Abstract

This paper presents an experimental demonstration of a visible light communications link with an light emitting diode and a low-bandwidth organic photodetector as transmitter and receiver, respectively, that achieves sub 4Mbits/s speeds. An artificial neural network (ANN) equalizer is required in order to achieve such high data rates because of the influence of intersymbol interference. The digital modulation formats tested in this paper are nonreturn-to-zero on–off keying (OOK), and fourth-order pulse position modulation (4-PPM). Without equalization, data rates of 200 and 300kbits/s can be achieved for 4-PPM and OOK, respectively. With ANN equalization, data rates of 2.8 and 3.75Mbits/s can be achieved for the first time for OOK and 4-PPM, respectively.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Cossu, A. M. Khalid, P. Choudhury, R. Corsini, and E. Ciaramella, “3.4  Gbit/s visible optical wireless transmission based on RGB LED,” Opt. Express 20, B501–B506 (2012).
    [CrossRef]
  2. J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
    [CrossRef]
  3. M. Punke, S. Valouch, S. W. Kettlitz, M. Gerken, and U. Lemmer, “Optical data link employing organic light-emitting diodes and organic photodiodes as optoelectronic components,” J. Lightwave Technol. 26, 816–823 (2008).
    [CrossRef]
  4. P. A. Haigh, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, and I. Papakonstantinou, “Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications,” J. Lightwave Technol. 30, 3081–3088 (2012).
    [CrossRef]
  5. W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
    [CrossRef]
  6. S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
    [CrossRef]
  7. C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11, 15–26 (2001).
    [CrossRef]
  8. F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
    [CrossRef]
  9. C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
    [CrossRef]
  10. J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
    [CrossRef]
  11. J. G. Proakis, Digital Communications (McGraw-Hill, 2004).
  12. Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press, 2012).
  13. S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization,” IET Optoelectron. 3, 169–179 (2009).
    [CrossRef]
  14. K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
    [CrossRef]
  15. K. Burse, R. N. Yadav, and S. C. Shrivastava, “Channel equalization using neural networks: a review,” IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. 40, 352–357 (2010).
    [CrossRef]
  16. L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Trans. Neural Netw. 17, 1116–1125 (2006).
    [CrossRef]
  17. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice-Hall, 1998).

2013 (1)

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

2012 (2)

2010 (2)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[CrossRef]

K. Burse, R. N. Yadav, and S. C. Shrivastava, “Channel equalization using neural networks: a review,” IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. 40, 352–357 (2010).
[CrossRef]

2009 (3)

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization,” IET Optoelectron. 3, 169–179 (2009).
[CrossRef]

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

2008 (1)

2006 (2)

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Trans. Neural Netw. 17, 1116–1125 (2006).
[CrossRef]

2001 (1)

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11, 15–26 (2001).
[CrossRef]

1997 (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

1989 (1)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[CrossRef]

Angelova, M.

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization,” IET Optoelectron. 3, 169–179 (2009).
[CrossRef]

Arca, F.

Barry, J. R.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Behera, L.

L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Trans. Neural Netw. 17, 1116–1125 (2006).
[CrossRef]

Brabec, C. J.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11, 15–26 (2001).
[CrossRef]

Burse, K.

K. Burse, R. N. Yadav, and S. C. Shrivastava, “Channel equalization using neural networks: a review,” IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. 40, 352–357 (2010).
[CrossRef]

Chao, Y.-C.

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

Chen, E.-C.

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

Choudhury, P.

Ciaramella, E.

Clark, J.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[CrossRef]

Corsini, R.

Cossu, G.

Furst, J.

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Gaudiana, R.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Gerken, M.

Ghassemlooy, Z.

P. A. Haigh, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, and I. Papakonstantinou, “Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications,” J. Lightwave Technol. 30, 3081–3088 (2012).
[CrossRef]

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization,” IET Optoelectron. 3, 169–179 (2009).
[CrossRef]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press, 2012).

Haigh, P. A.

Hayden, O.

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

P. A. Haigh, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, and I. Papakonstantinou, “Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications,” J. Lightwave Technol. 30, 3081–3088 (2012).
[CrossRef]

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Haykin, S.

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice-Hall, 1998).

Heeger, A. J.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Hornik, K.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[CrossRef]

Hsu, C.-S.

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

Hummelen, J. C.

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11, 15–26 (2001).
[CrossRef]

Hwang, I.-W.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Kahn, J. M.

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Kern, J.

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Kettlitz, S. W.

Khalid, A. M.

Kumar, S.

L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Trans. Neural Netw. 17, 1116–1125 (2006).
[CrossRef]

Lanzani, G.

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[CrossRef]

Le Minh, H.

Lemmer, U.

Lugli, P.

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Meng, H.-F.

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

Moses, D.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Papakonstantinou, I.

Patnaik, A.

L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Trans. Neural Netw. 17, 1116–1125 (2006).
[CrossRef]

Popoola, W.

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press, 2012).

Proakis, J. G.

J. G. Proakis, Digital Communications (McGraw-Hill, 2004).

Punke, M.

Rajbhandari, S.

P. A. Haigh, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, and I. Papakonstantinou, “Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications,” J. Lightwave Technol. 30, 3081–3088 (2012).
[CrossRef]

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization,” IET Optoelectron. 3, 169–179 (2009).
[CrossRef]

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press, 2012).

Rauh, J.

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

Sariciftci, N. S.

