Abstract

For decreasing light loss and diminishing the aberrations of the optical system, an open-loop adaptive optics (AO) system for retinal imaging in vivo is introduced. Taking advantage of the ability of young human eyes to accommodate, there was only one single curved mirror to make the pupil of the eye conjugate with the wavefront corrector and the wavefront sensor. A liquid crystal spatial light modulator (LC-SLM) was adopted as the wavefront corrector because the LC-SLM can be made in a small size to match the sensor. To reduce a pair of lenses or focusing mirrors, the wavefront corrector and sensor are positioned in the noncommon path. The system adopts open-loop control and the high-precision LC-SLM guarantees the effectiveness of the AO system. The designed field of view is 1° on the retina (about 300 μm). The image quality was simulated with different mirror surface types, including circular, parabolic, and hyperbolic. A hyperbolic mirror with conic constant 1.07, which is close to 1, could best eliminate the aberrations. Theoretical analysis showed that the optical throughput of this system was at least 22.4% higher than that of a standard transmission AO system. In a practical experiment, a parabolic mirror was positioned in the optical path. Images of the cone photoreceptors and the capillary vessels were obtained successfully. This system simplifies the optical setup in comparison to the commonly used 4F systems while still guaranteeing the effectiveness of AO to correct the ocular aberrations.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A.  Roorda, D. R.  Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
    [CrossRef]
  2. J. I.  Wolfing, M.  Chung, J.  Carroll, A.  Roorda, D. R.  Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006).
    [CrossRef]
  3. J. A.  Martin, A.  Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88, 356–360 (2009).
    [CrossRef]
  4. J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
    [CrossRef]
  5. J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
    [CrossRef]
  6. R. S.  Jonnal, O. P.  Kocaoglu, Q.  Wang, S.  Lee, D. T.  Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3, 104–124 (2012).
    [CrossRef]
  7. J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
    [CrossRef]
  8. C.  Correia, J. P.  Veran, G.  Herriot, “Advanced vibration suppression algorithms in adaptive optics systems,” J. Opt. Soc. Am. A 29, 185–194 (2012).
    [CrossRef]
  9. R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).
    [CrossRef]
  10. H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
    [CrossRef]
  11. H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
    [CrossRef]
  12. J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
    [CrossRef]
  13. A.  Dubra, Y.  Sulai, J. L.  Norris, R. F.  Cooper, A. M.  Dubis, D. R.  Williams, J.  Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
    [CrossRef]
  14. N.  Doble, S. S.  Choi, J. L.  Codona, J.  Christou, J. M.  Enoch, D. R.  Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36, 31–33 (2011).
    [CrossRef]
  15. A.  Roorda, F.  Romero-Borja, W.  Donnelly, H.  Queener, T.  Hebert, M.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
    [CrossRef]
  16. D.  Miller, L.  Thibos, X.  Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
    [CrossRef]
  17. N.  Doble, D. T.  Miller, G.  Yoon, D. R.  Williams, “Requirements for discrete actuator and segmented wavefront correctors for aberration compensation in two large populations of human eyes,” Appl. Opt. 46, 4501–4514 (2007).
    [CrossRef]
  18. G. D.  Love, J. V.  Major, A.  Purvis, “Liquid-crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [CrossRef]
  19. G. D.  Love, N.  Andrews, P.  Birch, D.  Buscher, P.  Doel, C.  Dunlop, J.  Major, R.  Myers, A.  Purvis, R.  Sharples, A.  Vick, A.  Zadrozny, S. R.  Restaino, A.  Glindemann, “Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995).
    [CrossRef]
  20. Y.  Zhang, S.  Poonja, A.  Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
    [CrossRef]
  21. L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
    [CrossRef]
  22. Q.  Mu, Z.  Cao, D.  Li, L.  Hu, L.  Xuan, “Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007).
    [CrossRef]
  23. C.  Li, M.  Xia, Q.  Mu, B.  Jiang, L.  Xuan, Z.  Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
    [CrossRef]
  24. P.  Prieto, E.  Fernandez, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
    [CrossRef]
  25. Q.  Mu, Z.  Cao, L.  Hu, D.  Li, L.  Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–8018 (2006).
    [CrossRef]
  26. C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).
    [CrossRef]
  27. K.  Venkateswaran, A.  Roorda, F.  Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
    [CrossRef]
  28. B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
    [CrossRef]
  29. Y.  Zhang, J.  Rha, R.  Jonnal, D.  Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005).
    [CrossRef]
  30. E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
    [CrossRef]
  31. R. J.  Zawadzki, S. M.  Jones, S. S.  Olivier, M.  Zhao, B. A.  Bower, J. A.  Izatt, S.  Choi, S.  Laut, J. S.  Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
    [CrossRef]
  32. D. A.  Atchison, G.  Smith, “Chromatic dispersions of the ocular media of human eyes,” J. Opt. Soc. Am. A 22, 29–37 (2005).
    [CrossRef]
  33. K.  Grieve, P.  Tiruveedhula, Y.  Zhang, A.  Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
    [CrossRef]
  34. B.  Wang, K. J.  Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
    [CrossRef]
  35. J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.
  36. J. I.  Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vis. Res. 22, 1205–1210 (1982).
    [CrossRef]
  37. N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
    [CrossRef]
  38. H.  Song, Y.  Zhao, X.  Qi, Y. T.  Chui, S. A.  Burns, “Stokes vector analysis of adaptive optics images of the retina,” Opt. Lett. 33, 137–139 (2008).
    [CrossRef]

