Abstract

In this paper, we describe a new type of digital-to-analog converter (DAC) for optical wireless communication. Conversion occurs in the optical rather than the electrical domain. The overall intensity of the light transmitted by an array of light-emitting diodes (LEDs) is varied by changing the number of LEDs that are switched on. A number of different structures are described, and their compatibility with light dimming and overall energy efficiency are discussed. The linearity of the new DAC depends on the geometry of the system and on the variability in light output between individual LEDs.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Grubor, S. Randel, K. D. Langer, and J. W. Walewski, “Broadband information broadcasting using LED-based interior lighting,” J. Lightwave Technol. 26, 3883–3892 (2008).
    [CrossRef]
  2. A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).
  3. A. H. Azhar, T.-A. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in 2010 IEEE Globecom Workshops (GC’10), December 5–10, 2010 (IEEE, 2010), pp. 1052–1056.
  4. H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).
  5. J. Vucic, C. Kottke, S. Nerreter, K. Langer, and J. W. Walewski, “513  Mbit/s visible light communications link based on DMT-modulation of a white LED,” J. Lightwave Technol. 28, 3512–3518 (2010).
  6. K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Traffic light to vehicle visible light communication channel characterization,” Appl. Opt. 51, 6594–6605 (2012).
    [CrossRef]
  7. R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: automotive use case,” in Proceedings of 2010 IEEE Vehicular Networking Conference (VNC 2010), December 13–15, 2010 (IEEE, 2010), pp. 309–314.
  8. H. Swook, K. Jung-Hun, J. Soo-Yong, and P. Chang-Soo, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC 2010), September 19–23, 2010 (IEEE, 2010).
  9. K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett. 48, 228–230 (2012).
    [CrossRef]
  10. B. Bo, C. Gang, X. Zhengyuan, and F. Yangyu, “Visible light positioning based on LED traffic light and photodiode,” in 2011 IEEE Vehicular Technology Conference, September 5–8, 2011 (IEEE, 2011).
  11. J. Armstrong, “OFDM for optical communications [Invited Tutorial],” J. Lightwave Technol. 27, 189–204 (2009).
    [CrossRef]
  12. R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3, 620–628 (2011).
    [CrossRef]
  13. R. Lenk and C. Lenk, Practical Lighting Design with LEDs (Wiley, 2011).
  14. Cree, “LED Arrays Arrive: Application Note 67,” (2011).
  15. T. Fath, C. Heller, and H. Haas, “Optical wireless transmitter employing discrete power level stepping,” J. Lightwave Technol. 31, 1734–1743 (2013).
    [CrossRef]
  16. M. Papuchon, C. Puech, and A. Schnapper, “4 bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16, 142–144 (1980).
    [CrossRef]
  17. Y. Ehrlichman, O. Amrani, and S. Ruschin, “Improved digital-to-analog conversion using multi-electrode Mach–Zehnder interferometer,” J. Lightwave Technol. 26, 3567–3575 (2008).
    [CrossRef]
  18. P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).
  19. A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
    [CrossRef]
  20. M. F. Lewis and C. L. West, “8 bit optical D/A convertor,” Electron. Lett. 25, 200–202 (1989).
    [CrossRef]
  21. G. Manganaro, Advanced Data Converters (Cambridge University, 2011).
  22. W. Kester, Basic DAC Architectures 1: String DAC’s and Thermometer (Fully Decoded) DACs (Analog Devices, 2008).
  23. C.-H. Hung, Y.-W. Bai, and R.-Y. Tsai, “Uniform utilization of each LED in an LED array,” in 2011 IEEE 15th International Symposium on Consumer Electronics, June14–17, 2011 (IEEE, 2011), pp. 542–546.
  24. S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).
  25. T. Borogovac, M. Rahaim, M. Tuganbayeva, and T. Little, “‘Lights off’ visible light communications,” in 2011 IEEE Globecom Workshops (GC’11) (IEEE, 2011).
  26. W. Kester, The Data Conversion Handbook (Analog Devices, 2005).
  27. J. R. Naylor, “Testing digital/analog and analog/digital converters,” IEEE Trans. Circuits Syst. CAS-25, 526–538 (1978).

2013 (1)

2012 (4)

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Traffic light to vehicle visible light communication channel characterization,” Appl. Opt. 51, 6594–6605 (2012).
[CrossRef]

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett. 48, 228–230 (2012).
[CrossRef]

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).