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11, 15–26 (2001).
[CrossRef]

Shrivastava, S. C.

K. Burse, R. N. Yadav, and S. C. Shrivastava, “Channel equalization using neural networks: a review,” IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. 40, 352–357 (2010).
[CrossRef]

Soci, C.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Sramek, M.

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

Sterzl, T.

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Stinchcombe, M.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[CrossRef]

Tedde, S. F.

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

P. A. Haigh, Z. Ghassemlooy, H. Le Minh, S. Rajbhandari, F. Arca, S. F. Tedde, O. Hayden, and I. Papakonstantinou, “Exploiting equalization techniques for improving data rates in organic optoelectronic devices for visible light communications,” J. Lightwave Technol. 30, 3081–3088 (2012).
[CrossRef]

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Tsai, W.-W.

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

Valouch, S.

Waller, D.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

White, H.

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[CrossRef]

Yadav, R. N.

K. Burse, R. N. Yadav, and S. C. Shrivastava, “Channel equalization using neural networks: a review,” IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. 40, 352–357 (2010).
[CrossRef]

Yang, C.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Zan, H.-W.

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

Zhu, Z.

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Adv. Funct. Mater. (1)

C. J. Brabec, N. S. Sariciftci, and J. C. Hummelen, “Plastic solar cells,” Adv. Funct. Mater. 11, 15–26 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

W.-W. Tsai, Y.-C. Chao, E.-C. Chen, H.-W. Zan, H.-F. Meng, and C.-S. Hsu, “Increasing organic vertical carrier mobility for the application of high speed bilayered organic photodetector,” Appl. Phys. Lett. 95, 213308 (2009).
[CrossRef]

IEEE Trans. Neural Netw. (1)

L. Behera, S. Kumar, and A. Patnaik, “On adaptive learning rate that guarantees convergence in feedforward networks,” IEEE Trans. Neural Netw. 17, 1116–1125 (2006).
[CrossRef]

IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. (1)

K. Burse, R. N. Yadav, and S. C. Shrivastava, “Channel equalization using neural networks: a review,” IEEE Trans. Syst. Man. Cybernet. Part C Appl. Rev. 40, 352–357 (2010).
[CrossRef]

IET Optoelectron. (1)

S. Rajbhandari, Z. Ghassemlooy, and M. Angelova, “Bit error performance of diffuse indoor optical wireless channel pulse position modulation system employing artificial neural networks for channel equalization,” IET Optoelectron. 3, 169–179 (2009).
[CrossRef]

J. Lightwave Technol. (2)

Nano Lett. (1)

S. F. Tedde, J. Kern, T. Sterzl, J. Furst, P. Lugli, and O. Hayden, “Fully spray coated organic photodiodes,” Nano Lett. 9, 980–983 (2009).
[CrossRef]

Nat. Photonics (1)

J. Clark and G. Lanzani, “Organic photonics for communications,” Nat. Photonics 4, 438–446 (2010).
[CrossRef]

Neural Netw. (1)

K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward networks are universal approximators,” Neural Netw. 2, 359–366 (1989).
[CrossRef]

Opt. Express (1)

Proc. IEEE (1)

J. M. Kahn and J. R. Barry, “Wireless infrared communications,” Proc. IEEE 85, 265–298 (1997).
[CrossRef]

Proc. SPIE (1)

C. Soci, I.-W. Hwang, C. Yang, D. Moses, Z. Zhu, D. Waller, R. Gaudiana, C. J. Brabec, and A. J. Heeger, “Charge carrier photogeneration and transport properties of a novel low-bandgap conjugated polymer for organic photovoltaics,” Proc. SPIE 6334, 63340D (2006).
[CrossRef]

Sci. Rep. (1)

F. Arca, S. F. Tedde, M. Sramek, J. Rauh, P. Lugli, and O. Hayden, “Interface trap states in organic photodiodes,” Sci. Rep. 3, 1324 (2013).
[CrossRef]

Other (3)

S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd ed. (Prentice-Hall, 1998).

J. G. Proakis, Digital Communications (McGraw-Hill, 2004).

Z. Ghassemlooy, W. Popoola, and S. Rajbhandari, Optical Wireless Communications: System and Channel Modelling (CRC Press, 2012).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1.

Bottom view photograph of the OPD under test with spatial characteristics also noted.

Fig. 2.
Fig. 2.

Responsivity curves of the OPD under test and a generic ThorLabs PDA36A Si photodetector.

Fig. 3.
Fig. 3.

Schematic system block diagram. TIA: transimpedance amplifier; VOLED: LED bias voltage; VPD: OPD bias voltage; High Z: high impedance.

Fig. 4.
Fig. 4.

OPD BWs for four light densities, varying from 10 to 300μW·cm2, corresponding to BWs ranging between 56 and 160 kHz, giving an 100kHz range.

Fig. 5.
Fig. 5.

BER performance for OOK and 4-PPM with and without ANN equalization.

Fig. 6.
Fig. 6.

BER performance of 4-PPM across the system with varying light density. In each case, over 1Mbit/s can be supported.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

h(0)=Ad2R0(θ)cos(φ),
R0(θ)=m+12πcos(θ)m,
PPPMPOOK=2Llog2L,
BWLPPM=LRblog2L,
y=f(b+iwixi),
E(n)=y(n)d(n)2,
wij(n+1)=wij(n)ηE(n)wij(n).

Metrics