Abstract

In this paper, we report on the performance comparison of all-optical signal processing methodologies to compensate fiber transmission impairments, namely chromatic dispersion and nonlinear distortion caused by the Kerr effect, in a coherent 112Gbit/s dual-polarization 64 bit quadrature amplitude modulation system over 800 km standard single-mode fiber. We numerically compare optical backward propagation (OBP) with optical phase conjugation (OPC) techniques, namely. mid-link spectral inversion, predispersed spectral inversion, and OPC with nonlinearity module. We also evaluate a self-phase-modulation-based optical limiter with an appropriate prechirping to compensate for the intensity fluctuations as a hybrid approach with OBP. The results depict improvement in system performance by a factor of 4dB of signal input power by all-optical signal processing methods, which is comparative with ideal digital backward propagation where the high complexity is the intrinsic impediment in the real-time implementation of the technique with coherent receivers.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. De Man, G. D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26, 64–72 (2008).
    [CrossRef]
  2. P. P. Mitra and J. B. Stark, “Non-linear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
    [CrossRef]
  3. E. Ip and J. M. Kahn, “Compensation of dispersion and non-linear impairments using digital backpropagation,” J. Lightwave Technol. 26, 3416–3425 (2008).
    [CrossRef]
  4. D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
    [CrossRef]
  5. F. Yaman and G. Li, “Non-linear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1, 144–152 (2009).
    [CrossRef]
  6. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18, 22796–22807 (2010).
    [CrossRef]
  7. C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” in 36th European Conference Optical Communication (ECOC), Torino, Italy, September2010, paper 3.16.
  8. L. Du and A. Lowery, “Improved single channel back-propagation for intra-channel fiber non-linearity compensation in long-haul optical communication systems,” Opt. Express 18, 17075–17088 (2010).
    [CrossRef]
  9. L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.
  10. D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
    [CrossRef]
  11. P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
    [CrossRef]
  12. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic step-size based digital backward propagation in N-channel 112  Gbit/s/ch DP-QPSK transmission,” in 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, June2011, paper T.u.P6.
  13. R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284, 5673–5677 (2011).
    [CrossRef]
  14. R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
    [CrossRef]
  15. M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.
  16. M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
    [CrossRef]
  17. V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
    [CrossRef]
  18. D. Rafique, J. Zhao, and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112  Gbit/s PM m-ary QAM transmission,” Opt. Express 19, 5219–5224 (2011).
    [CrossRef]
  19. M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.
  20. S. Kumar and D. Yang, “Optical backpropagation for fiber-optic communications using highly nonlinear fibers,” Opt. Lett. 36, 1038–1040 (2011).
    [CrossRef]
  21. M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Quantum Electron. 18, 738–752 (2012).
    [CrossRef]
  22. M. Matsumoto and K. Sanuki, “Performance improvement of DPSK signal transmission by a phase-preserving amplitude limiter,” Opt. Express 15, 8094–8103 (2007).
    [CrossRef]
  23. K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
    [CrossRef]
  24. M. Pelusi and B. Eggleton, “Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation,” Opt. Express 20, 8015–8023 (2012).
    [CrossRef]
  25. D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23, 1838–1840 (2011).
    [CrossRef]
  26. R. Asif, M. K. Islam, and M. Zafrullah, “Analysis and application of scalable non-linear equalization in 112  Gbit/s DP-64QAM coherent transmission over single mode fibers,” in Photonics Global Conference (PGC), December, 2012, paper c12a345.
  27. G. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 2001).

2012

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
[CrossRef]

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Quantum Electron. 18, 738–752 (2012).
[CrossRef]

K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
[CrossRef]

M. Pelusi and B. Eggleton, “Optically tunable compensation of nonlinear signal distortion in optical fiber by end-span optical phase conjugation,” Opt. Express 20, 8015–8023 (2012).
[CrossRef]

2011

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23, 1838–1840 (2011).
[CrossRef]

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

D. Rafique, J. Zhao, and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112  Gbit/s PM m-ary QAM transmission,” Opt. Express 19, 5219–5224 (2011).
[CrossRef]

S. Kumar and D. Yang, “Optical backpropagation for fiber-optic communications using highly nonlinear fibers,” Opt. Lett. 36, 1038–1040 (2011).
[CrossRef]

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
[CrossRef]

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284, 5673–5677 (2011).
[CrossRef]

2010

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18, 22796–22807 (2010).
[CrossRef]

L. Du and A. Lowery, “Improved single channel back-propagation for intra-channel fiber non-linearity compensation in long-haul optical communication systems,” Opt. Express 18, 17075–17088 (2010).
[CrossRef]

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

2009

F. Yaman and G. Li, “Non-linear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1, 144–152 (2009).
[CrossRef]

2008

2007

2001

P. P. Mitra and J. B. Stark, “Non-linear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[CrossRef]

Agrawal, G.

G. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 2001).

Alfiad, M. S.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

Asif, R.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
[CrossRef]

R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284, 5673–5677 (2011).
[CrossRef]

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18, 22796–22807 (2010).
[CrossRef]

C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” in 36th European Conference Optical Communication (ECOC), Torino, Italy, September2010, paper 3.16.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic step-size based digital backward propagation in N-channel 112  Gbit/s/ch DP-QPSK transmission,” in 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, June2011, paper T.u.P6.

R. Asif, M. K. Islam, and M. Zafrullah, “Analysis and application of scalable non-linear equalization in 112  Gbit/s DP-64QAM coherent transmission over single mode fibers,” in Photonics Global Conference (PGC), December, 2012, paper c12a345.

Bayvel, P.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Behrens, C.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Bosco, G.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

Carena, A.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

Chugtai, M. N.

Curri, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

De Man, E.

de Waardt, H.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. De Man, G. D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26, 64–72 (2008).
[CrossRef]

Dou, L.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Drouet, F.

K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
[CrossRef]

Du, L.

Duthel, T.

Eggleton, B.

Ellis, A.

D. Rafique, J. Zhao, and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112  Gbit/s PM m-ary QAM transmission,” Opt. Express 19, 5219–5224 (2011).
[CrossRef]

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
[CrossRef]

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Ellis, A. D.

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23, 1838–1840 (2011).
[CrossRef]

Fischer, J.

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Fludger, C. R. S.

Forghieri, F.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

Forzati, M.

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
[CrossRef]

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Freund, R.

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.

Geyer, J.

Hellerbrand, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Hilt, J.

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.

Hirano, M.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

Holtmannspoetter, M.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
[CrossRef]

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18, 22796–22807 (2010).
[CrossRef]

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic step-size based digital backward propagation in N-channel 112  Gbit/s/ch DP-QPSK transmission,” in 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, June2011, paper T.u.P6.

C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” in 36th European Conference Optical Communication (ECOC), Torino, Italy, September2010, paper 3.16.

Hoshida, T.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Ip, E.

Islam, M. K.

R. Asif, M. K. Islam, and M. Zafrullah, “Analysis and application of scalable non-linear equalization in 112  Gbit/s DP-64QAM coherent transmission over single mode fibers,” in Photonics Global Conference (PGC), December, 2012, paper c12a345.

Itoh, K.

K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
[CrossRef]

Jansen, S. L.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

Kahn, J. M.

Kawanishi, K.

K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
[CrossRef]

Khoe, G. D.

Killey, R.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Konishi, T.

K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
[CrossRef]

Kumar, S.

Kuschnerov, M.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

Li, G.

F. Yaman and G. Li, “Non-linear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1, 144–152 (2009).
[CrossRef]

Li, L.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Lin, C. Y.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
[CrossRef]

R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284, 5673–5677 (2011).
[CrossRef]

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18, 22796–22807 (2010).
[CrossRef]

C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” in 36th European Conference Optical Communication (ECOC), Torino, Italy, September2010, paper 3.16.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic step-size based digital backward propagation in N-channel 112  Gbit/s/ch DP-QPSK transmission,” in 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, June2011, paper T.u.P6.

Lowery, A.

Makovejs, S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Martensson, J.

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
[CrossRef]

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Matsumoto, M.

Millar, D. S.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Miot, V.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

Mitra, P. P.

P. P. Mitra and J. B. Stark, “Non-linear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[CrossRef]

Molle, L.

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Mussolin, M.

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
[CrossRef]

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Nlle, M.

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Nolle, M.

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.

Oda, S.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Pelusi, M.

Poggiolini, P.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

Rafique, D.

D. Rafique, M. Mussolin, M. Forzati, J. Martensson, M. N. Chugtai, and A. Ellis, “Compensation of intra-channel nonlinear fibre impairments using simplified digital back-propagation algorithm,” Opt. Express 19, 9453–9460 (2011).
[CrossRef]

D. Rafique, J. Zhao, and A. Ellis, “Digital back-propagation for spectrally efficient WDM 112  Gbit/s PM m-ary QAM transmission,” Opt. Express 19, 5219–5224 (2011).
[CrossRef]

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23, 1838–1840 (2011).
[CrossRef]

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Rasmussen, J.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Sanuki, K.

