Abstract

We demonstrate the confinement of broadband optical energy in the visible to near-infrared regime in a three-dimensional nanoscale volume with high energy efficiency in a nanostructure consisting of multiple nanoslits in dielectric chacolgenide material. We find that a broadband optical field can be confined down to the scale of 1 nm (λ/650) with a confinement volume of λ3/3×104. The figure of merit of the nanostructure can be up to 10 times that achieved by plasmonic lensing and nanofocusing. Our work opens a new way for truly nanoscaled photonics applicable to nanolithograpy, nanoimaging, lab-on-chip nanosensing, single-molecule detection, and nanospectroscopy.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000), Chap. 6.
  2. K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
    [CrossRef]
  3. S. W. Hell and J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19, 780–782 (1994).
    [CrossRef]
  4. Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
    [CrossRef]
  5. W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
    [CrossRef]
  6. W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
    [CrossRef]
  7. H. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett. 96, 141107 (2010).
    [CrossRef]
  8. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
    [CrossRef]
  9. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [CrossRef]
  10. D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
    [CrossRef]
  11. H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express, 17, 7519–7524 (2009).
    [CrossRef]
  12. H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).
  13. M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
    [CrossRef]
  14. P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
    [CrossRef]
  15. S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
    [CrossRef]
  16. T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).
  17. A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
    [CrossRef]
  18. Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express 18, 6885–6890 (2010).
    [CrossRef]
  19. www.lumerical.com .
  20. V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
    [CrossRef]
  21. J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
    [CrossRef]
  22. www.comsol.com .
  23. E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
    [CrossRef]
  24. Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
    [CrossRef]
  25. E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
    [CrossRef]

2013 (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[CrossRef]

2011 (2)

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

2010 (4)

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express 18, 6885–6890 (2010).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

H. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett. 96, 141107 (2010).
[CrossRef]

2009 (3)

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
[CrossRef]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express, 17, 7519–7524 (2009).
[CrossRef]

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

2008 (2)

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

2006 (2)

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

P. Berini, “Figures of merit for surface plasmon waveguides,” Opt. Express 14, 13030–13042 (2006).
[CrossRef]

2005 (2)

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef]

2004 (1)

2003 (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

2001 (1)

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

1999 (1)

E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

1994 (1)

Abeysinghe, D. C.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
[CrossRef]

Adato, R.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Aksu, S.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Almeida, V. R.

Alonso-González, P.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Altug, H.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Artar, A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Arzubiaga, L.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Barrios, C. A.

Bartal, G.

Belgorodsky, B.

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

Berini, P.

Bogy, D. B.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Bokor, J.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

Cabrini, S.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Cao, Y.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[CrossRef]

Casanova, F.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Chen, L.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef]

Chen, W.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
[CrossRef]

Choi, H.

Choo, H.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Chuvilin, A.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Cohen, H.

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

Elliott, S. R.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

Evans, R. A.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[CrossRef]

Gan, Z.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[CrossRef]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Gu, M.

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[CrossRef]

Q. Zhang, H. Lin, B. Jia, L. Xu, and M. Gu, “Nanogratings and nanoholes fabricated by direct femtosecond laser writing in chalcogenide glasses,” Opt. Express 18, 6885–6890 (2010).
[CrossRef]

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000), Chap. 6.

Guo, L. J.

H. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett. 96, 141107 (2010).
[CrossRef]

Hell, S. W.

Hillenbrand, R.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Huang, M.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Hueso, L. E.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Jia, B.

Kalifa, I.

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

Lin, H.

Lipson, M.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef]

V. R. Almeida, Q. Xu, C. A. Barrios, and M. Lipson, “Guiding and confining light in void nanostructure,” Opt. Lett. 29, 1209–1211 (2004).
[CrossRef]

Liu, Z.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Manolatou, C.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef]

Mentovich, E. D.

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

Nam, S.

Nelson, R. L.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
[CrossRef]

Novotny, L.

E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Ohta, T.

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

Pan, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Park, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Pikus, Y.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Pile, D. F. P.

