Abstract

Gold nanorods (GNRs) have potential applications ranging from biomedical sciences and emerging nanophotonics. In this paper, we will review some of our recent studies on both microscopic and macroscopic manipulation of GNRs. Unique properties of GNR nanoparticles, such as efficient surface plasmon amplifications effects, are introduced. The stable trapping, transferring, positioning and patterning of GNRs with nonintrusive optical tweezers will be shown. Vector beams are further employed to improve the trapping performance. On the other hand, alignment of GNRs and their hybrid nanostructures will be described by using a film stretch method, which induces the anisotropic and enhanced absorptive nonlinearities from aligned GNRs. Realization and engineering of polarized emission from aligned hybrid GNRs will be further demonstrated, with relative excitation–emission efficiency significantly enhanced. Our works presented in this review show that optical tweezers possess great potential in microscopic manipulation of metal nanoparticles and macroscopic alignment of anisotropic nanoparticles could help the macroscopic samples to flexibly represent the plasmonic properties of single nanoparticles for fast, cheap, and high-yield applications.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
    [CrossRef]
  2. K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
    [CrossRef]
  3. Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
    [CrossRef]
  4. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
    [CrossRef]
  5. M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
    [CrossRef]
  6. M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
    [CrossRef]
  7. X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
    [CrossRef]
  8. M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007).
    [CrossRef]
  9. X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
    [CrossRef]
  10. P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
    [CrossRef]
  11. A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
    [CrossRef]
  12. J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
    [CrossRef]
  13. B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
    [CrossRef]
  14. Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
    [CrossRef]
  15. D. J. Wu, S. M. Jiang, Y. Cheng, and X. J. Liu, “Fano-like resonance in symmetry-broken gold nanotube dimer,” Opt. Express 20, 26559–26567 (2012).
    [CrossRef]
  16. J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
    [CrossRef]
  17. J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
    [CrossRef]
  18. S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
    [CrossRef]
  19. B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
    [CrossRef]
  20. F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002).
    [CrossRef]
  21. T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
    [CrossRef]
  22. X. Li, F. J. Kao, C. C. Chuang, and S. L. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18, 11335–11346 (2010).
    [CrossRef]
  23. S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
    [CrossRef]
  24. D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
    [CrossRef]
  25. J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
    [CrossRef]
  26. X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35, 2535–2537 (2010).
    [CrossRef]
  27. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
    [CrossRef]
  28. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
    [CrossRef]
  29. Z. Y. Li and Y. N. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10, 243–249 (2010).
    [CrossRef]
  30. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
    [CrossRef]
  31. Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
    [CrossRef]
  32. Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
    [CrossRef]
  33. M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
    [CrossRef]
  34. J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
    [CrossRef]
  35. P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
    [CrossRef]
  36. R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
    [CrossRef]
  37. W. R. Bowen and A. O. Sharif, “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature 393, 663–665 (1998).
    [CrossRef]
  38. W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000).
    [CrossRef]
  39. A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18, 822–830 (2010).
    [CrossRef]
  40. L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
    [CrossRef]
  41. L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
    [CrossRef]
  42. R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
    [CrossRef]
  43. L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
    [CrossRef]
  44. Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
    [CrossRef]
  45. J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
    [CrossRef]
  46. A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
    [CrossRef]
  47. L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
    [CrossRef]
  48. F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26, 2242–2247 (2009).
    [CrossRef]
  49. S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013).
    [CrossRef]
  50. B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
    [CrossRef]
  51. D. Fornasiero and F. Grieser, “A linear dichroism study of colloidal silver in stretched polymer-films,” Chem. Phys. Lett. 139, 103–108 (1987).
    [CrossRef]
  52. M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
    [CrossRef]
  53. R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003).
    [CrossRef]
  54. L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
    [CrossRef]
  55. S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
    [CrossRef]
  56. K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
    [CrossRef]
  57. K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
    [CrossRef]
  58. M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
    [CrossRef]
  59. H. H. Fang, Q. D. Chen, J. Yang, H. Xia, Y. G. Ma, H. Y. Wang, and H. B. Sun, “Two-photon excited highly polarized and directional upconversion emission from slab organic crystals,” Opt. Lett. 35, 441–443 (2010).
    [CrossRef]
  60. F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
    [CrossRef]
  61. C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
    [CrossRef]
  62. S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
    [CrossRef]
  63. H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
    [CrossRef]
  64. T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
    [CrossRef]

2013 (1)

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013).
[CrossRef]

2012 (8)

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
[CrossRef]

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
[CrossRef]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[CrossRef]

D. J. Wu, S. M. Jiang, Y. Cheng, and X. J. Liu, “Fano-like resonance in symmetry-broken gold nanotube dimer,” Opt. Express 20, 26559–26567 (2012).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
[CrossRef]

