Abstract

We show that superoscillating light fields, created using the method of optical eigenmodes, enable more efficient multiphoton-mediated cell transfection. Chinese hamster ovary cells are transfected with a plasmid and exhibit expression of DsRed-Mito in the mitochondria. We demonstrate an efficiency improvement of 35% compared to the diffraction-limited spot. This opens up new vistas for nanoscale localized cell transfection.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009).
    [CrossRef]
  2. M. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
    [CrossRef]
  3. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
    [CrossRef]
  4. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
    [CrossRef]
  5. E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
    [CrossRef]
  6. M. Pospiech, M. Emons, K. Kuetemeyer, A. Heisterkamp, and U. Morgner, “Superresolved femtosecond laser nanosurgery of cells,” Biomed. Opt. Express 2, 264–271 (2011).
    [CrossRef]
  7. A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
    [CrossRef]
  8. A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
    [CrossRef]
  9. U. K. Tirlapur and K. Konig, “Targeted tranfection by femtosecond laser,” Nature 418, 290–291 (2002).
    [CrossRef]
  10. D. J. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express 14, 7125–7133 (2006).
    [CrossRef]
  11. M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes: exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
    [CrossRef]
  12. J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
    [CrossRef]
  13. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom of an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000).
    [CrossRef]
  14. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
    [CrossRef]
  15. E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
    [CrossRef]
  16. S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
    [CrossRef]
  17. R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
    [CrossRef]
  18. G. Cumming, F. Fidler, and D. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007).
    [CrossRef]
  19. F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
    [CrossRef]
  20. K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
    [CrossRef]
  21. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
    [CrossRef]
  22. G. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical trapping,” in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), pp. 139–168.
  23. M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci. 3, 71–86 (1991).
    [CrossRef]

2013

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

2012

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

2011

M. Pospiech, M. Emons, K. Kuetemeyer, A. Heisterkamp, and U. Morgner, “Superresolved femtosecond laser nanosurgery of cells,” Biomed. Opt. Express 2, 264–271 (2011).
[CrossRef]

S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
[CrossRef]

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes: exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

2009

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009).
[CrossRef]

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

2007

R. Di Leonardo, F. Ianni, and G. Ruocco, “Computer generation of optimal holograms for optical trap arrays,” Opt. Express 15, 1913–1922 (2007).
[CrossRef]

G. Cumming, F. Fidler, and D. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007).
[CrossRef]

2006

D. J. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express 14, 7125–7133 (2006).
[CrossRef]

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

2005

M. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[CrossRef]

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

2002

U. K. Tirlapur and K. Konig, “Targeted tranfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

2000

1991

M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci. 3, 71–86 (1991).
[CrossRef]

1959

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Agate, B.

Akbulut, D.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Antkowiak, M.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

Arlt, J.

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

Bates, M.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Baumgartl, J.

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
[CrossRef]

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes: exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
[CrossRef]

Bertolotti, J.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Betzig, E.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Bonifacino, J. S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Brown, C.

Burbach, J. P. H.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

Chad, J. E.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Chavez-Cerda, S.

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

Courtial, J.

G. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical trapping,” in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), pp. 139–168.

Cumming, G.

G. Cumming, F. Fidler, and D. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007).
[CrossRef]

Davidson, M. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Dennis, M. R.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Dholakia, K.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
[CrossRef]

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes: exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
[CrossRef]

D. J. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express 14, 7125–7133 (2006).
[CrossRef]

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

Di Leonardo, R.

Egner, A.

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009).
[CrossRef]

Emons, M.

Fidler, F.

G. Cumming, F. Fidler, and D. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007).
[CrossRef]

Fischer, P.

Garces-Chavez, V.

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

Gunn-Moore, F.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

D. J. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express 14, 7125–7133 (2006).
[CrossRef]

Gustafsson, M.

M. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[CrossRef]

Heisterkamp, A.

Hell, S. W.

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009).
[CrossRef]

Hess, H. F.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Hüttman, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Ianni, F.

Jacobs, F. M. J.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

Konig, K.

U. K. Tirlapur and K. Konig, “Targeted tranfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Kosmeier, S.

S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes: exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
[CrossRef]

Kuetemeyer, K.

Lagendijk, A.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Leonardo, R. D.

G. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical trapping,” in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), pp. 139–168.

Lindberg, J.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Lindwasser, O. W.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Lippincott-Schwartz, J.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Mazilu, M.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
[CrossRef]

M. Mazilu, J. Baumgartl, S. Kosmeier, and K. Dholakia, “Optical eigenmodes: exploiting the quadratic nature of the energy flux and of scattering interactions,” Opt. Express 19, 933–945 (2011).
[CrossRef]

Metzger, N. K.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

Miller, D. A. B.

