Abstract

We present experimental measurements that show direct determination of the dielectric properties of various metals relevant to plasmonics. In contrast to traditional measurements that typically rely on transmission and reflectance measurements, we launch surface plasmon-polaritons on a variety of different substrates and measure the propagation properties using terahertz time-domain spectroscopy. Surprisingly, we find that the extracted values for the dielectric constant for these metals differ by orders of magnitude from published data. In order to validate the obtained results, we separately measure the 1/e decay length, both along the propagation direction and normal to the metal surface, and show that the results are fully self-consistent with experimental data. The generality of the measurement technique makes it a useful tool to estimate the properties not only of planar conducting substrates but also a wide variety of more complex plasmonic structures.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).
  2. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  3. M. A. Ordal, L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, and C. A. Ward, “Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared,” Appl. Opt. 22, 1099–1119 (1983).
    [CrossRef]
  4. H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47, 1632–1634 (2008).
    [CrossRef]
  5. F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
    [CrossRef]
  6. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
    [CrossRef]
  7. J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
    [CrossRef]
  8. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics vol. 111 (Springer-Verlag, 1988).
  9. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
    [CrossRef]
  10. T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
    [CrossRef]
  11. A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15, 5616–5624 (2007).
    [CrossRef]
  12. W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
    [CrossRef]
  13. R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
    [CrossRef]
  14. N. C. J. Valk and P. Planken, “Effect of dielectric coating on terahertz surface plasmon polaritons on metal wire,” Appl. Phys. Lett. 87, 071106 (2005).
    [CrossRef]
  15. T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
    [CrossRef]
  16. X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13, 9834–9840 (2005).
    [CrossRef]
  17. A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
    [CrossRef]
  18. N. C. J. van der Valk, T. Wenckebach, and P. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004).
    [CrossRef]
  19. D. R. Lide, Handbook of Chemistry and of Physics, 75th ed. (Chemical Rubber, 1995).
  20. J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
    [CrossRef]
  21. T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
    [CrossRef]
  22. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [CrossRef]

2011

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

2008

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47, 1632–1634 (2008).
[CrossRef]

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
[CrossRef]

2007

2006

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

2005

N. C. J. Valk and P. Planken, “Effect of dielectric coating on terahertz surface plasmon polaritons on metal wire,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13, 9834–9840 (2005).
[CrossRef]

2004

N. C. J. van der Valk, T. Wenckebach, and P. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004).
[CrossRef]

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

2003

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

2001

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

1996

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

1983

1972

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Agrawal, A.

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
[CrossRef]

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13, 9834–9840 (2005).
[CrossRef]

Alexander, R. W.

Barnes, W. L.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Bell, R. J.

Bell, R. R.

Bell, S. E.

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Dereux, A.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

Du, Y.-L.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Ebbesen, T. W.

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

Garcia-Vidal, F. J.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Gómez Rivas, J.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

Gong, Q.-X.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Grischkowsky, D.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

Guo, M.-T.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Haring Bolivar, P.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

Heinz, T. F.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Hosako, I.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47, 1632–1634 (2008).
[CrossRef]

Jeon, T.-I.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Kurz, H.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

Lezec, H. J.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Lide, D. R.

D. R. Lide, Handbook of Chemistry and of Physics, 75th ed. (Chemical Rubber, 1995).

Linke, R. A.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

Long, L. L.

Ma, F.-Y.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Martin-Moreno, L.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Matsui, T.

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

Mendis, R.

Menon, R.

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Nahata, A.

W. Zhu, A. Agrawal, and A. Nahata, “Planar plasmonic terahertz guided-wave devices,” Opt. Express 16, 6216–6226 (2008).
[CrossRef]

A. Nahata and W. Zhu, “Electric field vector characterization of terahertz surface plasmons,” Opt. Express 15, 5616–5624 (2007).
[CrossRef]

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

X. Shou, A. Agrawal, and A. Nahata, “Role of metal film thickness on the enhanced transmission properties of a periodic array of subwavelength apertures,” Opt. Express 13, 9834–9840 (2005).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Ordal, M. A.

Palik, E. D.

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

Pellerin, K. M.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

Pendry, J. B.

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Planken, P.

N. C. J. Valk and P. Planken, “Effect of dielectric coating on terahertz surface plasmon polaritons on metal wire,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

N. C. J. van der Valk, T. Wenckebach, and P. Planken, “Full mathematical description of electro-optic detection in optically isotropic crystals,” J. Opt. Soc. Am. B 21, 622–631 (2004).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics vol. 111 (Springer-Verlag, 1988).

Schotsch, C.

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Shou, X.

Su, J.-P.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Thio, T.

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

Valk, N. C. J.

N. C. J. Valk and P. Planken, “Effect of dielectric coating on terahertz surface plasmon polaritons on metal wire,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

van der Valk, N. C. J.

Vardeny, Z. V.

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Ward, C. A.

Weling, A. S.

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

Wenckebach, T.

Yang, J.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Yasuda, H.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47, 1632–1634 (2008).
[CrossRef]

Yuan, B.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Zhu, W.

Appl. Opt.

Appl. Phys. Lett.