2011 (6)

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
[CrossRef]

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

2010 (10)

A. A. R. Neves, A. Camposeo, S. Pagliara, R. Saija, F. Borghese, P. Denti, M. A. Iatì, R. Cingolani, O. M. Maragò, and D. Pisignano, “Rotational dynamics of optically trapped nanofibers,” Opt. Express 18, 822–830 (2010).
[CrossRef]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[CrossRef]

H. H. Fang, Q. D. Chen, J. Yang, H. Xia, Y. G. Ma, H. Y. Wang, and H. B. Sun, “Two-photon excited highly polarized and directional upconversion emission from slab organic crystals,” Opt. Lett. 35, 441–443 (2010).
[CrossRef]

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

X. Li, F. J. Kao, C. C. Chuang, and S. L. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18, 11335–11346 (2010).
[CrossRef]

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Z. Y. Li and Y. N. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10, 243–249 (2010).
[CrossRef]

X. F. Li and S. F. Yu, “Design of low-threshold compact Au-nanoparticle lasers,” Opt. Lett. 35, 2535–2537 (2010).
[CrossRef]

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

2009 (8)

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[CrossRef]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
[CrossRef]

J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
[CrossRef]

F. Peng, B. Yao, S. Yan, W. Zhao, and M. Lei, “Trapping of low-refractive-index particles with azimuthally polarized beam,” J. Opt. Soc. Am. B 26, 2242–2247 (2009).
[CrossRef]

2008 (3)

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

2007 (5)

J. A. Gordon and R. W. Ziolkowski, “The design and simulated performance of a coated nano-particle laser,” Opt. Express 15, 2622–2653 (2007).
[CrossRef]

M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007).
[CrossRef]

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

2006 (3)

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef]

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

2005 (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[CrossRef]

2004 (2)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

Q. Zhan, “Trapping metallic Rayleigh particles with radial polarization,” Opt. Express 12, 3377–3382 (2004).
[CrossRef]

2003 (4)

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

2002 (1)

F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002).
[CrossRef]

2001 (1)

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
[CrossRef]

2000 (2)

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000).
[CrossRef]

1999 (1)

B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
[CrossRef]

1998 (3)

W. R. Bowen and A. O. Sharif, “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature 393, 663–665 (1998).
[CrossRef]

K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

1997 (2)

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

1996 (1)

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
[CrossRef]

1990 (1)

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

1987 (1)

D. Fornasiero and F. Grieser, “A linear dichroism study of colloidal silver in stretched polymer-films,” Chem. Phys. Lett. 139, 103–108 (1987).
[CrossRef]

Alegret, S.

M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007).
[CrossRef]

Anderson, H. L.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Atwater, H. A.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Au, L.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Averitt, R. D.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Bakker, R.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Bechtluft, P.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Belgrave, A. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Belloni, J.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
[CrossRef]

Bergman, D. J.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Biagioni, P.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Block, S. M.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Borghese, F.

Bowen, W. R.

W. R. Bowen and A. O. Sharif, “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature 393, 663–665 (1998).
[CrossRef]

Bradley, D. D. C.

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

Brovelli, S.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Bruning, C.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Bustamante, C.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Cacialli, F.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Callegari, V.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Camposeo, A.

Castaneda, M. T.

M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007).
[CrossRef]

Chao, C. H.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Chen, H. J.

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Chen, J.

J.-Q. Qin, X.-L. Wang, D. Jia, J. Chen, Y.-X. Fan, J. Ding, and H.-T. Wang, “FDTD approach to optical forces of tightly focused vector beams on metal particles,” Opt. Express 17, 8407–8416 (2009).
[CrossRef]

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Chen, J. Y.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Chen, Q. D.

Chen, Y. H.

Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

Cheng, Y.

Chi, J. Y.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Chizhik, A. I.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Chizhik, A. M.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Chon, J. W. M.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[CrossRef]

Chong, C. T.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Chu, S.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
[CrossRef]

Chuang, C. C.

Cingolani, R.

Davis, T. J.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

De Geyter, B.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Delaire, J. A.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
[CrossRef]

Denti, P.

Di Stasio, F.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Ding, J.

Driessen, A. J. M.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

El-Sayed, M. A.

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Emory, S. R.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Fan, Y.-X.

Fang, H. H.

Fedotov, V. A.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Feichtner, T.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Fendler, J. H.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

Feng, B.

Finer, J. T.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
[CrossRef]

Forchel, A.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Fornasiero, D.

D. Fornasiero and F. Grieser, “A linear dichroism study of colloidal silver in stretched polymer-films,” Chem. Phys. Lett. 139, 103–108 (1987).
[CrossRef]

Francois, L.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
[CrossRef]

Fu, J. X.