Morgner, U.

Mosk, A. P.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Noack, J.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Olenych, S.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Paltauf, G.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Patterson, G. H.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Pentland, A.

M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci. 3, 71–86 (1991).
[CrossRef]

Piestun, R.

Pospiech, M.

Richards, B.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Riches, A.

Rogers, E. T. F.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

Roy, T.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Rudhall, A. P.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

Ruocco, G.

Rust, M. J.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Savo, S.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Schmidt, R.

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009).
[CrossRef]

Sibbett, W.

Smidt, M. P.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

Sougrat, R.

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Spalding, G.

G. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical trapping,” in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), pp. 139–168.

Stevenson, D. J.

Sul, H. S.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

Tirlapur, U. K.

U. K. Tirlapur and K. Konig, “Targeted tranfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Tsampoula, X.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

D. J. Stevenson, B. Agate, X. Tsampoula, P. Fischer, C. Brown, W. Sibbett, A. Riches, F. Gunn-Moore, and K. Dholakia, “Femtosecond optical transfection of cells: viability and efficiency,” Opt. Express 14, 7125–7133 (2006).
[CrossRef]

Turk, M.

M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci. 3, 71–86 (1991).
[CrossRef]

van der Linden, A. J. A.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

van Putten, E. G.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Vaux, D.

G. Cumming, F. Fidler, and D. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007).
[CrossRef]

Vogel, A.

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Volke-Sepulveda, K.

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

von Oerthel, L.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

Vos, W. L.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Wang, Y.

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

Wolf, E.

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Zheludev, N. I.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

Zhuang, X.

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Appl. Phys. B

A. Vogel, J. Noack, G. Hüttman, and G. Paltauf, “Mechanisms of femtosecond laser nanosurgery of cells and tissues,” Appl. Phys. B 81, 1015–1047 (2005).
[CrossRef]

Appl. Phys. Lett.

E. T. F. Rogers, S. Savo, J. Lindberg, T. Roy, M. R. Dennis, and N. I. Zheludev, “Super-oscillatory optical needle,” Appl. Phys. Lett. 102, 031108 (2013).
[CrossRef]

J. Baumgartl, S. Kosmeier, M. Mazilu, E. T. F. Rogers, N. I. Zheludev, and K. Dholakia, “Far field subwavelength focusing using optical eigenmodes,” Appl. Phys. Lett. 98, 181109 (2011).
[CrossRef]

Biomed. Opt. Express

Development

F. M. J. Jacobs, A. J. A. van der Linden, Y. Wang, L. von Oerthel, H. S. Sul, J. P. H. Burbach, and M. P. Smidt, “Identification of Dlk1, Ptpru, and Klhl1 as novel Nurr1 target genes in meso-diencephalic dopamine neurons,” Development 136, 2363–2373 (2009).
[CrossRef]

J. Cell Biol.

G. Cumming, F. Fidler, and D. Vaux, “Error bars in experimental biology,” J. Cell Biol. 177, 7–11 (2007).
[CrossRef]

J. Cogn. Neurosci.

M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci. 3, 71–86 (1991).
[CrossRef]

J. Opt.

S. Kosmeier, M. Mazilu, J. Baumgartl, and K. Dholakia, “Enhanced two-point resolution using optical eigenmode optimized pupil functions,” J. Opt. 13, 105707 (2011).
[CrossRef]

J. Opt. B

K. Volke-Sepulveda, V. Garces-Chavez, S. Chavez-Cerda, J. Arlt, and K. Dholakia, “Orbital angular momentum of a high-order bessel light beam,” J. Opt. B 4, S82–S89 (2002).
[CrossRef]

J. Opt. Soc. Am. A

Nat. Mater.

E. T. F. Rogers, J. Lindberg, T. Roy, S. Savo, J. E. Chad, M. R. Dennis, and N. I. Zheludev, “A super-oscillatory lens optical microscope for subwavelength imaging,” Nat. Mater. 11, 432–435 (2012).
[CrossRef]

Nat. Methods

M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3, 793–796 (2006).
[CrossRef]

Nat. Photonics

S. W. Hell, R. Schmidt, and A. Egner, “Diffraction-unlimited three-dimensional optical nanoscopy with opposing lenses,” Nat. Photonics 3, 381–387 (2009).
[CrossRef]

Nature

U. K. Tirlapur and K. Konig, “Targeted tranfection by femtosecond laser,” Nature 418, 290–291 (2002).
[CrossRef]

Opt. Express

Phys. Rev. Lett.