2012

R. S.  Jonnal, O. P.  Kocaoglu, Q.  Wang, S.  Lee, D. T.  Miller, “Phase-sensitive imaging of the outer retina using optical coherence tomography and adaptive optics,” Biomed. Opt. Express 3, 104–124 (2012).
[CrossRef]

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

C.  Correia, J. P.  Veran, G.  Herriot, “Advanced vibration suppression algorithms in adaptive optics systems,” J. Opt. Soc. Am. A 29, 185–194 (2012).
[CrossRef]

R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).
[CrossRef]

H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
[CrossRef]

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

2011

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

A.  Dubra, Y.  Sulai, J. L.  Norris, R. F.  Cooper, A. M.  Dubis, D. R.  Williams, J.  Carroll, “Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope,” Biomed. Opt. Express 2, 1864–1876 (2011).
[CrossRef]

N.  Doble, S. S.  Choi, J. L.  Codona, J.  Christou, J. M.  Enoch, D. R.  Williams, “In vivo imaging of the human rod photoreceptor mosaic,” Opt. Lett. 36, 31–33 (2011).
[CrossRef]

2010

C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).
[CrossRef]

2009

2008

2007

2006

2005

2004

2002

1999

A.  Roorda, D. R.  Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

1997

J.  Liang, D. R.  Williams, D. T.  Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884–2892 (1997).
[CrossRef]

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef]

1995

1994

1982

J. I.  Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vis. Res. 22, 1205–1210 (1982).
[CrossRef]

1953

H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Ahnelt, P.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

Andrews, N.

Artal, P.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

P.  Prieto, E.  Fernandez, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Atchison, D. A.

Awwal, A.

J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.

Ayyagari, R.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Babcock, H. W.

H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Benard, Y.

R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).
[CrossRef]

Birch, D. G.

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Birch, P.

Blaschke, J.

H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
[CrossRef]

Bower, B. A.

Bradley, A.

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef]

Burns, S. A.

Buscher, D.

Campbell, M.

Cao, Z.

Carroll, J.

Chin, C. T.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Choi, S.

Choi, S. S.

Christou, J.

Chui, Y. T.

Chung, M.

J. I.  Wolfing, M.  Chung, J.  Carroll, A.  Roorda, D. R.  Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006).
[CrossRef]

Ciuffreda, K. J.

B.  Wang, K. J.  Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[CrossRef]

Codona, J. L.

Cooper, R. F.

Correia, C.

Doble, N.

Doel, P.

Donnelly, W.

Drexler, W.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Dubis, A. M.

Dubra, A.

Duncan, J. L.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Dunlop, C.

Enoch, J. M.

Fercher, A. F.

Fernandez, E.

Fernandez, E. J.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Gaasterland, T.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Gelfand, J. M.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Gillum, L. A.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Glindemann, A.

Green, A. J.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Grieve, K.

Gudiseva, H. V.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Hebert, T.

Hermann, B.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Herriot, G.

Hofer, H. J.

H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
[CrossRef]

Hong, X.

Hu, L.

Izatt, J. A.

Jiang, B.

Jones, S. M.

Jonnal, R.

Jonnal, R. S.

Kocaoglu, O. P.

Koenig, D. E.

H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
[CrossRef]

Kong, N.

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

Laut, S.

Lee, P.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Lee, S.

Legras, R.

R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).
[CrossRef]

Leitgeb, R.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

Li, C.

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).
[CrossRef]

C.  Li, M.  Xia, Q.  Mu, B.  Jiang, L.  Xuan, Z.  Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
[CrossRef]

Li, D.