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

Funahashi, M.

K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
[CrossRef]

Funston, A. M.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

Gan, L.

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
[CrossRef]

Geisler, P.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Gelles, J.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Giessen, H.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Goda, T.

K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
[CrossRef]

Gomes, R.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Goodson, T.

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003).
[CrossRef]

Gordon, J. A.

Gray, S. K.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
[CrossRef]

Grell, M.

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

Grieser, F.

D. Fornasiero and F. Grieser, “A linear dichroism study of colloidal silver in stretched polymer-films,” Chem. Phys. Lett. 139, 103–108 (1987).
[CrossRef]

Gu, M.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[CrossRef]

Guffey, M. J.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
[CrossRef]

Guo, H.

Guo, H. L.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

Hagan, D. J.

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Halas, N. J.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Hanna, J.

K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
[CrossRef]

Harel, E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Hartland, G. V.

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Hassinen, A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

He, S. L.

Hecht, B.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Hens, Z.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Herz, E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Hikmet, R. A. M.

B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
[CrossRef]

Hsueh, H. T.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Hu, M.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Huang, C. Y.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Huang, J. S.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Huang, L.

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
[CrossRef]

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

Huang, X. H.

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

Huss, A.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Hutter, E.

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

Iatì, M. A.

Inbasekaran, M.

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

Jäger, R.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Jia, D.

Jiang, S. M.

Käll, M.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[CrossRef]

Kamp, M.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Kao, F. J.

Kern, J.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Kik, P. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Kim, F.

F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002).
[CrossRef]

Koel, B. E.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Kogo, K.

K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
[CrossRef]

Korniychuk, P.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Kuo, H. C.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Lai, C. F.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Lambert, K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Lan, T.-H.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[CrossRef]

Landick, R.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Lei, M.

Li, J.

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
[CrossRef]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

Li, J. F.

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
[CrossRef]

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
[CrossRef]

Li, M.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Li, P. T. X.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Li, X.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[CrossRef]

X. Li, F. J. Kao, C. C. Chuang, and S. L. He, “Enhancing fluorescence of quantum dots by silica-coated gold nanorods under one- and two-photon excitation,” Opt. Express 18, 11335–11346 (2010).
[CrossRef]

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Li, X. D.

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Li, X. F.

Li, Z. L.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

Li, Z. Y.

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013).
[CrossRef]

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
[CrossRef]

Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
[CrossRef]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

Z. Y. Li and Y. N. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10, 243–249 (2010).
[CrossRef]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Li, Z.-Y.

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
[CrossRef]

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Lin, H. Q.

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

Ling, L.

L. Huang, H. Guo, J. Li, L. Ling, B. Feng, and Z.-Y. Li, “Optical trapping of gold nanoparticles by cylindrical vector beam,” Opt. Lett. 37, 1694–1696 (2012).
[CrossRef]

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

Liu, S.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

Liu, S. Y.

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
[CrossRef]

Liu, X. J.

Liu, Y.

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

Liz-Marzan, L. M.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[CrossRef]

Lozano, G.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Luk’yanchuk, B.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Ma, Y. G.

Maier, S. A.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Manosas, M.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Maragò, O. M.

Marquez, M.

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Mayy, M.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

McDonnell, S. O.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

McLellan, J. M.

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Meixner, A. J.

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Meltzer, S.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Merkoci, A.

M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007).
[CrossRef]

Miljkovic, V. D.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[CrossRef]

Ming, T.

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Ming, T. A.

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

Mostafavi, M.

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
[CrossRef]

Mulvaney, P.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[CrossRef]

Narimanov, E. E.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Neretina, S.

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

Neves, A. A. R.

Nie, S.

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Nikoobakht, B.

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Noginov, M. A.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Noginova, N.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Nome, R. A.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
[CrossRef]

Nordlander, P.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

Nouwen, N.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Novo, C.

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

Oldenburg, S. J.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Pages, L.

B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
[CrossRef]

Pagliara, S.

Papasimakis, N.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Pastoriza-Santos, I.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[CrossRef]

Peng, F.

Peng, X. N.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Perez-Juste, J.

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[CrossRef]

Petrova, H.

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Pisignano, D.

Podolskiy, V. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Prangsma, J. C.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Prosvirnin, S. L.

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Qin, J.-Q.

Qu, E.

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

Ren, M. L.

Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

Requicha, A. A. G.

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Ritort, F.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Ritzo, B. A.

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Rivas, J. G.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Rodriguez, S. R. K.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Said, A. A.

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Saija, R.

Scherer, N. F.

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
[CrossRef]

Seideman, T.

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef]

Sekkinen, A. R.