T.-I. Jeon and D. Grischkowsky, “THz Zenneck surface wave (THz surface plasmon) propagation on a metal sheet,” Appl. Phys. Lett. 88, 061113 (2006).
[CrossRef]

N. C. J. Valk and P. Planken, “Effect of dielectric coating on terahertz surface plasmon polaritons on metal wire,” Appl. Phys. Lett. 87, 071106 (2005).
[CrossRef]

A. Nahata, A. S. Weling, and T. F. Heinz, “A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,” Appl. Phys. Lett. 69, 2321–2323 (1996).
[CrossRef]

T. Matsui, Z. V. Vardeny, A. Agrawal, A. Nahata, and R. Menon, “Resonantly-enhanced transmission through a periodic array of subwavelength apertures in heavily-doped conducting polymer films,” Appl. Phys. Lett. 88, 071101 (2006).
[CrossRef]

Chin. Phys. Lett.

F.-Y. Ma, J.-P. Su, Q.-X. Gong, J. Yang, Y.-L. Du, M.-T. Guo, and B. Yuan, “Measurement of the optical constants of thin metal films by THz differential time domain spectroscopy,” Chin. Phys. Lett. 28, 097803 (2011).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys.

H. Yasuda and I. Hosako, “Measurement of terahertz refractive index of metal with terahertz time-domain spectroscopy,” Jpn. J. Appl. Phys. 47, 1632–1634 (2008).
[CrossRef]

Nat. Nanotechnol.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[CrossRef]

Nature

W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003).
[CrossRef]

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376–379 (2004).
[CrossRef]

Opt. Express

Opt. Lett.

R. Mendis and D. Grischkowsky, “Undistorted guided-wave propagation of subpicosecond terahertz pulses,” Opt. Lett. 26, 846–848 (2001).
[CrossRef]

T. Thio, K. M. Pellerin, R. A. Linke, H. J. Lezec, and T. W. Ebbesen, “Enhanced light transmission through a single subwavelength aperture,” Opt. Lett., 1972–1974 (2001).
[CrossRef]

Phys. Rev. B

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

J. Gómez Rivas, C. Schotsch, P. Haring Bolivar, and H. Kurz, “Enhanced transmission of THz radiation through subwavelength holes,” Phys. Rev. B 68, 201306(R) (2003).
[CrossRef]

Science

J. B. Pendry, L. Martin-Moreno, and F. J. Garcia-Vidal, “Mimicking surface plasmons with structured surfaces,” Science 305, 847–848 (2004).
[CrossRef]

Other

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Springer Tracts in Modern Physics vol. 111 (Springer-Verlag, 1988).

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1998).

D. R. Lide, Handbook of Chemistry and of Physics, 75th ed. (Chemical Rubber, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1.

Dielectric and SPP propagation properties for Au and Al at terahertz frequencies based on published data, assuming εd=1. (a) Real component of the dielectric constant based on a Drude model fit. (b) Real component of the dielectric constant based on a Drude model fit. (c) 1/e propagation length, Lx, along the x axis. (d) 1/e spatial extent, Lz, along the z axis.

Fig. 2.
Fig. 2.

Schematic diagram of the excitation and detection scheme for measurement of the SPP propagation and sample dielectric properties. Broadband terahertz radiation is normally incident on a 2 cm long rectangular cross-sectional groove that is 300 μm wide×100μm deep. The groove is used to couple normally incident freely propagating broadband terahertz radiation into SPP waves that propagate along the sample surface. A 110 ZnTe crystal that can be freely positioned anywhere above the sample surface is used to measure the z component of the terahertz electric field via electro-optic sampling.

Fig. 3.
Fig. 3.

SPP propagation and dielectric properties for Au. (a) Measured terahertz time-domain waveforms for two positions separated by 10 cm on the Au-coated metal sheet. The time shift arises from the difference in propagation velocities between the terahertz SPP and the optical probe pulses. (b) Corresponding amplitude and phase spectra. (c) Extracted values of n and κ using the Eq. (5). (d) Calculated values of εmr and εmi using Eq. (6). (e) Comparison between the 1/e propagation length along the x axis computed from εm (solid line) with εd=1 and values obtained by taking measurements along the x axis. (f) Comparison between the 1/e decay length along the z axis computed from εm (solid line) with εd=1 and values obtained by taking measurements along the z axis.

Fig. 4.
Fig. 4.

SPP propagation and dielectric properties for Al and stainless steel. (a) and (b) Extracted values εmr and εmi. (c) and (d) Comparison between the 1/e propagation length along the x axis computed from εm (solid line) and values obtained by taking multiple measurements along the x axis. (e) and (f) Comparison between the 1/e decay length along the z axis computed from εm (solid line) and values obtained by taking measurements along the z axis. Note the differences in the y axes values between aluminum and stainless steel.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

kx=kxr+ikxi=ωc(εdεmεm+εd)1/2=ωcnSPP,
Lx=12|kxi|.
kz=kzr+ikzi=[εd(ωc)2kx2]1/2.
Lz=1|kzi|.
H(ω)=ETHz(x=d)ETHz(x=0)=exp(iω(n1)dc)exp(ωκdc),
εm=εmr+iεmi=εdnSPP2εdnSPP2.

Metrics