2011 (3)

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3, 620–628 (2011).
[CrossRef]

2010 (1)

2009 (1)

2008 (2)

2005 (1)

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

1989 (1)

M. F. Lewis and C. L. West, “8 bit optical D/A convertor,” Electron. Lett. 25, 200–202 (1989).
[CrossRef]

1980 (1)

M. Papuchon, C. Puech, and A. Schnapper, “4 bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16, 142–144 (1980).
[CrossRef]

1978 (1)

J. R. Naylor, “Testing digital/analog and analog/digital converters,” IEEE Trans. Circuits Syst. CAS-25, 526–538 (1978).

Amrani, O.

Armstrong, J.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett. 48, 228–230 (2012).
[CrossRef]

J. Armstrong, “OFDM for optical communications [Invited Tutorial],” J. Lightwave Technol. 27, 189–204 (2009).
[CrossRef]

Azhar, A. H.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in 2010 IEEE Globecom Workshops (GC’10), December 5–10, 2010 (IEEE, 2010), pp. 1052–1056.

Bai, Y.-W.

C.-H. Hung, Y.-W. Bai, and R.-Y. Tsai, “Uniform utilization of each LED in an LED array,” in 2011 IEEE 15th International Symposium on Consumer Electronics, June14–17, 2011 (IEEE, 2011), pp. 542–546.

Berdaguer, P.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Bo, B.

B. Bo, C. Gang, X. Zhengyuan, and F. Yangyu, “Visible light positioning based on LED traffic light and photodiode,” in 2011 IEEE Vehicular Technology Conference, September 5–8, 2011 (IEEE, 2011).

Borogovac, T.

T. Borogovac, M. Rahaim, M. Tuganbayeva, and T. Little, “‘Lights off’ visible light communications,” in 2011 IEEE Globecom Workshops (GC’11) (IEEE, 2011).

Chang-Soo, P.

H. Swook, K. Jung-Hun, J. Soo-Yong, and P. Chang-Soo, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC 2010), September 19–23, 2010 (IEEE, 2010).

Chen, G.

Chen, Y. K.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Choudhury, P.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

Ciaramella, E.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

Corsini, R.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

Cossu, G.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

Cui, K.

Dupuy, J. Y.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Ehrlichman, Y.

Elgala, H.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3, 620–628 (2011).
[CrossRef]

Fath, T.

Gang, C.

B. Bo, C. Gang, X. Zhengyuan, and F. Yangyu, “Visible light positioning based on LED traffic light and photodiode,” in 2011 IEEE Vehicular Technology Conference, September 5–8, 2011 (IEEE, 2011).

Godin, J.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Gopalakrishnan, P.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: automotive use case,” in Proceedings of 2010 IEEE Vehicular Networking Conference (VNC 2010), December 13–15, 2010 (IEEE, 2010), pp. 309–314.

Grubor, J.

Haas, H.

Heller, C.

Hung, C.-H.

C.-H. Hung, Y.-W. Bai, and R.-Y. Tsai, “Uniform utilization of each LED in an LED array,” in 2011 IEEE 15th International Symposium on Consumer Electronics, June14–17, 2011 (IEEE, 2011), pp. 542–546.

Jorge, F.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Jung-Hun, K.

H. Swook, K. Jung-Hun, J. Soo-Yong, and P. Chang-Soo, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC 2010), September 19–23, 2010 (IEEE, 2010).

Kester, W.

W. Kester, Basic DAC Architectures 1: String DAC’s and Thermometer (Fully Decoded) DACs (Analog Devices, 2008).

W. Kester, The Data Conversion Handbook (Analog Devices, 2005).

Khalid, A. M.

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

Koc, U. V.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Konczykowska, A.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Kondratko, P. K.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Kottke, C.

Langer, K.

Langer, K. D.

Lee, J.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Lenk, C.

R. Lenk and C. Lenk, Practical Lighting Design with LEDs (Wiley, 2011).

Lenk, R.

R. Lenk and C. Lenk, Practical Lighting Design with LEDs (Wiley, 2011).

Leven, A.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Lewis, M. F.

M. F. Lewis and C. L. West, “8 bit optical D/A convertor,” Electron. Lett. 25, 200–202 (1989).
[CrossRef]

Lim, S.-K.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).

Lin, J.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Little, T.

T. Borogovac, M. Rahaim, M. Tuganbayeva, and T. Little, “‘Lights off’ visible light communications,” in 2011 IEEE Globecom Workshops (GC’11) (IEEE, 2011).

Manganaro, G.

