 (1995).
[CrossRef]

R. G. Batchko, M. M. Fejer, R. L. Byer, D. Woll, R. Wallenstein, V. Y. Shur, and L. Erman, “Continuous-wave quasi-phase-matched generation of 60  mW at 465  nm by single-pass frequency doubling of a laser diode in backswitch-poled lithium niobate,” Opt. Lett. 24, 1293–1295 (1999).
[CrossRef]

J. Yue, C.-Y. She, B. P. Williams, J. D. Vance, P. E. Acott, and T. D. Kawahara, “Continuous-wave sodium D2 resonance radiation generated in single-pass sum-frequency generation with periodically poled lithium niobate,” Opt. Lett. 34, 1093–1095 (2009).
[CrossRef]

S. Wang, V. Pasiskevicius, J. Hellstrã, F. Laurell, and H. Karlsson, “First-order type II quasi-phase-matched UV generation in periodically poled KTP,” Opt. Lett. 24, 978–980 (1999).
[CrossRef]

S. Wang, V. Pasiskevicius, F. Laurell, and H. Karlsson, “Ultraviolet generation by first-order frequency doubling in periodically poled KTiOPO4,” Opt. Lett. 23, 1883–1885 (1998).
[CrossRef]

K. Mizuuchi, T. Sugita, and K. Yamamoto, “Generation of 360-nm ultraviolet light in first-order periodically poled bulk MgO:LiNbO3,” Opt. Lett. 28, 935–937 (2003).
[CrossRef]

J.-P. Meyn and M. M. Fejer, “Tunable ultraviolet radiation by second-harmonic generation in periodically poled lithium tantalite,” Opt. Lett. 22, 1214–1216 (1997).
[CrossRef]

K. Mizuuchi and K. Yamamoto, “Generation of 340-nm light by frequency doubling of a laser diode in bulk periodically poled LiTaO3,” Opt. Lett. 21, 107–109 (1996).
[CrossRef]

P. A. Champert, S. V. Popov, J. R. Taylor, and J. P. Meyn, “Efficient second-harmonic generation at 384  nm in periodically poled lithium tantalate by use of a visible Yb-Er-seeded fiber source,” Opt. Lett. 25, 1252–1254 (2000).
[CrossRef]

P. Xu, Z. D. Xie, H. Y. Leng, J. S. Zhao, J. F. Wang, X. Q. Yu, Y. Q. Qin, and S. N. Zhu, “Frequency self-doubling optical parametric amplification: noncollinear red–green–blue light-source generation based on a hexagonally poled lithium tantalite,” Opt. Lett. 33, 2791–2793 (2008).
[CrossRef]

L. E. Myers, G. D. Miller, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Quasi-phase-matched 1.064-μm-pumped optical parametric oscillator in bulk periodically poled LiNbO3,” Opt. Lett. 20, 52–54 (1995).
[CrossRef]

M. L. Bortz, M. A. Arbore, and M. M. Fejer, “Quasi-phase-matched optical parametric amplification and oscillation in periodically poled LiNbO3 waveguides,” Opt. Lett. 20, 49–51 (1995).
[CrossRef]

X. P. Hu, G. Zhao, Z. Yan, X. Wang, Z. D. Gao, H. Liu, J. L. He, and S. N. Zhu, “High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice,” Opt. Lett. 33, 408–410 (2008).
[CrossRef]

C. W. Hoyt, M. Sheik-Bahae, and M. Ebrahim-Zadeh, “High-power picosecond optical parametric oscillator based on periodically poled lithium niobate,” Opt. Lett. 27, 1543–1545 (2002).
[CrossRef]

M. V. O’Connor, M. A. Watson, D. P. hepherd, D. C. Hanna, J. H. V. Price, A. Malinowski, J. Nilsson, N. G. R. Broderick, D. J. Richardson, and L. Lefort, “Synchronously pumped optical parametric oscillator driven by a femtosecond mode-locked fiber laser,” Opt. Lett. 27, 1052–1054(2002).
[CrossRef]

T. Sudmeyer, J. Aus der Au, R. Paschotta, U. Keller, P. G. R. Smith, G. W. Ross, and D. C. Hanna, “Femtosecond fiber-feedback optical parametric osicalltor,” Opt. Lett. 26, 304–306 (2001).
[CrossRef]

A. Galvanauskas, M. A. Arbore, M. M. Fejer, M. E. Fermann, and D. Harter, “Fiber-laser-based femtosecond parametric generator in bulk periodically poled LiNbO3,” Opt. Lett. 22, 105–107 (1997).
[CrossRef]

