Abstract

A new integrated plasmonic waveguide sensor is reported with high sensitivity (1600nm/RIU). The integrated structure, loaded with stratified composite, makes this device robust and easy to fabricate on a chip to use as a sensor probe. The device works on the principle of resonant coupling between surface plasmon and fundamental TM mode. By selecting proper stratified structure (metal–dielectric) and core glass, one can tune the sensitivity and the range of operating wavelength.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fekete, “Simulation of absorption-based surface plasmon resonance sensor in the Kretschmann configuration,” Int. J. Circuit Theory Appl. 41, 646–652 (2012).
    [CrossRef]
  2. M. Piliarik, H. Šípová, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).
    [CrossRef]
  3. J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
    [CrossRef]
  4. A. Giorgini, S. Avino, P. Malara, G. Gagliardi, M. Casalino, G. Coppola, M. Iodice, P. Adam, K. Chadt, J. Homola, and P. De Natale, “Surface plasmon resonance optical cavity enhanced refractive index sensing,” Opt. Lett. 38, 1951–1953 (2013).
    [CrossRef]
  5. X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
    [CrossRef]
  6. R. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
    [CrossRef]
  7. D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
    [CrossRef]
  8. R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
    [CrossRef]
  9. J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  10. A. D. Rakić, A. B. Djurisˇić, J. M. Elazar, and M. L. Majewski, “Optical properties of metallic films for vertical-cavity optoelectronic devices,” Appl. Opt. 37, 5271–5283 (1998).
    [CrossRef]
  11. Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29, 2559–2566 (2012).
    [CrossRef]
  12. E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
    [CrossRef]
  13. S. K. Bhadra and A. Ghatak, eds., Guided Wave Optics and Photonic Devices (Taylor & Francis, 2013), Chap. 18.
  14. Y. Lin, “Characteristics of optical fiber refractive index sensor based on surface plasmon resonance,” Microw. Opt. Technol. Lett. 55, 574–576 (2013).
    [CrossRef]
  15. S. Singh and B. D. Gupta, “Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel,” Sens. Actuators B 173, 268–273 (2012).
    [CrossRef]

2013 (2)

2012 (5)

S. Singh and B. D. Gupta, “Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel,” Sens. Actuators B 173, 268–273 (2012).
[CrossRef]

A. Fekete, “Simulation of absorption-based surface plasmon resonance sensor in the Kretschmann configuration,” Int. J. Circuit Theory Appl. 41, 646–652 (2012).
[CrossRef]

M. Piliarik, H. Šípová, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).
[CrossRef]

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

Y. He, S. He, J. Gao, and X. Yang, “Nanoscale metamaterial optical waveguides with ultrahigh refractive indices,” J. Opt. Soc. Am. B 29, 2559–2566 (2012).
[CrossRef]

2011 (1)

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

2010 (1)

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

2007 (2)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

R. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

2001 (1)

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

1999 (1)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

1998 (1)

Adam, P.

Avino, S.

Bhadra, S. K.

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Biswas, P. K.

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Brynda, E.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Casalino, M.

Chadt, K.

Coppola, G.

Ctyroky, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

De Natale, P.

Djuris?ic, A. B.

Dostalek, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Elazar, J. M.

Fekete, A.

A. Fekete, “Simulation of absorption-based surface plasmon resonance sensor in the Kretschmann configuration,” Int. J. Circuit Theory Appl. 41, 646–652 (2012).
[CrossRef]

Gagliardi, G.

Galler, N.

Gao, J.

Gauglitz, G.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Giorgini, A.

Gupta, B. D.

S. Singh and B. D. Gupta, “Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel,” Sens. Actuators B 173, 268–273 (2012).
[CrossRef]

He, S.

He, Y.

Hoa, X. D.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Homola, J.