E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, and A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011).
[CrossRef]

Proc. Natl. Acad. Sci. USA

M. Gustafsson, “Nonlinear structured-illumination microscopy: wide-field fluorescence imaging with theoretically unlimited resolution,” Proc. Natl. Acad. Sci. USA 102, 13081–13086 (2005).
[CrossRef]

Proc. R. Soc. London Ser. A

B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Sci. Rep.

A. P. Rudhall, M. Antkowiak, X. Tsampoula, M. Mazilu, N. K. Metzger, F. Gunn-Moore, and K. Dholakia, “Exploring the ultrashort pulse laser parameter space for membrane permeabilisation in mammalian cells,” Sci. Rep. 2, 858 (2012).
[CrossRef]

Science

E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006).
[CrossRef]

Other

G. Spalding, J. Courtial, and R. D. Leonardo, “Holographic optical trapping,” in Structured Light and its Applications: An Introduction to Phase-Structured Beams and Nanoscale Optical Forces (Elsevier, 2008), pp. 139–168.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

Contrast ratio ( I f I s ) / ( I f + I s ) between the peak intensity of the focal spot I f and the peak intensity of the sidebands I s for different NA. The spot size is measured using the second-order momentum in the ROI and compared to the Airy disc for each NA considered (dot–dashed lines). The horizontal line indicates the contrast ratio for the Airy disc.

Fig. 2.
Fig. 2.

Comparison of theoretical and experimental light field cross sections of the photoporation beam. (a) and (b) Show the theoretical irradiance profiles of the sample, while (c) and (d) show the corresponding experimental images of the beam reflection from the coverslip, respectively, for the diffraction-limited (a),(c) and OEi beams (b),(d). The horizontal scale bar indicates a length of 1 μm. A focal-plane cross section determined using an NSOM is plotted in (e), for the diffraction-limited (thick solid blue line) and OEi beams (thin dashed red line). The maximum intensities are normalized to facilitate comparison. Using Gaussian fitting, it can be seen that the OEi method enables a reduction of the full width at half-maximum of the spot from 755 to 532 nm.

Fig. 3.
Fig. 3.

Optical cell transfection apparatus. A laser beam is magnified and is incident on the microdisplay of the SLM. The SLM is subsequently relayed, through a demagnified telescope, at the back focal plane of the microscope objective, housed within a Nikon Eclipse Ti inverted optical microscope. HWP, half-wave plate; PBS, polarizing beam splitter; L, lens; M, mirror; MO, microscope objective; CCD, charge-coupled device camera.

Fig. 4.
Fig. 4.

Transfection efficiency as a function of the beam focal area shown for the subdiffraction OEi beam, for the diffraction-limited beam ( NA = 0.54 ), and for various spot sizes corresponding to NA EFF = 0.48 , 0.44, and 0.37. Each data point reflects the average transfection efficiency obtained, corresponding to a total number of N = 250 laser-treated cells for each focal area. A measure of the variability of the mean transfection efficiency, for five independently conducted trials, is represented by the vertical SE bars, whereas the statistical difference between the theoretical and experimentally estimated focal area values is indicated by the horizontal error bars.

Fig. 5.
Fig. 5.

Multiphoton comparison of the diffraction-limited beam and OEi beam: (a) two-photon, (b) three-photon, and (c) five-photon excitation. It can be noted that the sidelobes seen in Fig. 2(e) are suppressed, and that multiphoton OEi beams also reduce the focal spot size when compared to diffraction-limited multiphoton illumination.

Tables (1)

Tables Icon

Table 1. Resolution Limit Relationship for Different Far-Field Subdiffraction Beamsa

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E ( , γ ) = 2 π ( i ) sin ( γ ) cos ( γ ) exp ( i ω t i k z z + ϕ ) ( e x e y e z )
e x = 2 J ( k t ρ ) cos 2 ( γ / 2 ) + J 2 ( k t ρ ) sin 2 ( γ / 2 ) e 2 i ϕ + J + 2 ( k t ρ ) sin 2 ( γ / 2 ) e 2 i ϕ , e y = i J 2 ( k t ρ ) sin 2 ( γ / 2 ) e 2 i ϕ i J + 2 ( k t ρ ) sin 2 ( γ / 2 ) e 2 i ϕ , e z = i J + 1 ( k t ρ ) sin ( γ ) e i ϕ i J 1 ( k t ρ ) sin ( γ ) e i ϕ ,
I = ROI E · E * d x d y = j , k a k * M k j ( 0 ) a j ,
E q = 1 λ q j v q j E j ,
σ 2 = ROI ρ 2 F · F * d x d y = j , k b k * M k j ( 2 ) b j ,
F j = 1 4 p = 0 3 e i 2 π p / 4 f ( E ref + e i 2 π p / 4 E j ) ,

Metrics