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Sennhauser, U.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Shalaev, V. M.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Shan, X. Y.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Sharif, A. O.

W. R. Bowen and A. O. Sharif, “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature 393, 663–665 (1998).
[CrossRef]

Sheikbahae, M.

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Sheng, P.

W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000).
[CrossRef]

Simmons, R. M.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
[CrossRef]

Smith, S. B.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Song, J. H.

F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002).
[CrossRef]

Spudich, J. A.

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
[CrossRef]

Stockman, M. I.

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

Stout, S.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Su, X. R.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Sukharev, M.

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef]

Sun, H. B.

Sun, L. D.

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Suteewong, T.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Tans, S. J.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Tepper, H. L.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Tien, C.-H.

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[CrossRef]

Tinoco, I.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Tomkiewicz, D.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Tong, L.

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[CrossRef]

Tracz, A.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Tyreman, M.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Uznanski, P.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

van Blaaderen, A.

B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
[CrossRef]

van der Zande, B. M. I.

B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
[CrossRef]

Van Duyne, R. P.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

van Leeuwen, R. G. H.

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

Van Thourhout, D.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Vanstryland, E. W.

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Verschuuren, M. A.

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

Wang, B. L.

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

Wang, F.

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

Wang, H. Y.

Wang, H.-T.

Wang, J. F.

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Wang, J. F. T.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Wang, M. D.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Wang, Q. Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Wang, X.-L.

Wang, Y.

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003).
[CrossRef]

Wei, T. H.

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

Weinmann, P.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Wen, J.-D.

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Wen, W.

W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000).
[CrossRef]

West, R.

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003).
[CrossRef]

Westcott, S. L.

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

Whitehead, K. S.

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

Wiesner, U.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

Willets, K. A.

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Winroth, G.

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Woo, E. P.

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

Woo, K. C.

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

Wu, D. J.

Wu, X. F.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Xia, H.

Xia, Y.

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Xia, Y. N.

Z. Y. Li and Y. N. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10, 243–249 (2010).
[CrossRef]

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Yan, C. H.

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Yan, S.

Yang, J.

Yang, P. D.

F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002).
[CrossRef]

Yang, Z.

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Yang, Z. J.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Yao, B.

Yeh, W. Y.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Yen, H. H.

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

Yin, H.

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

Yu, S. F.

Zhan, Q.

Zhang, L.

W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000).
[CrossRef]

Zhang, Q.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhang, Z. S.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhang, Z. Y.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhao, L.

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Zhao, W.

Zheludev, N. I.

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Zhong, X. L.

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

Zhou, F.

S. Y. Liu, J. F. Li, F. Zhou, L. Gan, and Z. Y. Li, “Efficient surface plasmon amplification from gain-assisted gold nanorods,” Opt. Lett. 36, 1296–1298 (2011).
[CrossRef]

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

Zhou, Z. K.

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

Zhu, G.

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Ziegler, J.

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

Zijlstra, P.

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[CrossRef]

Ziolkowski, R. W.

Adv. Mater. (3)

E. Hutter and J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16, 1685–1706 (2004).
[CrossRef]

X. H. Huang, S. Neretina, and M. A. El-Sayed, “Gold nanorods: from synthesis and properties to biological and biomedical applications,” Adv. Mater. 21, 4880–4910 (2009).
[CrossRef]

F. Di Stasio, P. Korniychuk, S. Brovelli, P. Uznanski, S. O. McDonnell, G. Winroth, H. L. Anderson, A. Tracz, and F. Cacialli, “Highly polarized emission from oriented films incorporating water-soluble conjugated polymers in a polyvinyl alcohol matrix,” Adv. Mater. 23, 1855–1859 (2011).
[CrossRef]

Adv. Opt. Mater. (1)

S. Y. Liu, J. F. Li, and Z. Y. Li, “Macroscopic polarized emission from aligned hybrid gold nanorods embedded in a polyvinyl alcohol film,” Adv. Opt. Mater. 1, 227–231 (2013).
[CrossRef]

Annu. Rev. Phys. Chem. (1)

K. A. Willets and R. P. Van Duyne, “Localized surface plasmon resonance spectroscopy and sensing,” Annu. Rev. Phys. Chem. 58, 267–297 (2007).
[CrossRef]

Appl. Phys. Lett. (5)

J. Li, S. Liu, Y. Liu, F. Zhou, and Z. Y. Li, “Anisotropic and enhanced absorptive nonlinearities in a macroscopic film induced by aligned gold nanorods,” Appl. Phys. Lett. 96, 263103 (2010).
[CrossRef]