G. Manganaro, Advanced Data Converters (Cambridge University, 2011).

Mesleh, R.

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).

R. Mesleh, H. Elgala, and H. Haas, “On the performance of different OFDM based optical wireless communication systems,” J. Opt. Commun. Netw. 3, 620–628 (2011).
[CrossRef]

Moulu, J.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Naylor, J. R.

J. R. Naylor, “Testing digital/analog and analog/digital converters,” IEEE Trans. Circuits Syst. CAS-25, 526–538 (1978).

Nerreter, S.

Nodjiadjim, V.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

O’Brien, D.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in 2010 IEEE Globecom Workshops (GC’10), December 5–10, 2010 (IEEE, 2010), pp. 1052–1056.

Panta, K.

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett. 48, 228–230 (2012).
[CrossRef]

Papuchon, M.

M. Papuchon, C. Puech, and A. Schnapper, “4 bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16, 142–144 (1980).
[CrossRef]

Puech, C.

M. Papuchon, C. Puech, and A. Schnapper, “4 bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16, 142–144 (1980).
[CrossRef]

Rahaim, M.

T. Borogovac, M. Rahaim, M. Tuganbayeva, and T. Little, “‘Lights off’ visible light communications,” in 2011 IEEE Globecom Workshops (GC’11) (IEEE, 2011).

Rajagopal, S.

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).

Randel, S.

Rathi, S.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: automotive use case,” in Proceedings of 2010 IEEE Vehicular Networking Conference (VNC 2010), December 13–15, 2010 (IEEE, 2010), pp. 309–314.

Riet, M.

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

Roberts, R.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: automotive use case,” in Proceedings of 2010 IEEE Vehicular Networking Conference (VNC 2010), December 13–15, 2010 (IEEE, 2010), pp. 309–314.

Roberts, R. D.

K. Cui, G. Chen, Z. Xu, and R. D. Roberts, “Traffic light to vehicle visible light communication channel characterization,” Appl. Opt. 51, 6594–6605 (2012).
[CrossRef]

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).

Ruschin, S.

Schnapper, A.

M. Papuchon, C. Puech, and A. Schnapper, “4 bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16, 142–144 (1980).
[CrossRef]

Soo-Yong, J.

H. Swook, K. Jung-Hun, J. Soo-Yong, and P. Chang-Soo, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC 2010), September 19–23, 2010 (IEEE, 2010).

Swook, H.

H. Swook, K. Jung-Hun, J. Soo-Yong, and P. Chang-Soo, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC 2010), September 19–23, 2010 (IEEE, 2010).

Tran, T.-A.

A. H. Azhar, T.-A. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in 2010 IEEE Globecom Workshops (GC’10), December 5–10, 2010 (IEEE, 2010), pp. 1052–1056.

Tsai, R.-Y.

C.-H. Hung, Y.-W. Bai, and R.-Y. Tsai, “Uniform utilization of each LED in an LED array,” in 2011 IEEE 15th International Symposium on Consumer Electronics, June14–17, 2011 (IEEE, 2011), pp. 542–546.

Tu, K. Y.

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

Tuganbayeva, M.

T. Borogovac, M. Rahaim, M. Tuganbayeva, and T. Little, “‘Lights off’ visible light communications,” in 2011 IEEE Globecom Workshops (GC’11) (IEEE, 2011).

Vucic, J.

Walewski, J. W.

West, C. L.

M. F. Lewis and C. L. West, “8 bit optical D/A convertor,” Electron. Lett. 25, 200–202 (1989).
[CrossRef]

Xu, Z.

Yangyu, F.

B. Bo, C. Gang, X. Zhengyuan, and F. Yangyu, “Visible light positioning based on LED traffic light and photodiode,” in 2011 IEEE Vehicular Technology Conference, September 5–8, 2011 (IEEE, 2011).

Zhengyuan, X.

B. Bo, C. Gang, X. Zhengyuan, and F. Yangyu, “Visible light positioning based on LED traffic light and photodiode,” in 2011 IEEE Vehicular Technology Conference, September 5–8, 2011 (IEEE, 2011).