A. Giorgini, S. Avino, P. Malara, G. Gagliardi, M. Casalino, G. Coppola, M. Iodice, P. Adam, K. Chadt, J. Homola, and P. De Natale, “Surface plasmon resonance optical cavity enhanced refractive index sensing,” Opt. Lett. 38, 1951–1953 (2013).
[CrossRef]

M. Piliarik, H. Šípová, P. Kvasnička, N. Galler, J. R. Krenn, and J. Homola, “High-resolution biosensor based on localized surface plasmons,” Opt. Express 20, 672–680 (2012).
[CrossRef]

R. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Iodice, M.

Jana, S.

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Kirk, A. G.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Krenn, J. R.

Kvasnicka, P.

Lin, Y.

Y. Lin, “Characteristics of optical fiber refractive index sensor based on surface plasmon resonance,” Microw. Opt. Technol. Lett. 55, 574–576 (2013).
[CrossRef]

Liu, Z.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Majewski, M. L.

Malara, P.

Mei, Y.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Mukherjee, R.

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Nekvindova, P.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Piliarik, M.

Rakic, A. D.

Roy, R. D.

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Schmidt, O. G.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Schrofel, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Sil, D.

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Singh, S.

S. Singh and B. D. Gupta, “Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel,” Sens. Actuators B 173, 268–273 (2012).
[CrossRef]

Šípová, H.

Skalsky, M.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Skvor, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Slavik, R.

R. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Smith, E. J.

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Spirkova, J.

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

Tabrizian, M.

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Yang, X.

Yee, S. S.

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Appl. Opt. (1)

Biosens. Bioelectron. (1)

X. D. Hoa, A. G. Kirk, and M. Tabrizian, “Towards integrated and sensitive surface plasmon resonance biosensors: a review of recent progress,” Biosens. Bioelectron. 23, 151–160 (2007).
[CrossRef]

Int. J. Circuit Theory Appl. (1)

A. Fekete, “Simulation of absorption-based surface plasmon resonance sensor in the Kretschmann configuration,” Int. J. Circuit Theory Appl. 41, 646–652 (2012).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Sol-Gel Sci. Technol. (1)

D. Sil, R. D. Roy, S. Jana, R. Mukherjee, S. K. Bhadra, and P. K. Biswas, “Patterning of sol gel thin films by capillary force assisted soft lithographic technique,” J. Sol-Gel Sci. Technol. 59, 117–127 (2011).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

Y. Lin, “Characteristics of optical fiber refractive index sensor based on surface plasmon resonance,” Microw. Opt. Technol. Lett. 55, 574–576 (2013).
[CrossRef]

Nano Lett. (1)

E. J. Smith, Z. Liu, Y. Mei, and O. G. Schmidt, “Combined surface plasmon and classical waveguiding through metamaterial fiber design,” Nano Lett. 10, 1–5 (2010).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Photonic Sens. (1)

R. D. Roy, D. Sil, S. Jana, P. K. Biswas, and S. K. Bhadra, “Experimental study of perfectly patterned silica-titania optical waveguide,” Photonic Sens. 2, 81–91 (2012).
[CrossRef]

Sens. Actuators B (4)

J. Homola, S. S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

S. Singh and B. D. Gupta, “Fabrication and characterization of a highly sensitive surface plasmon resonance based fiber optic pH sensor utilizing high index layer and smart hydrogel,” Sens. Actuators B 173, 268–273 (2012).
[CrossRef]

J. Dostalek, J. Ctyroky, J. Homola, E. Brynda, M. Skalsky, P. Nekvindova, J. Spirkova, J. Skvor, and J. Schrofel, “Surface plasmon resonance biosensor based on integrated optical waveguide,” Sens. Actuators B 76, 8–12 (2001).
[CrossRef]

R. Slavik and J. Homola, “Ultrahigh resolution long range surface plasmon-based sensor,” Sens. Actuators B 123, 10–12 (2007).
[CrossRef]

Other (1)

S. K. Bhadra and A. Ghatak, eds., Guided Wave Optics and Photonic Devices (Taylor & Francis, 2013), Chap. 18.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1.

Four-layer planar waveguide structure with embedded thin metal layer of silver (Ag).