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).
[CrossRef]

Q.  Mu, Z.  Cao, D.  Li, L.  Hu, L.  Xuan, “Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007).
[CrossRef]

Q.  Mu, Z.  Cao, L.  Hu, D.  Li, L.  Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–8018 (2006).
[CrossRef]

Liang, J.

Lin, J. E.

J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.

Lopez-Gil, N.

R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).
[CrossRef]

Love, G. D.

Lucero, A. S.

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Major, J.

Major, J. V.

Manzanera, S.

Martin, J. A.

J. A.  Martin, A.  Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88, 356–360 (2009).
[CrossRef]

Meltzer, M.

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Miller, D.

Miller, D. T.

Mu, Q.

Myers, R.

Navani, M.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Norris, J. L.

Olivier, S. S.

Patolia, J.

H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
[CrossRef]

Poonja, S.

Porter, J.

J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.

Povazay, B.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

Prieto, P.

Prieto, P. M.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Purvis, A.

Qi, X.

Qi, Y.

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

Queener, H.

Racine, C. A.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Ratnam, K.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Restaino, S. R.

Rha, J.

Romero-Borja, F.

K.  Venkateswaran, A.  Roorda, F.  Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef]

A.  Roorda, F.  Romero-Borja, W.  Donnelly, H.  Queener, T.  Hebert, M.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef]

Roorda, A.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

J. A.  Martin, A.  Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88, 356–360 (2009).
[CrossRef]

J. I.  Wolfing, M.  Chung, J.  Carroll, A.  Roorda, D. R.  Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006).
[CrossRef]

Y.  Zhang, S.  Poonja, A.  Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
[CrossRef]

K.  Grieve, P.  Tiruveedhula, Y.  Zhang, A.  Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
[CrossRef]

K.  Venkateswaran, A.  Roorda, F.  Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef]

A.  Roorda, F.  Romero-Borja, W.  Donnelly, H.  Queener, T.  Hebert, M.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef]

A.  Roorda, D. R.  Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Sattmann, H.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Sharples, R.

Smaoui, N.

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Smith, G.

Song, H.

Soudry, S.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Sulai, Y.

Sundquist, S. M.

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Syed, R.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Thibos, L.

Thibos, L. N.

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef]

Thorn, K.

J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.

Tiruveedhula, P.

Unterhuber, A.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

B.  Hermann, E. J.  Fernandez, A.  Unterhuber, H.  Sattmann, A. F.  Fercher, W.  Drexler, P. M.  Prieto, P.  Artal, “Adaptive-optics ultrahigh-resolution optical coherence tomography,” Opt. Lett. 29, 2142–2144 (2004).
[CrossRef]

Venkateswaran, K.

K.  Venkateswaran, A.  Roorda, F.  Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef]

Veran, J. P.

Vick, A.

Vishweswaraiah, S.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Wang, B.

B.  Wang, K. J.  Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[CrossRef]

Wang, Q.

Werner, J. S.

Williams, D. R.

Wolfing, J. I.

J. I.  Wolfing, M.  Chung, J.  Carroll, A.  Roorda, D. R.  Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006).
[CrossRef]

Wong, L. J.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Xia, M.

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).
[CrossRef]

C.  Li, M.  Xia, Q.  Mu, B.  Jiang, L.  Xuan, Z.  Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
[CrossRef]

Xuan, L.

Yellott, J. I.

J. I.  Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vis. Res. 22, 1205–1210 (1982).
[CrossRef]

Yoon, G.

Zadrozny, A.

Zawadzki, R. J.

Zhang, Q.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

Zhang, Y.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

Y.  Zhang, S.  Poonja, A.  Roorda, “MEMS-based adaptive optics scanning laser ophthalmoscopy,” Opt. Lett. 31, 1268–1270 (2006).
[CrossRef]

K.  Grieve, P.  Tiruveedhula, Y.  Zhang, A.  Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
[CrossRef]

Y.  Zhang, J.  Rha, R.  Jonnal, D.  Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005).
[CrossRef]

Zhao, M.

Zhao, Y.

Appl. Opt.

Arch. Ophthalmol.

J. L.  Duncan, A.  Roorda, M.  Navani, S.  Vishweswaraiah, R.  Syed, S.  Soudry, K.  Ratnam, H. V.  Gudiseva, P.  Lee, T.  Gaasterland, R.  Ayyagari, “Identification of a novel mutation in the CDHR1 Gene in a family with recessive retinal degeneration,” Arch. Ophthalmol. 130, 1301–1308 (2012).
[CrossRef]

Biomed. Opt. Express

Exp. Eye Res.