Appl. Opt. (1)

Electron. Lett. (4)

A. Konczykowska, J. Y. Dupuy, F. Jorge, M. Riet, J. Moulu, V. Nodjiadjim, P. Berdaguer, and J. Godin, “42 GBd 3 bit power-DAC for optical communications with advanced modulation formats in InP DHBT,” Electron. Lett. 47, 389–391 (2011).
[CrossRef]

M. F. Lewis and C. L. West, “8 bit optical D/A convertor,” Electron. Lett. 25, 200–202 (1989).
[CrossRef]

K. Panta and J. Armstrong, “Indoor localisation using white LEDs,” Electron. Lett. 48, 228–230 (2012).
[CrossRef]

M. Papuchon, C. Puech, and A. Schnapper, “4 bits digitally driven integrated amplitude modulator for data processing,” Electron. Lett. 16, 142–144 (1980).
[CrossRef]

IEEE Commun. Mag. (2)

S. Rajagopal, R. D. Roberts, and S.-K. Lim, “IEEE 802.15.7 visible light communication: modulation schemes and dimming support,” IEEE Commun. Mag. 50(3), 72–82 (2012).

H. Elgala, R. Mesleh, and H. Haas, “Indoor optical wireless communication: potential and state-of-the-art,” IEEE Commun. Mag. 49(9), 56–62 (2011).

IEEE Photon. J. (1)

A. M. Khalid, G. Cossu, R. Corsini, P. Choudhury, and E. Ciaramella, “1  Gb/s transmission over a phosphorescent white LED by using rate-adaptive discrete multitone modulation,” IEEE Photon. J. 4, 1465–1473 (2012).

IEEE Photon. Technol. Lett. (1)

P. K. Kondratko, A. Leven, Y. K. Chen, J. Lin, U. V. Koc, K. Y. Tu, and J. Lee, “12.5 GHz optically sampled interference-based photonic arbitrary waveform generator,” IEEE Photon. Technol. Lett. 17, 2727–2729 (2005).

IEEE Trans. Circuits Syst. (1)

J. R. Naylor, “Testing digital/analog and analog/digital converters,” IEEE Trans. Circuits Syst. CAS-25, 526–538 (1978).

J. Lightwave Technol. (5)

J. Opt. Commun. Netw. (1)

Other (11)

T. Borogovac, M. Rahaim, M. Tuganbayeva, and T. Little, “‘Lights off’ visible light communications,” in 2011 IEEE Globecom Workshops (GC’11) (IEEE, 2011).

W. Kester, The Data Conversion Handbook (Analog Devices, 2005).

B. Bo, C. Gang, X. Zhengyuan, and F. Yangyu, “Visible light positioning based on LED traffic light and photodiode,” in 2011 IEEE Vehicular Technology Conference, September 5–8, 2011 (IEEE, 2011).

A. H. Azhar, T.-A. Tran, and D. O’Brien, “Demonstration of high-speed data transmission using MIMO-OFDM visible light communications,” in 2010 IEEE Globecom Workshops (GC’10), December 5–10, 2010 (IEEE, 2010), pp. 1052–1056.

R. Roberts, P. Gopalakrishnan, and S. Rathi, “Visible light positioning: automotive use case,” in Proceedings of 2010 IEEE Vehicular Networking Conference (VNC 2010), December 13–15, 2010 (IEEE, 2010), pp. 309–314.

H. Swook, K. Jung-Hun, J. Soo-Yong, and P. Chang-Soo, “White LED ceiling lights positioning systems for optical wireless indoor applications,” in 2010 36th European Conference and Exhibition on Optical Communication (ECOC 2010), September 19–23, 2010 (IEEE, 2010).

G. Manganaro, Advanced Data Converters (Cambridge University, 2011).

W. Kester, Basic DAC Architectures 1: String DAC’s and Thermometer (Fully Decoded) DACs (Analog Devices, 2008).

C.-H. Hung, Y.-W. Bai, and R.-Y. Tsai, “Uniform utilization of each LED in an LED array,” in 2011 IEEE 15th International Symposium on Consumer Electronics, June14–17, 2011 (IEEE, 2011), pp. 542–546.

R. Lenk and C. Lenk, Practical Lighting Design with LEDs (Wiley, 2011).

Cree, “LED Arrays Arrive: Application Note 67,” (2011).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Block diagram of a conventional visible light transmitter using an electrical digital-to-analog converter (DAC).

Fig. 2.
Fig. 2.

Structure of transmitter using optical domain digital-to-analog conversion using an LED array.

Fig. 3.
Fig. 3.

Array of individually switchable LEDs.

Fig. 4.
Fig. 4.

Array consisting of a number of parallel strings of LEDs where each string, but not each LED, can be separately switched.

Fig. 5.
Fig. 5.

Structure of transmitter using a hybrid optical/electrical DAC.

Fig. 6.
Fig. 6.

Structure of the new hybrid optical/electrical DAC.

Metrics