S. D. Butterworth, P. G. R. Smith, and D. C. Hanna, “Picosecond Ti:sapphire-pumped optical parametric oscillator based on periodically poled LiNbO3,” Opt. Lett. 22, 618–620 (1997).
[CrossRef]

R. Das, S. C. Kumar, G. K. Samanta, and M. Ebrahim-Zadeh, “Broadband, high-power, continuous-wave, mid-infrared source using extended phase-matching bandwidth in MgO:PPLN,” Opt. Lett. 34, 3836–3838 (2009).
[CrossRef]

G. Cerullo, S. De Silvestri, A. Monguzzi, D. Segaka, and V. Magni, “Self-starting mode-locking of a CW Nd:YAG laser using cascaded second-order nonlinearities,” Opt. Lett. 20, 746–748 (1995).
[CrossRef]

T. Petelski, R. S. Conroy, K. Bencheikh, J. Mlynek, and S. Schiller, “All-soild-state, tunable, single-frequency source of yellow light for high-resolution spectroscopy,” Opt. Lett. 26, 1013–1015 (2001).
[CrossRef]

J. R. Schwesyg, C. R. Phillips, K. Ioakeimidi, M. C. C. Kajiyama, M. Falk, D. H. Jundt, K. Buse, and M. M. Fejer, “Suppression of mid-infrared light absorption in undoped congruent lithium niobate crystals,” Opt. Lett. 35, 1070–1072 (2010).
[CrossRef]

Opt. Mater. Express

Phys. Rev.

D. A. Kleinman, “Theory of second harmonic generation of light,” Phys. Rev. 128, 1761–1775 (1962).
[CrossRef]

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[CrossRef]

Phys. Rev. A

P. Xu, H. Y. Leng, Z. H. Zhu, Y. F. Bai, H. Jin, Y. X. Gong, X. Q. Yu, Z. D. Xie, S. Y. Mu, and S. N. Zhu, “Lensless imaging by entangled photons from quadratic nonlinear photonic crystals,” Phys. Rev. A 86, 013805 (2012).
[CrossRef]

Y. B. Yu, Z. D. Xie, X. Q. Yu, H. X. Li, P. Xu, H. M. Yao, and S. N. Zhu, “Generation of three-mode continuous-variable entanglement by cascaded nonlinear interactions in a quasiperiodic superlattice,” Phys. Rev. A 74, 042332 (2006).
[CrossRef]

Y. F. Bai, P. Xu, Z. D. Xie, Y. X. Gong, and S. N. Zhu, “Mode-locked biphoton generation by concurrent quasi-phase-matching,” Phys. Rev. A 85, 053807 (2012).
[CrossRef]

Phys. Rev. B

J. Feng, Y. Y. Zhu, and N. B. Ming, “Harmonic generation in an optical Fibonacci superlattice,” Phys. Rev. B 41, 5578–5582 (1990).
[CrossRef]

Phys. Rev. E

J. J. Li, Z. Y. Li, and D. Z. Zhang, “Second harmonic generation in one-dimensional nonlinear photonic crystals solved by the transfer matrix method,” Phys. Rev. E 75, 056606 (2007).
[CrossRef]

Phys. Rev. Lett.

S. E. Harris, “Chirp and compress: toward single-cycle biphotons,” Phys. Rev. Lett. 98, 063602 (2007).
[CrossRef]

X. Q. Yu, P. Xu, Z. D. Xie, J. F. Wang, H. Y. Leng, J. S. Zhao, S. N. Zhu, and N. B. Ming, “Transforming spatial entanglement using a domain-engineering technique,” Phys. Rev. Lett. 101, 233601 (2008).
[CrossRef]

D. Shechtman, I. Blech, D. Gratias, and J. W. Cahn, “Metallic phase with long-range orientational order and no translational symmetry,” Phys. Rev. Lett. 53, 1951–1953 (1984).
[CrossRef]

V. Berger, “Nonlinear photonic crystals,” Phys. Rev. Lett. 81, 4136–4139 (1998).
[CrossRef]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[CrossRef]

Proc. SPIE

G. D. Miller, R. G. Batchko, M. M. Fejer, and R. L. Byer, “Visible quasi-phase-matched harmonic generation by electric-field-poled lithium niobate,” Proc. SPIE 2700, 34–35 (1996).
[CrossRef]

Rev. Sci. Instrum.