Y. H. Chen, J. F. Li, M. L. Ren, B. L. Wang, J. X. Fu, S. Y. Liu, and Z. Y. Li, “Direct observation of amplified spontaneous emission of surface plasmon polaritons at metal/dielectric interfaces,” Appl. Phys. Lett. 98, 261912 (2011).
[CrossRef]

C. F. Lai, J. Y. Chi, H. H. Yen, H. C. Kuo, C. H. Chao, H. T. Hsueh, J. F. T. Wang, C. Y. Huang, and W. Y. Yeh, “Polarized light emission from photonic crystal light-emitting diodes,” Appl. Phys. Lett. 92, 243118 (2008).
[CrossRef]

S. R. K. Rodriguez, G. Lozano, M. A. Verschuuren, R. Gomes, K. Lambert, B. De Geyter, A. Hassinen, D. Van Thourhout, Z. Hens, and J. G. Rivas, “Quantum rod emission coupled to plasmonic lattice resonances: a collective directional source of polarized light,” Appl. Phys. Lett. 100, 111103 (2012).
[CrossRef]

K. Kogo, T. Goda, M. Funahashi, and J. Hanna, “Polarized light emission from a calamitic liquid crystalline semiconductor doped with dyes,” Appl. Phys. Lett. 73, 1595–1597 (1998).
[CrossRef]

Biophys. J. (3)

R. M. Simmons, J. T. Finer, S. Chu, and J. A. Spudich, “Quantitative measurements of force and displacement using an optical trap,” Biophys. J. 70, 1813–1822 (1996).
[CrossRef]

M. D. Wang, H. Yin, R. Landick, J. Gelles, and S. M. Block, “Stretching DNA with optical tweezers,” Biophys. J. 72, 1335–1346 (1997).
[CrossRef]

J.-D. Wen, M. Manosas, P. T. X. Li, S. B. Smith, C. Bustamante, F. Ritort, and I. Tinoco, “Force unfolding kinetics of RNA using optical tweezers. I. Effects of experimental variables on measured results,” Biophys. J. 92, 2996–3009 (2007).
[CrossRef]

Chem. Mater. (1)

B. Nikoobakht and M. A. El-Sayed, “Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,” Chem. Mater. 15, 1957–1962 (2003).
[CrossRef]

Chem. Phys. Lett. (2)

S. J. Oldenburg, R. D. Averitt, S. L. Westcott, and N. J. Halas, “Nanoengineering of optical resonances,” Chem. Phys. Lett. 288, 243–247 (1998).
[CrossRef]

D. Fornasiero and F. Grieser, “A linear dichroism study of colloidal silver in stretched polymer-films,” Chem. Phys. Lett. 139, 103–108 (1987).
[CrossRef]

Chem. Soc. Rev. (1)

M. Hu, J. Y. Chen, Z. Y. Li, L. Au, G. V. Hartland, X. D. Li, M. Marquez, and Y. N. Xia, “Gold nanostructures: engineering their plasmonic properties for biomedical applications,” Chem. Soc. Rev. 35, 1084–1094 (2006).
[CrossRef]

Chin. Phys. Lett. (1)

L. Ling, H. L. Guo, L. Huang, E. Qu, Z. L. Li, and Z. Y. Li, “The measurement of displacement and optical force in multi-optical tweezers,” Chin. Phys. Lett. 29, 014214 (2012).
[CrossRef]

Coord. Chem. Rev. (1)

J. Perez-Juste, I. Pastoriza-Santos, L. M. Liz-Marzan, and P. Mulvaney, “Gold nanorods: synthesis, characterization and applications,” Coord. Chem. Rev. 249, 1870–1901 (2005).
[CrossRef]

Electroanalysis (1)

M. T. Castaneda, S. Alegret, and A. Merkoci, “Electrochemical sensing of DNA using gold nanoparticles,” Electroanalysis 19, 743–753 (2007).
[CrossRef]

Front. Phys. (1)

Z. Y. Li, “Nanophotonics in China: overviews and highlights,” Front. Phys. 7, 601–631 (2012).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheikbahae, A. A. Said, T. H. Wei, D. J. Hagan, and E. W. Vanstryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760–769 (1990).
[CrossRef]

J. Am. Chem. Soc. (1)

F. Kim, J. H. Song, and P. D. Yang, “Photochemical synthesis of gold nanorods,” J. Am. Chem. Soc. 124, 14316–14317 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. A (1)

R. A. Nome, M. J. Guffey, N. F. Scherer, and S. K. Gray, “Plasmonic interactions and optical forces between Au bipyramidal nanoparticle dimers,” J. Phys. Chem. A 113, 4408–4415 (2009).
[CrossRef]

J. Phys. Chem. B (3)

B. M. I. van der Zande, L. Pages, R. A. M. Hikmet, and A. van Blaaderen, “Optical properties of aligned rod-shaped gold particles dispersed in poly(vinyl alcohol) films,” J. Phys. Chem. B 103, 5761–5767 (1999).
[CrossRef]