Sasaki, T.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

Savory, S. J.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

Schmauss, B.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
[CrossRef]

R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284, 5673–5677 (2011).
[CrossRef]

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Optimized digital backward propagation for phase modulated signals in mixed-optical fiber transmission link,” Opt. Express 18, 22796–22807 (2010).
[CrossRef]

C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” in 36th European Conference Optical Communication (ECOC), Torino, Italy, September2010, paper 3.16.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic step-size based digital backward propagation in N-channel 112  Gbit/s/ch DP-QPSK transmission,” in 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, June2011, paper T.u.P6.

Schmidt, E.

Schubert, C.

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

Schulien, C.

Seimetz, M.

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.

Sleiffer, V.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

Stark, J. B.

P. P. Mitra and J. B. Stark, “Non-linear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[CrossRef]

Tanimura, T.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Tao, Z.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

van den Borne, D.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. De Man, G. D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26, 64–72 (2008).
[CrossRef]

Veljanovski, V.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

Wuth, T.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

C. R. S. Fludger, T. Duthel, D. van den Borne, C. Schulien, E. Schmidt, T. Wuth, J. Geyer, E. De Man, G. D. Khoe, and H. de Waardt, “Coherent equalization and POLMUX-RZ-DQPSK for robust 100-GE transmission,” J. Lightwave Technol. 26, 64–72 (2008).
[CrossRef]

Yamamoto, Y.

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

Yaman, F.

F. Yaman and G. Li, “Non-linear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1, 144–152 (2009).
[CrossRef]

Yan, W.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Yang, D.

Zafrullah, M.

R. Asif, M. K. Islam, and M. Zafrullah, “Analysis and application of scalable non-linear equalization in 112  Gbit/s DP-64QAM coherent transmission over single mode fibers,” in Photonics Global Conference (PGC), December, 2012, paper c12a345.

Zhao, J.

IEEE J. Quantum Electron.

M. Matsumoto, “Fiber-based all-optical signal regeneration,” IEEE J. Quantum Electron. 18, 738–752 (2012).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

D. S. Millar, S. Makovejs, C. Behrens, S. Hellerbrand, R. Killey, P. Bayvel, and S. J. Savory, “Mitigation of fiber non-linearity using a digital coherent receiver,” IEEE J. Sel. Top. Quantum Electron. 16, 1217–1226 (2010).
[CrossRef]

IEEE Photon. J.

F. Yaman and G. Li, “Non-linear impairment compensation for polarization-division multiplexed WDM transmission using digital backward propagation,” IEEE Photon. J. 1, 144–152 (2009).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Poggiolini, G. Bosco, A. Carena, V. Curri, V. Miot, and F. Forghieri, “Performance dependence on channel baud-rate of PM-QPSK systems over uncompensated links,” IEEE Photon. Technol. Lett. 23, 15–17 (2011).
[CrossRef]

M. S. Alfiad, M. Kuschnerov, S. L. Jansen, T. Wuth, D. van den Borne, and H. de Waardt, “11×224-Gb/s POLMUX-RZ-16QAM transmission over 670  km of SSMF with 50-GHz channel spacing,” IEEE Photon. Technol. Lett. 22, 1150–1152 (2010).
[CrossRef]

V. Sleiffer, M. S. Alfiad, D. van den Borne, M. Kuschnerov, V. Veljanovski, M. Hirano, Y. Yamamoto, T. Sasaki, S. L. Jansen, T. Wuth, and H. de Waardt, “10×224-zGb/s POLMUX-16QAM transmission over 656 km of large Aeff PSCF with a spectral efficiency of 5.6  b/s/Hz,” IEEE Photon. Technol. Lett. 23, 1427–1429 (2011).
[CrossRef]

K. Kawanishi, F. Drouet, K. Itoh, and T. Konishi, “Highly accurate compensation technique for 10-GHz pulse intensity fluctuation using SPM-based all-optical intensity limiter,” IEEE Photon. Technol. Lett. 24, 119–121 (2012).
[CrossRef]

D. Rafique and A. D. Ellis, “Various nonlinearity mitigation techniques employing optical and electronic approaches,” IEEE Photon. Technol. Lett. 23, 1838–1840 (2011).
[CrossRef]

J. Lightwave Technol.

Nature

P. P. Mitra and J. B. Stark, “Non-linear limits to the information capacity of optical fibre communications,” Nature 411, 1027–1030 (2001).
[CrossRef]

Opt. Commun.