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express, 17, 7519–7524 (2009).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

Ramsay, E.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
[CrossRef]

Reid, D. T.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
[CrossRef]

Rho, J.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Richter, S.

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

Robinson, J. T.

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef]

Sánchez, E. J.

E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Schnell, M.

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Schuck, P. J.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Seok, T. J.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Serrels, K. A.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
[CrossRef]

Shi, H.

H. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett. 96, 141107 (2010).
[CrossRef]

Srituravanich, W.

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Stafarroni, M.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Steele, J. M.

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Sun, C.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Sunney Xie, X.

E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Ulin-Avila, E.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Wang, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Warburton, R. J.

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
[CrossRef]

Wichmann, J.

Wu, M.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Xiong, S.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Xiong, Y.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Xu, L.

Xu, Q.

Yablonovitch, E.

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

Yanik, A. A.

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

Zakery, A.

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

Zeng, L.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Zhan, Q.

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
[CrossRef]

Zhang, Q.

Zhang, X.

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

H. Choi, D. F. P. Pile, S. Nam, G. Bartal, and X. Zhang, “Compressing surface plasmons for nano-scale optical focusing,” Opt. Express, 17, 7519–7524 (2009).
[CrossRef]

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Appl. Phys. Lett. (2)

H. Shi and L. J. Guo, “Design of plasmonic near field plate at optical frequency,” Appl. Phys. Lett. 96, 141107 (2010).
[CrossRef]

D. F. P. Pile and D. K. Gramotnev, “Adiabatic and nonadiabatic nanofocusing of plasmons by tapered gap plasmon waveguides,” Appl. Phys. Lett. 89, 041111 (2006).
[CrossRef]

J. Non-Cryst. Solids (1)

A. Zakery and S. R. Elliott, “Optical properties and applications of chalcogenide glasses: a review,” J. Non-Cryst. Solids 330, 1–12 (2003).
[CrossRef]

J. Optoelectron. Adv. Mater. (1)

T. Ohta, “Phase-change optical memory promotes the DVD optical disk,” J. Optoelectron. Adv. Mater. 3, 609–626 (2001).

Nano Lett. (4)

E. D. Mentovich, B. Belgorodsky, I. Kalifa, H. Cohen, and S. Richter, “Large-scale fabrication of 4-nm-channel vertical protein-based ambipolar transistors,” Nano Lett. 9, 1296–1300 (2009).
[CrossRef]

S. Aksu, A. A. Yanik, R. Adato, A. Artar, M. Huang, and H. Altug, “High-throughput nanofabrication of infrared plasmonic nanoantenna arrays for vibrational nanospectroscopy,” Nano Lett. 10, 2511–2518 (2010).
[CrossRef]

W. Chen, D. C. Abeysinghe, R. L. Nelson, and Q. Zhan, “Plasmonic lens made of multiple concentric metallic rings under radially polarized illumination,” Nano Lett. 9, 4320–4325 (2009).
[CrossRef]

Z. Liu, J. M. Steele, W. Srituravanich, Y. Pikus, C. Sun, and X. Zhang, “Focusing surface plasmons with a plasmonic lens,” Nano Lett. 5, 1726–1729 (2005).
[CrossRef]

Nat. Commun. (1)

Z. Gan, Y. Cao, R. A. Evans, and M. Gu, “Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size,” Nat. Commun. 4, 2061 (2013).
[CrossRef]

Nat. Nanotechnol. (1)

W. Srituravanich, L. Pan, Y. Wang, C. Sun, D. B. Bogy, and X. Zhang, “Flying plasmonic lens in the near field for high-speed nanolithography,” Nat. Nanotechnol. 3, 733–737 (2008).
[CrossRef]

Nat. Photonics (3)

K. A. Serrels, E. Ramsay, R. J. Warburton, and D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nat. Photonics 2, 311–314 (2008).
[CrossRef]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[CrossRef]

M. Schnell, P. Alonso-González, L. Arzubiaga, F. Casanova, L. E. Hueso, A. Chuvilin, and R. Hillenbrand, “Nanofocusing of mid-infrared energy with tapered transmission lines,” Nat. Photonics 5, 283–287 (2011).
[CrossRef]

