Abstract

The concept of using plasmonic nanostructures to manage light in solar cells has offered an unprecedented potential for dramatically increased solar energy conversion efficiency that breaks the previously predicated efficiency limit. In the past decade, intensive research efforts have been focused on this field. However, nanoplasmonic solar cells still remained in the laboratory level. To facilitate the transformation of the nanoplasmonic solar cell concept to a viable high-efficiency technology solution for the solar industry, it is essential to address key fundamental as well as practical challenges including the detrimental absorption of metallic nanostructures, narrow-band absorption enhancement in the active layer, the high cost and scarcity of noble metals, and the expensive and complicated plasmonic nanomaterial fabrication and integration methods. In this paper, after a brief review of our main results in nanoplasmonic solar cells, we present our strategies for using innovative photonic methods to overcome these challenges and demonstrate a large-area (173cm2) broadband plasmonic thin-film solar minimodule with an efficiency of 9.5% resulting from the enhanced plasmonic light scattering enabled by silver lumpy nanoparticles with an ultralow nanoparticle coverage density of 5%.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
    [CrossRef]
  2. J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
    [CrossRef]
  3. H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
    [CrossRef]
  4. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010).
    [CrossRef]
  5. M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).
  6. S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21, A355–A362 (2013).
    [CrossRef]
  7. F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010).
    [CrossRef]
  8. Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
    [CrossRef]
  9. X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
    [CrossRef]
  10. N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
    [CrossRef]
  11. Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
    [CrossRef]
  12. D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
    [CrossRef]
  13. D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
    [CrossRef]
  14. J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
    [CrossRef]
  15. N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20, A694–A705 (2012).
    [CrossRef]
  16. V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
    [CrossRef]
  17. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
    [CrossRef]
  18. N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
    [CrossRef]
  19. B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013).
    [CrossRef]
  20. W. Yan, N. Stokes, B. Jia, and M. Gu, “Ag nanocones enhanced plasmonic light trapping in the silicon substrate,” Opt. Lett. 38, 395–397 (2013).
    [CrossRef]
  21. X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
    [CrossRef]
  22. N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012).
    [CrossRef]
  23. J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
    [CrossRef]
  24. FDTD solutions, www.lumerical.com .
  25. T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
    [CrossRef]
  26. X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).
  27. Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013).
    [CrossRef]

2013 (5)

2012 (7)

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20, A694–A705 (2012).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

2011 (2)

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

2010 (5)

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

2009 (2)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

2006 (1)

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

2005 (1)

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

2004 (1)

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

1998 (1)

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

Atwater, H. A.

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Bagnall, D. M.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Beck, F. J.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Cai, B.

B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013).
[CrossRef]

Cai, B. Y.

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Campbell, P.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Capasso, F.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Catchpole, K. R.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010).
[CrossRef]

Chen, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Chen, P. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Chen, X.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).

Chien, F. C.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Derkacs, D.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Fahim, N.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

Fahim, N. F.

Fan, J. A.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Feng, B.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Ferry, V. E.

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010).
[CrossRef]

Green, M. A.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Gu, M.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013).
[CrossRef]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21, A355–A362 (2013).
[CrossRef]

W. Yan, N. Stokes, B. Jia, and M. Gu, “Ag nanocones enhanced plasmonic light trapping in the silicon substrate,” Opt. Lett. 38, 395–397 (2013).
[CrossRef]

B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013).
[CrossRef]

N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20, A694–A705 (2012).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).

Halas, N. J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Hall, D. G.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

Hsiao, Y. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Hsu, C. S.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Huang, M. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Jia, B.

W. Yan, N. Stokes, B. Jia, and M. Gu, “Ag nanocones enhanced plasmonic light trapping in the silicon substrate,” Opt. Lett. 38, 395–397 (2013).
[CrossRef]

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21, A355–A362 (2013).
[CrossRef]

Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013).
[CrossRef]

B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).

Jia, B. H.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20, A694–A705 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Kluth, O.

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

Kundu, J.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Kunz, O.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Kuo, C. H.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Lassiter, J. B.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Li, X.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

Lim, S. H.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Lu, H.

Mahanama, G. D. K.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Mar, W.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Matheu, P.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

Mokkapati, S.

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010).
[CrossRef]

Mullerova, L.

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

Munday, J. N.

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010).
[CrossRef]

Nordlander, P.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Ouyang, Z.

S. Xie, Z. Ouyang, B. Jia, and M. Gu, “Large-size, high uniformity, random silver nanowire networks as transparent electrodes for crystalline silicon wafer solar cells,” Opt. Express 21, A355–A362 (2013).
[CrossRef]

Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Pillai, S.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Polman, A.

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Poruba, A.

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

Qiao, Q.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Rech, B.

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

Reehal, H. S.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Saha, J. K.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Schaadt, D. M.

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Schropp, R. E. I.

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

Shi, Z.

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

Shi, Z. R.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

N. F. Fahim, B. H. Jia, Z. R. Shi, and M. Gu, “Simultaneous broadband light trapping and fill factor enhancement in crystalline silicon solar cells induced by Ag nanoparticles and nanoshells,” Opt. Express 20, A694–A705 (2012).
[CrossRef]

Sobhani, H.