R. Asif, C. Y. Lin, and B. Schmauss, “Impact of channel baud-rate on logarithmic digital backward propagation in DP-QPSK system with uncompensated transmission links,” Opt. Commun. 284, 5673–5677 (2011).
[CrossRef]

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Multi-span digital non-linear compensation for dual-polarization quadrature phase shift keying long-haul communication systems,” Opt. Commun. 285, 1814–1818 (2012).
[CrossRef]

Opt. Express

Opt. Lett.

Other

R. Asif, M. K. Islam, and M. Zafrullah, “Analysis and application of scalable non-linear equalization in 112  Gbit/s DP-64QAM coherent transmission over single mode fibers,” in Photonics Global Conference (PGC), December, 2012, paper c12a345.

G. Agrawal, Fiber-Optic Communication Systems, 2nd ed. (Wiley, 2001).

M. Nolle, J. Hilt, L. Molle, M. Seimetz, and R. Freund, “8×224Gbit/s PDM 16QAM WDM transmission with real-time signal processing at the transmitter,” in 36th European Conference and Exhibition on Optical Communication (ECOC), September2010, paper We.8.C.4.

M. Mussolin, D. Rafique, J. Martensson, M. Forzati, J. Fischer, L. Molle, M. Nlle, C. Schubert, and A. Ellis, “Polarization multiplexed 224  Gb/s 16QAM transmission employing digital back-propagation,” in 37th European Conference and Exposition on Optical Communications, OSA Technical Digest (CD) (Optical Society of America, 2011), paper We.8.B.6.

R. Asif, C. Y. Lin, M. Holtmannspoetter, and B. Schmauss, “Logarithmic step-size based digital backward propagation in N-channel 112  Gbit/s/ch DP-QPSK transmission,” in 13th International Conference on Transparent Optical Networks (ICTON), Stockholm, Sweden, June2011, paper T.u.P6.

C. Y. Lin, M. Holtmannspoetter, R. Asif, and B. Schmauss, “Compensation of transmission impairments by digital backward propagation for different link designs,” in 36th European Conference Optical Communication (ECOC), Torino, Italy, September2010, paper 3.16.

L. Li, Z. Tao, L. Dou, W. Yan, S. Oda, T. Tanimura, T. Hoshida, and J. Rasmussen, “Implementation efficient non-linear equalizer based on correlated digital back-propagation,” in Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference (OFC/NFOEC), Los Angeles, California, March2011, paper OWW3.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Principle of OPC.

Fig. 2.
Fig. 2.

(i) Numerical model of 112 Gbit / s DP-64-QAM coherent transmission [PBS: polarization beam splitter, PBC: polarization beam combiner]; (ii) OPC-NM module; (iii) SPM-based all-optical IL; (iv) OBP module; (v) graphical representation of optical power along FL, MLSI, and PD-SI.

Fig. 3.
Fig. 3.

Q factor (dB) as a function of signal input launch power in 112 Gbit / s DP-64-QAM coherent transmission over 800 km SMF for diverse fiber transmission impairment compensation methods.

Fig. 4.
Fig. 4.

Constellation plots after EDC, OBP, OPC-NM, and DBP for 112 Gbit / s DP-64-QAM at 0 dBm signal launch power.

Fig. 5.
Fig. 5.

System performance at various transmission distances for 112 Gbit / s DP-64-QAM at 4 dBm signal launch power.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

2 E = 1 c 2 2 E 2 t μ 0 2 P ( E ) 2 t ,
P L ( r , t ) = ε 0 x ( 1 ) ( t t ) · E ( r , t ) d t ,
P ( r , t ) = P L ( r , t ) + P NL ( r , t ) ,
β ( ω ) = β 0 + ( ω ω 0 ) β 1 + 1 2 ( ω ω 0 ) 2 β 2 + 1 6 ( ω ω 0 ) 3 β 3 + ,
β n = [ d n β d ω n ] ω = ω 0 .
β 2 = λ 2 2 π c D ,
z E ( z , t ) = α 2 E ( z , t ) ( linear attenuation ) , + j β 2 2 2 2 t E ( z , t ) ( second-orderdispersion ) , + j β 3 6 3 3 t E ( z , t ) ( third-orderdispersion ) , j γ | E ( z , t ) | 2 E ( z , t ) ( Kerr effect ) , + j γ T R t | E ( z , t ) | 2 E ( z , t ) ( stimulated Raman scattering ) , ω 0 t | E ( z , t ) | 2 E ( z , t ) ( self-steeping effect ) ,
E z = [ j γ | E | 2 + ( j β 2 2 2 t 2 α 2 ) ] E = ( N ^ + D ^ ) E .
N ^ = j γ | E | 2 ; D ^ = ( j β 2 2 2 t 2 α 2 ) .
E z = ( N ^ D ^ ) E ,

Metrics