Opt. Express (3)

Opt. Lett. (2)

Phys. Rev. Lett. (2)

J. T. Robinson, C. Manolatou, L. Chen, and M. Lipson, “Ultrasmall mode volumes in dielectric optical microcavities,” Phys. Rev. Lett. 95, 143901 (2005).
[CrossRef]

E. J. Sánchez, L. Novotny, and X. Sunney Xie, “Near-field fluorescence microscopy based on two-photon excitation with metal tips,” Phys. Rev. Lett. 82, 4014–4017 (1999).
[CrossRef]

Sci. Rep. (1)

L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, and X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011).
[CrossRef]

Other (4)

M. Gu, Advanced Optical Imaging Theory (Springer-Verlag, 2000), Chap. 6.

www.lumerical.com .

H. Choo, M. Stafarroni, T. J. Seok, J. Bokor, M. Wu, P. J. Schuck, S. Cabrini, and E. Yablonovitch, “Three-dimensional optical transformer—highly efficient nanofocusing device,” in Conference on Lasers and Electro-Optics and Quantum Electronics and Laser Science Conference (IEEE, 2010).

www.comsol.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

(a) Plot of the FOM versus the effective confinement area enables a comparison of the nanostructure, optical lens focusing, plasmonic lenses (hollow square [4], solid square [5], hollow circle [6], solid circle [7], hollow triangle [8], solid triangle [8]) and nanofocusing (hollow pentagon [10], solid pentagon [11], hollow diamond [12], solid diamond [13]). The gray area marks the diffraction-limited. The curve of the FOM for the nanostructure is calculated when d = 250 nm and s varies in the range from 1 to 100 nm. (b) Schematic of the nanostructure. Three low-index nanoslits are embedded in the high-index ChG block. n c is the refractive index of the ChG block, and n s is the refractive index of the nanoslits. The refractive index of the background is n b . L , s , and d are the length, width, and depth of the nanoslits, respectively. w is the width of the nanoridges. Inset: 2D cross section of the nanostructure.

Fig. 2.
Fig. 2.

Dependence of (a) effective confinement area A eff , (b) energy confinement efficiency η , and (c) FOM of the mode on depth d and width s of the nanoslits. The white-dashed line marks the critical transformation length for mode coupling. (d)–(i)  x y and x z cross sections of the energy density distribution of the nanostructures (d), (e)  [ s , d ] = [ 100 , 50 ] nm , (f), (g)  [ s , d ] = [ 100,250 ] nm , and (h), (i)  [ s , d ] = [ 1 , 250 ] nm .

Fig. 3.
Fig. 3.

Normalized energy density (a) along the x direction at y = 0 , z = z f for the nanoslit with d = 250 nm , (b) along the y direction at x = 0 , z = z f for the same d , and (c) along the z direction at x = 0 , y = 0 , for the nanoslits with a fixed s = 1 nm . The coordinates are marked in the figures. (d) Effective confinement volume V eff and the FWHM in the z direction as a function of s when d = 250 nm .

Fig. 4.
Fig. 4.

(a) Spectral response of the nanostructure ( [ s , d ] = [ 1,250 ] nm ) with different n c . Two enhancement peaks are shown in the curve. (b) Dependence of the enhancement peak wavelength (solid line) and A eff (dashed line) on n c for the two peaks. (c) Dependence of η (solid line) and the FOM (dashed line) on n c for the two peaks.

Fig. 5.
Fig. 5.

Normalized energy density at the point of ( x = 0 , y = 0 , z = z f ) versus the wavelength for different refractive indices of the nanoslits n s ( [ s , d ] = [ 1 , 250 ] nm ). The black-dashed lines mark the positions for two peaks for different values of n s while n c = 2.5 , n b = 1 .

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

A eff = x 0 y 0 ,
V eff = x 0 y 0 z 0 ,
η = A eff W ( x , y , z f ) d x d y A 0 W ( x , y , z in ) d x d y ,
FOM = η A eff .
t = Δ λ Δ n c ,

Metrics