R. West, Y. Wang, and T. Goodson, “Nonlinear absorption properties in novel gold nanostructured topologies,” J. Phys. Chem. B 107, 3419–3426 (2003).
[CrossRef]

M. Hu, H. Petrova, A. R. Sekkinen, J. Chen, J. M. McLellan, Z.-Y. Li, M. Marquez, X. Li, Y. Xia, and G. V. Hartland, “Optical properties of Au–Ag nanoboxes studied by single nanoparticle spectroscopy,” J. Phys. Chem. B 110, 19923–19928 (2006).
[CrossRef]

Nano Lett. (7)

Z. K. Zhou, X. N. Peng, Z. J. Yang, Z. S. Zhang, M. Li, X. R. Su, Q. Zhang, X. Y. Shan, Q. Q. Wang, and Z. Y. Zhang, “Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for dramaticallyenhanced light emission and transmission,” Nano Lett. 11, 49–55 (2011).
[CrossRef]

A. M. Funston, C. Novo, T. J. Davis, and P. Mulvaney, “Plasmon coupling of gold nanorods at short distances and in different geometries,” Nano Lett. 9, 1651–1658 (2009).
[CrossRef]

T. Ming, L. Zhao, Z. Yang, H. J. Chen, L. D. Sun, J. F. Wang, and C. H. Yan, “Strong polarization dependence of plasmon-enhanced fluorescence on single gold nanorods,” Nano Lett. 9, 3896–3903 (2009).
[CrossRef]

Z. Y. Li and Y. N. Xia, “Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering,” Nano Lett. 10, 243–249 (2010).
[CrossRef]

L. Tong, V. D. Miljković, and M. Käll, “Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces,” Nano Lett. 10, 268–273 (2010).
[CrossRef]

M. Sukharev and T. Seideman, “Phase and polarization control as a route to plasmonic nanodevices,” Nano Lett. 6, 715–719 (2006).
[CrossRef]

T. Ming, L. Zhao, H. J. Chen, K. C. Woo, J. F. Wang, and H. Q. Lin, “Experimental evidence of plasmophores: plasmon-directed polarized emission from gold nanorod-fluorophore hybrid nanostructures,” Nano Lett. 11, 2296–2303 (2011).
[CrossRef]

Nano Today (1)

H. J. Chen, T. A. Ming, L. Zhao, F. Wang, L. D. Sun, J. F. Wang, and C. H. Yan, “Plasmon-molecule interactions,” Nano Today 5, 494–505 (2010).
[CrossRef]

Nanotechnology (1)

L. Ling, H. L. Guo, X. L. Zhong, L. Huang, J. F. Li, L. Gan, and Z. Y. Li, “Manipulation of gold nanorods with dual-optical tweezers for surface plasmon resonance control,” Nanotechnology 23, 215302 (2012).
[CrossRef]

Nat. Commun. (2)

J. S. Huang, V. Callegari, P. Geisler, C. Bruning, J. Kern, J. C. Prangsma, X. F. Wu, T. Feichtner, J. Ziegler, P. Weinmann, M. Kamp, A. Forchel, P. Biagioni, U. Sennhauser, and B. Hecht, “Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry,” Nat. Commun. 1, 150 (2010).
[CrossRef]

X. Li, T.-H. Lan, C.-H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
[CrossRef]

Nat. Mater. (2)

B. Luk’yanchuk, N. I. Zheludev, S. A. Maier, N. J. Halas, P. Nordlander, H. Giessen, and C. T. Chong, “The Fano resonance in plasmonic nanostructures and metamaterials,” Nat. Mater. 9, 707–715 (2010).
[CrossRef]

S. A. Maier, P. G. Kik, H. A. Atwater, S. Meltzer, E. Harel, B. E. Koel, and A. A. G. Requicha, “Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides,” Nat. Mater. 2, 229–232 (2003).
[CrossRef]

Nat. Photonics (1)

N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, and V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008).
[CrossRef]

Nature (3)

M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, and U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009).
[CrossRef]

P. Zijlstra, J. W. M. Chon, and M. Gu, “Five-dimensional optical recording mediated by surface plasmons in gold nanorods,” Nature 459, 410–413 (2009).
[CrossRef]

W. R. Bowen and A. O. Sharif, “Long-range electrostatic attraction between like-charge spheres in a charged pore,” Nature 393, 663–665 (1998).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Phys. Chem. Chem. Phys (1)

L. Francois, M. Mostafavi, J. Belloni, and J. A. Delaire, “Optical limitation induced by gold clusters: mechanism and efficiency,” Phys. Chem. Chem. Phys 3, 4965–4971 (2001).
[CrossRef]