J. A.  Martin, A.  Roorda, “Pulsatility of parafoveal capillary leukocytes,” Exp. Eye Res. 88, 356–360 (2009).
[CrossRef]

Investig. Ophthalmol. Vis. Sci.

J. L.  Duncan, K.  Ratnam, D. G.  Birch, S. M.  Sundquist, A. S.  Lucero, Y.  Zhang, M.  Meltzer, N.  Smaoui, A.  Roorda, “Abnormal cone structure in foveal schisis cavities in X-linked retinoschisis from mutations in exon 6 of the RS1 gene,” Investig. Ophthalmol. Vis. Sci. 52, 9614–9623 (2011).
[CrossRef]

J. Biomed. Opt.

C.  Li, M.  Xia, D.  Li, Q.  Mu, L.  Xuan, “High-resolution retinal imaging through open-loop adaptive optics,” J. Biomed. Opt. 15, 046009 (2010).
[CrossRef]

K.  Venkateswaran, A.  Roorda, F.  Romero-Borja, “Theoretical modeling and evaluation of the axial resolution of the adaptive optics scanning laser ophthalmoscope,” J. Biomed. Opt. 9, 132–138 (2004).
[CrossRef]

N.  Kong, C.  Li, M.  Xia, D.  Li, Y.  Qi, L.  Xuan, “Optimization of the open-loop liquid crystal adaptive optics retinal imaging system,” J. Biomed. Opt. 17, 026001 (2012).
[CrossRef]

J. Cataract. Refract. Surg.

R.  Legras, Y.  Benard, N.  Lopez-Gil, “Effect of coma and spherical aberration on depth-of-focus measured using adaptive optics and computationally blurred images,” J. Cataract. Refract. Surg. 38, 458–469 (2012).
[CrossRef]

J. Neurol.

J. M.  Gelfand, J. L.  Duncan, C. A.  Racine, L. A.  Gillum, C. T.  Chin, Y.  Zhang, Q.  Zhang, L. J.  Wong, A.  Roorda, A. J.  Green, “Heterogeneous patterns of tissue injury in NARP syndrome,” J. Neurol. 258, 440–448 (2011).
[CrossRef]

J. Opt. Soc. Am. A

Nature

A.  Roorda, D. R.  Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999).
[CrossRef]

Ophthalmology

J. I.  Wolfing, M.  Chung, J.  Carroll, A.  Roorda, D. R.  Williams, “High-resolution retinal imaging of cone-rod dystrophy,” Ophthalmology 113, 1014 (2006).
[CrossRef]

Opt. Express

A.  Roorda, F.  Romero-Borja, W.  Donnelly, H.  Queener, T.  Hebert, M.  Campbell, “Adaptive optics scanning laser ophthalmoscopy,” Opt. Express 10, 405–412 (2002).
[CrossRef]

D.  Miller, L.  Thibos, X.  Hong, “Requirements for segmented correctors for diffraction-limited performance in the human eye,” Opt. Express 13, 275–289 (2005).
[CrossRef]

K.  Grieve, P.  Tiruveedhula, Y.  Zhang, A.  Roorda, “Multi-wavelength imaging with the adaptive optics scanning laser ophthalmoscope,” Opt. Express 14, 12230–12242 (2006).
[CrossRef]

Y.  Zhang, J.  Rha, R.  Jonnal, D.  Miller, “Adaptive optics parallel spectral domain optical coherence tomography for imaging the living retina,” Opt. Express 13, 4792–4811 (2005).
[CrossRef]

Q.  Mu, Z.  Cao, D.  Li, L.  Hu, L.  Xuan, “Liquid Crystal based adaptive optics system to compensate both low and high order aberrations in a model eye,” Opt. Express 15, 1946–1953 (2007).
[CrossRef]

C.  Li, M.  Xia, Q.  Mu, B.  Jiang, L.  Xuan, Z.  Cao, “High-precision open-loop adaptive optics system based on LC-SLM,” Opt. Express 17, 10774–10781 (2009).
[CrossRef]

P.  Prieto, E.  Fernandez, S.  Manzanera, P.  Artal, “Adaptive optics with a programmable phase modulator: applications in the human eye,” Opt. Express 12, 4059–4071 (2004).
[CrossRef]

Q.  Mu, Z.  Cao, L.  Hu, D.  Li, L.  Xuan, “An adaptive optics imaging system based on a high-resolution liquid crystal on silicon device,” Opt. Express 14, 8013–8018 (2006).
[CrossRef]

R. J.  Zawadzki, S. M.  Jones, S. S.  Olivier, M.  Zhao, B. A.  Bower, J. A.  Izatt, S.  Choi, S.  Laut, J. S.  Werner, “Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging,” Opt. Express 13, 8532–8546 (2005).
[CrossRef]

Opt. Lett.