M. M. Fejer, J. L. Nightingale, G. A. Magel, and R. L. Byer, “Laser-heated miniature pedestal growth apparatus for single-crystal optical fibers,” Rev. Sci. Instrum. 55, 1791–1796 (1984).
[CrossRef]

Sci. China Ser. B

Y. Yuan, L. Zhang, Y. H. Liu, X. J. Lu, G. Zhao, Y. Feng, and S. N. Zhu, “Sodium guide star laser generation by single-pass frequency doubling in a periodically poled near-stoichiometric LiTaO3 crystal,” Sci. China Ser. B 56, 125–128 (2013).
[CrossRef]

Science

S. N. Zhu, Y. Y. Zhu, and N. B. Ming, “Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice,” Science 278, 843–846 (1997).
[CrossRef]

Solid State Commun.

Z. W. Liu, S. N. Zhu, Y. Y. Zhu, H. Liu, Y. Q. Lu, H. T. Wang, N. B. Ming, X. Y. Liang, and Z. Y. Xu, “A scheme to realize three-fundamental-colors laser based on quasi-phase matching,” Solid State Commun. 119, 363–366 (2001).
[CrossRef]

Other

L. E. Myers, W. R. Bosenberg, J. I. Alexander, M. A. Arbore, M. M. Fejer, and R. L. Byer, “CW singly resonant optical parametric oscillators based on 1.064-um pumped periodically poled LiNbO3,” in Proceedings on Advanced Solid State Lasers, S. A. Payne and C. R. Pollock, eds. (1996), p. 35–37.

B. Henrich, T. Herrmann, J. Kleilbauer, R. Knappe, A. Nebel, and R. Wallenstein, “Concepts and technologies of advanced RGB sources,” in Advanced Solid-State Lasers Conference (2002), pp. 179–181.

G. Zhong, J. Jian, and Z. Wu, “Measurement of optically induced refractive-index change of lithium niobate doped with different concentration of MgO,” in Proceedings of the 11th International Quantum Electronics Conference (1980), pp. 631–635.

L. E. Myers, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled lithium niobate,” Ph.D. thesis (Stanford University, 1995).

G. D. Miller, “Periodically poled lithium niobate: modeling, fabrication, and nonlinear-optical performance,” Ph.D. thesis (Stanford University, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (18)

Fig. 1.
Fig. 1.

Schematic setup of the electric-field poling technique.

Fig. 2.
Fig. 2.

10-mm-thick MgO:PPLN with a poling period of 32.2 μm. Selected from Ref. [43].

Fig. 3.
Fig. 3.

(a) Scanning electron microscopy micrograph of etched domain-inverted patterns on the +C surface. (b) Cross-section view of Y face of a PPSLT sample. Selected from Ref. [56].

Fig. 4.
Fig. 4.

Output red beam with a Gaussian profile selected from Ref. [56].

Fig. 5.
Fig. 5.

High-power 660 nm red laser model machine with PPSLT.

Fig. 6.
Fig. 6.

Schematic experimental setup for the multicrystal CW single-pass SHG. Selected from Ref. [70].

Fig. 7.
Fig. 7.

Schematic of an intracavity frequency-doubled MgO:PPSLT CW SRO for blue generation. Selected from Ref. [77].

Fig. 8.
Fig. 8.

Schematic setup for 589 nm yellow generation by frequency mixing a dual-wavelength IR laser. Selected from Ref. [84].

Fig. 9.
Fig. 9.

Power dependence of the output yellow light on the total pumping power in [84]. The inset on the top left is a picture of the output yellow beam, and the insert on the bottom right is the spectrum of 589 nm yellow light.

Fig. 10.
Fig. 10.

Spectrum of the 589 nm yellow light by frequency doubling a high-power Raman fiber amplifier. Selected from Ref. [88].

Fig. 11.
Fig. 11.

Temperature tuning curves of the red, green, and blue colors in Ref. [120].

Fig. 12.
Fig. 12.

Photo of the RGB beams separated by a prism from the setup. Selected from Ref. [120].

Fig. 13.
Fig. 13.

Temperature tuning curves of the RGB three colors selected from [124].

Fig. 14.
Fig. 14.

Generated white light disperses into RGB three colors through a prism. Selected from Ref. [124].

Fig. 15.
Fig. 15.

Elliptical spot at the focus plane of the pump. Selected from Ref. [125].

Fig. 16.
Fig. 16.

(a) Micrograph of the HexPLT sample, (b) reciprocal space of the sample, and (c) photograph of the noncollinear RGB colors from the HexPLT. Selected from Ref. [128].

Fig. 17.
Fig. 17.

Schematic experimental setup of passively mode-locking lasers with optical superlattice.

Fig. 18.
Fig. 18.

Typical autocorrelation trace of passively mode-locked pulses with optical superlattice. Selected from Ref. [153].

Metrics