Phys. Rev. Lett. (3)

W. Wen, L. Zhang, and P. Sheng, “Planar magnetic colloidal crystals,” Phys. Rev. Lett. 85, 5464–5467 (2000).
[CrossRef]

D. J. Bergman and M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90, 027402 (2003).
[CrossRef]

M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, and V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101, 226806 (2008).
[CrossRef]

Proc. SPIE (1)

A. Huss, A. M. Chizhik, R. Jäger, A. I. Chizhik, and A. J. Meixner, “Optical trapping of gold nanoparticles using a radially polarized laser beam,” Proc. SPIE 8097, 809720 (2011).
[CrossRef]

Science (2)

P. Bechtluft, R. G. H. van Leeuwen, M. Tyreman, D. Tomkiewicz, N. Nouwen, H. L. Tepper, A. J. M. Driessen, and S. J. Tans, “Direct observation of chaperone-induced changes in a protein folding pathway,” Science 318, 1458–1461 (2007).
[CrossRef]

S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997).
[CrossRef]

Small (1)

Y. H. Chen, J. F. Li, M. L. Ren, and Z. Y. Li, “Amplified spontaneous emission of surface plasmon polaritons with unusual angle-dependent response,” Small 8, 1355–1359 (2012).
[CrossRef]

Synth. Met. (1)

K. S. Whitehead, M. Grell, D. D. C. Bradley, M. Inbasekaran, and E. P. Woo, “Polarized emission from liquid crystal polymers,” Synth. Met. 111, 181–185 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1.
Fig. 1.

(a) Schematic of plasmon oscillation for a nanosphere [1]. (b) Measured absorbance spectra of a GNR solution. The insets show the schematic of the transverse and longitudinal SPR modes, which correspond to two absorption peaks, respectively. (c) TEM images of as synthesized GNRs with different longitudinal SPR wavelength as noted [17]. (d) Measured absorbance spectra of gold nanospheres (GNSs) and GNRs, whose SEM images are shown in (c).

Fig. 2.
Fig. 2.

(a) Schematic diagram of the GNR-based active nanosystem. (b) Calculated absorption cross section at the SPR wavelength of GNR as a function of gain coefficients ( k ). The spaser threshold is identified at k = 0.0312 . (c) Calculated scattering cross section spectra for the nanosystem with different k as noted. At the spaser threshold, the scattering cross section is enhanced by 7 × 10 4 times and the linewidth is compressed by two orders of magnitude. (d) Calculated absorption cross section at the SPR wavelength of GNS-based nanosystem as a function of k . The spaser threshold is identified at k = 0.288 . (e) Calculated wavelength-tunable spaser realized by varying the aspect ratio of the embedded GNR as noted [23].

Fig. 3.
Fig. 3.

(a) Schematic diagram of the experimental setup based on a typical Kretschmann system [30,31]. (b) Measured amplified emission spectra of SPPs decoupled at θ = 58.4 ° . Spectra were measured with different I P as noted (unit: mJ / cm 2 ). The ASE peak is clearly identified at λ ASE = 592.87 nm [31]. (c) Normalized emission spectra of SPPs decoupled at θ = 59.2 ° , where the spectra are peaked at the ASE wavelength ( λ ASE = 592.87 nm ). Inset: measured emission spectra of SPPs under different I P . With the increase of pump intensity, the ASE spectra are narrowed. (d) Angular distribution of SPP emission at wavelength 592.87 nm under different I P as noted. It can be seen that with the increase of pump intensity, the angular response is broadened unusually [32].

Fig. 4.
Fig. 4.

(a)–(c) Pictures of three trapped polystyrene particles (2 μm in diameter) and their focused images in three dimensions. (d) Eight pictures of the trapped particles. The index number of each trap is indicated aside the trapped particle [41].

Fig. 5.
Fig. 5.

Schematic diagram of the dual optical tweezers system [43].

Fig. 6.
Fig. 6.

DF images of trapping and transferring of GNRs with dual optical tweezers in water solution. The Trap B was moved top-down from (a) to (d) and bottom-up from (d) to (g).

Fig. 7.
Fig. 7.

Microscope images of positioning and patterning of gold nanoparticles. (a) Gray scaled picture of the patterned GNRs by optical trap on the bottom of the chamber. (b) Color picture of the patterned gold nanoparticles after the sample was dried [43]. The red “IOP” was “written” by GNRs first and the green “CAS” was “written” by GNSs subsequently on the same substrate.

Fig. 8.
Fig. 8.