Optom. Vis. Sci.

L. N.  Thibos, A.  Bradley, “Use of liquid-crystal adaptive-optics to alter the refractive state of the eye,” Optom. Vis. Sci. 74, 581–587 (1997).
[CrossRef]

Publ. Astron. Soc. Pac.

H. W.  Babcock, “The possibility of compensating astronomical seeing,” Publ. Astron. Soc. Pac. 65, 229–236 (1953).
[CrossRef]

Surv. Ophthalmol.

B.  Wang, K. J.  Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006).
[CrossRef]

Vis. Res.

E. J.  Fernandez, B.  Povazay, B.  Hermann, A.  Unterhuber, H.  Sattmann, P. M.  Prieto, R.  Leitgeb, P.  Ahnelt, P.  Artal, W.  Drexler, “Three-dimensional adaptive optics ultrahigh-resolution optical coherence tomography using a liquid crystal spatial light modulator,” Vis. Res. 45, 3432–3444 (2005).
[CrossRef]

H. J.  Hofer, J.  Blaschke, J.  Patolia, D. E.  Koenig, “Fixation light hue bias revisited: implications for using adaptive optics to study color vision,” Vis. Res. 56, 49–56 (2012).
[CrossRef]

J. I.  Yellott, “Spectral analysis of spatial sampling by photoreceptors: topological disorder prevents aliasing,” Vis. Res. 22, 1205–1210 (1982).
[CrossRef]

Other

J.  Porter, J. E.  Lin, K.  Thorn, A.  Awwal, Adaptive Optics for Vision Science (Wiley, 2006), pp. 156–157.

Supplementary Material (1)

» Media 1: MOV (1324 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1.

Schematic of the single curved mirror AO ophthalmoscope. M1 is the curved mirror. L1 is an imaging lens. P is the focal point of the mirror. A polarization beam splitter (PBS) divides the light into two orthogonal polarization components, the S and P polarization components. The linearly polarized light whose direction is along the axis of the liquid crystal molecules will be used for correction and imaging. The light polarized orthogonally is received by the wavefront sensor for wavefront detection.

Fig. 2.
Fig. 2.

There are two sets of conjugate planes. One set is formed by the illumination source, the retina, and the CCD imaging planes. The other set is constituted by the pupil of the eye, the LC-SLM, and the wavefront sensor planes. (a) Commonly used 4F system. (b) Single-lens system. Both systems meet the conjugate relationships.

Fig. 3.
Fig. 3.

Calculated wavefront of (a) the sensor and (b) the corrector by ZEMAX. The difference of the RMS values between them is 0.0007λ, which is so little that under the minimum detection size of the wavefront sensor (1/100λ).

Fig. 4.
Fig. 4.

Schematic diagram of closed-loop optical configuration for measuring the response matrix. A point source is positioned at the imaging CCD and the light is propagated to the LC-SLM backward. The S polarization component is modulated and then it is turned into the P component by the half-wave plane (HWP). The P component can penetrate the PBS, and the unmodulated S component is abandoned. The quarter-wave plane (QWP) is carefully adjusted to make sure that the plane of polarization is rotated by 90° after the light traverses it twice. The P component becomes the S component on the way back and can be reflected to the wavefront sensor for measuring.

Fig. 5.
Fig. 5.

Spot diagrams of the optical configuration on the imaging CCD plane, with (a) a spherical mirror, (b) a parabolic mirror, and (c) a hyperbolic mirror with conic constant 1.07. The FOV is 1° on the retina. The circle in every field is the Airy disk radius. The bar in the left image is 200 μm and in the other two is 100 μm.

Fig. 6.
Fig. 6.

Wavefront of (a) the model eye and (b) the subject. The numbers on the bar represent the peak-to-valley (PV) wavefront error in wavelength (λ=808nm).

Fig. 7.
Fig. 7.

Three images are of the same location in the retina, about 3.5° from the foveal center. (a) Retina before the AO compensation. (b) Photoreceptors after the AO compensation. (c) Blood vessels after the AO compensation (Media 1).

Fig. 8.
Fig. 8.

Power spectra of the images with and without AO compensation are shown in (a) and (b), respectively.

Fig. 9.
Fig. 9.

Image registration of different fields. There is a 70 μm displacement on the retina between the two fields.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Iimage=0.5IpupilTlensR5LC,
Iimage,new=0.5IpupilTlensRmirrorRLC,

Metrics