Fig. 2.
Fig. 2.

Mode profile in transverse XY plane as obtained in (a) analytical calculation and (b) FEM using Comsol Multiphysics 4.3a. We used the values ns=1.453374, nf=1.7264, nc=1.33, df=500nm, dm=50nm, and λ=630nm. RI of silver is calculated with the help of Eq. (6).

Fig. 3.
Fig. 3.

Propagation of fundamental TM mode (Hy) at λ=630nm. (a) XZ plane projection. (b) Three-dimensional representation from Comsol Multiphysics 4.3a. We used the values ns=1.453374, nf=1.7264, nc=1.33, df=500nm, dm=50nm, and λ=630nm.

Fig. 4.
Fig. 4.

Schematic diagram of stratified medium. Gray layer indicates metal layer and white layer indicates dielectric layer.

Fig. 5.
Fig. 5.

Effective permittivity of the (a) real part and (b) imaginary part of the stratified layer. We took the values dsf=70nm, dsm=30nm, and εsd=1.42. εx, solid line; εz, broken line.

Fig. 6.
Fig. 6.

Schematic diagram of the modified plasmonic waveguide. The hashed layers are the metal layers.

Fig. 7.
Fig. 7.

Propagation of fundamental TM mode (Hy) at λ=630nm. (a) XZ plane projection. (b) Three-dimensional representation from Comsol Multiphysics 4.3a. We used the values ns=1.453374, nf=1.7264, nc=1.33, df=500nm, dm=50nm, and λ=630nm. RI of silver is calculated with the help of Eq. (6). The thickness of dielectric layer is 55 nm and the metal layer is 25 nm in the stratified layer.

Fig. 8.
Fig. 8.

Variation of λres with nclad for different εsd (=n2 dielectric) modified waveguide with df=590nm, dm=80nm, nf=1.7264, and ns=1.453374.

Fig. 9.
Fig. 9.

Variation of absorption loss of the fundamental TM mode with wavelength for various analyte indices. We used the values ns=1.453374, nf=1.7264, df=650nm, dm=73nm, εsd=2.0164, dsf=55nm, and dsm=28nm.

Fig. 10.
Fig. 10.

Comparison of absorption loss between four-layer integrated Kretschmann waveguide with bulk metal layer and loaded with stratified layer. We choose nanalyte=1.33. Both waveguides are optimized to achieve maximum absorption loss.

Fig. 11.
Fig. 11.

Variation of absorption loss of the proposed sensor with gold used in stratified layer. We used the values ns=1.453374, nf=1.7264, df=610nm, dm=73nm, εsd=2.0164, dsf=60nm, and dsm=28nm. RI of gold is calculated with the help of Eq. (6).

Tables (3)

Tables Icon

Table 1. Values of Different Drude–Lorentz Parameter of Ag

Tables Icon

Table 2. Values of Effective Index of Fundamental TM Mode

Tables Icon

Table 3. Values of Effective Index of Fundamental TM Mode

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

n(x)={nc,x>dm,covernm,dm>x>0,metalnf,0>x>df,filmns,x<df,substrate.
Hy(x)=A1expkc(dmx)forxdm,=A2cos(kmx)+A3sin(kmx)fordm>x0,=A4cos(kfx)+A5sin(kfx)for0>xdf,=A6expks(x+df)forx<df,
Ez=in2ωε0Hyx.
H1y=H2y
tankfdf=kfnf2A5+ksns2A4kfnf2A5+ksns2A4,
A5=A4kmnm2sinkmdmkcnc2coskmdmkckfnm2kmnc2nf2sinkmdm+kfnf2coskmdm.
kSP=2πλεmεfεm+εf.
ε(ω)=εωp2ω2+iω/τ0f1ωp2ω2ω02+iω/τb,
εx=εy=dsmεm+dsfεsddsm+dsfandεz=dsm+dsfdsmεsd+dsfεm.
S=dλresonancednanalyte.

Metrics