SEM pictures of fixed single and complex GNRs and their scattering spectra [43]. (a) is the SEM picture of a fixed single GNR, (b) is the measured scattering spectrum of the fixed GNR after the sample was dried, (c) is the calculated scattering spectrum of a single GNR whose shape is shown in the upper right corner. (d)–(f) and (g)–(i) are the SEM pictures of two couples of the fixed GNRs, the measured scattering spectra and the calculated scattering spectra of the coupled GNRs.

Fig. 9.
Fig. 9.

(a) Schematic diagram of the optical trapping setup with cylindrical vector beams. The trapping laser was introduced into the polarized beam converter after expanding and focused to form a trap. (b) The experimentally generated radially and azimuthally polarized beams. The first column shows the isotropic intensity profiles of the vector beams imaged by a laser beam analyzer without a polarization analyzer. The next two columns show the intensity cross sections after inserting the polarization filter, with the arrows denoting the polarization direction [47].

Fig. 10.
Fig. 10.

(a) Power spectra of gold spheres with a diameter of 90 nm trapped by radially polarized, azimuthally polarized, and Gaussian beams measured by analyzing the Brownian motion of the particles. The stiffness in the figure is normalized by laser power. (b) Transverse trapping stiffness as a function of laser power for 90 nm gold particles trapped by radially and azimuthally polarized beams, respectively [47].

Fig. 11.
Fig. 11.

(a) Camera picture of three GNRs/PVA films in Petri dish. (b) Schematic diagram of the film stretch process [17].

Fig. 12.
Fig. 12.

(a) Optical microscope images of the original and stretched film under white light illumination with polarization parallel ( ) and perpendicular ( ) to the stretch direction. (b) Measured absorbance spectra of the GNRs/PVA films corresponding to (a). (c) TEM images of the aligned GNRs in the PVA film. Scale bar: 100 nm. Dashed lines indicate the direction of stretch. (d) Measured absorbance spectra of another stretched GNRs/PVA film under excitation polarized parallel ( ) and perpendicular ( ) to the stretch direction. Solid lines are the corresponding calculations of a single GNR. (e) Polar plot of the measured absorption intensity at wavelength 800 nm versus the excitation polarization angle. The solid curve is a fit to the cosine squared function [17].

Fig. 13.
Fig. 13.

(a), (b) Measured transmission of (a) original and (b) stretched GNRs/PVA films upon laser excitation polarized parallel ( ) and perpendicular ( ) to the stretch direction, respectively. GNR concentrations ( C GNR ) of the films: (a)  3.75 nmol / L and (b)  15 nmol / L . (c) Normalized transmission of a stretched GNRs/PVA film excited with different laser intensities. The laser polarization was along the stretch direction. Solid lines are corresponding fittings with the Z-scan theory. (d) NLA coefficient ( β ) as a function of the laser intensity for three samples: (open square) S1: original film with C GNR = 3.75 nmol / L ; (open triangle) S2: stretched film with C GNR = 3.75 nmol / L ; (open circle) S3: stretched film with C GNR = 15 nmol / L . The experimental data and their fittings (solid lines) were multiplied by corresponding numbers as noted for comparison purpose [17].

Fig. 14.
Fig. 14.

(a)–(d) Typical SEM images of HGNRs in original (a) and stretched (b)–(d) PVA films. Inset: SEM image of a single core-shell GNR hybrid nanostructure (HGNR). The GNR in the core is 95 nm in length and 45 nm in diameter. After the stretch, most of the HGNRs in the film are aligned with long axis along the stretching direction (indicated by dash lines). Scale bars are 500 nm. (e) and (f) Measured extinction spectra of (e) original and (f) stretched film under incident light polarization parallel (0°) and perpendicular (90°) to the stretching direction [49].

Fig. 15.
Fig. 15.

(a) Measured emission intensity at wavelength 742 nm versus detection polarization angle ( α det ) under excitation with circular polarization for the original and stretched film. The data are fitted with a cosine squared function together with an exponential decay. (b) Polar plot of the experimental and fitted data in (c) after calibrating the exponential decays. (c) Illustration of the applications of the stretched HGNRs for converting circularly polarized light into broadband linearly polarized emission [49].

Fig. 16.
Fig. 16.

(a) Schematic setup for emission measurements with different angles of detection polarization ( α det ) under certain excitation polarization angles ( θ ex ). (b) Measured emission spectra of the stretched film with different θ ex and α det as noted. The symbols “ ” and “ ” denote the angles of 0° and 90°, respectively. The first and second subscripts represent the values of θ ex and α det , respectively. (c) Relative excitation emission efficiency of the emission spectra shown in (b). Spectra are normalized to the spectrum of I . (d) Measured emission intensity at 742 nm versus α det under excitation with θ ex = 0 ° , 45°, 67.5°, and 90°, respectively [49].

Metrics