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

Springer, J.

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

Stokes, N.

W. Yan, N. Stokes, B. Jia, and M. Gu, “Ag nanocones enhanced plasmonic light trapping in the silicon substrate,” Opt. Lett. 38, 395–397 (2013).
[CrossRef]

B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Stuart, H. R.

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

Temple, T. L.

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Van Lare, M. C.

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

Vanecek, M.

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

Varlamov, S.

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Ventura, M. J.

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

Verschuuren, M. A.

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

Wang, Y. Q.

X. Chen, B. H. Jia, J. K. Saha, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Strong broadband scattering of anisotropic plasmonic nanoparticles synthesized by controllable growth: effects of lumpy morphology,” Opt. Mater. Express 3, 27–34 (2013).
[CrossRef]

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

Wu, J. L.

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Xie, S.

Yan, W.

Yu, E. T.

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

Zhang, Y.

Y. Zhang, X. Chen, H. Lu, Z. Ouyang, B. Jia, and M. Gu, “Improved multicrystalline Si solar cells by light trapping from Al nanoparticle enhanced antireflection coating,” Opt. Mater. Express 3, 489–495 (2013).
[CrossRef]

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).

Zhang, Y. N.

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

N. Fahim, Z. Ouyang, Y. N. Zhang, B. H. Jia, Z. R. Shi, and M. Gu, “Efficiency enhancement of screen-printed multicrystalline silicon solar cells by integrating gold nanoparticles via a dip coating process,” Opt. Mater. Express 2, 190–204 (2012).
[CrossRef]

ACS Nano (1)

J. L. Wu, F. C. Chen, Y. S. Hsiao, F. C. Chien, P. L. Chen, C. H. Kuo, M. H. Huang, and C. S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5, 959–967 (2011).
[CrossRef]

Adv. Mater. (1)

V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design considerations for plasmonic photovoltaics,” Adv. Mater. 22, 4794–4808 (2010).
[CrossRef]

Appl. Phys. Lett. (8)

Z. Ouyang, S. Pillai, F. J. Beck, O. Kunz, S. Varlamov, K. R. Catchpole, P. Campbell, and M. A. Green, “Effective light trapping in polycrystalline silicon thin-film solar cells by means of rear localized surface plasmons,” Appl. Phys. Lett. 96, 261109 (2010).
[CrossRef]

Y. N. Zhang, Z. Ouyang, N. Stokes, B. H. Jia, Z. R. Shi, and M. Gu, “Low cost and high performance Al nanoparticles for broadband light trapping in Si wafer solar cells,” Appl. Phys. Lett. 100, 151101 (2012).
[CrossRef]

D. M. Schaadt, B. Feng, and E. T. Yu, “Enhanced semiconductor optical absorption via surface plasmon excitation in metal nanoparticles,” Appl. Phys. Lett. 86, 063106 (2005).
[CrossRef]

D. Derkacs, S. H. Lim, P. Matheu, W. Mar, and E. T. Yu, “Improved performance of amorphous silicon solar cells via scattering from surface plasmon polaritons in nearby metallic nanoparticles,” Appl. Phys. Lett. 89, 093103 (2006).
[CrossRef]

N. Fahim, Z. Ouyang, B. Jia, Y. Zhang, Z. Shi, and M. Gu, “Enhanced photocurrent in crystalline silicon solar cells by hybrid plasmonic antireflection coatings,” Appl. Phys. Lett. 101, 261102 (2012).
[CrossRef]

B. Cai, N. Stokes, B. Jia, and M. Gu, “Near-field light concentration of ultra-small metallic nanoparticles for absorption enhancement in a-Si solar cells,” Appl. Phys. Lett. 102, 093107 (2013).
[CrossRef]

N. Stokes, B. H. Jia, and M. Gu, “Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering,” Appl. Phys. Lett. 101, 141112 (2012).
[CrossRef]

H. R. Stuart and D. G. Hall, “Island size effects in nanoparticle-enhanced photodetectors,” Appl. Phys. Lett. 73, 3815–3817 (1998).
[CrossRef]

J. Appl. Phys. (1)

J. Springer, A. Poruba, L. Mullerova, M. Vanecek, O. Kluth, and B. Rech, “Absorption loss at nanorough silver back reflector of thin-film silicon solar cells,” J. Appl. Phys. 95, 1427–1429 (2004).
[CrossRef]

J. Nanophoton. (1)

M. Gu, Z. Ouyang, B. Jia, N. Stokes, X. Chen, N. Fahim, X. Li, M. J. Ventura, and Z. R. Shi, “Nanoplasmonics: a frontier of photovoltaic solar cells,” J. Nanophoton. 1, 235–248 (2012).

Nano Lett. (3)

X. Chen, B. H. Jia, J. K. Saha, B. Y. Cai, N. Stokes, Q. Qiao, Y. Q. Wang, Z. R. Shi, and M. Gu, “Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles,” Nano Lett. 12, 2187–2192 (2012).
[CrossRef]

J. B. Lassiter, H. Sobhani, J. A. Fan, J. Kundu, F. Capasso, P. Nordlander, and N. J. Halas, “Fano resonances in plasmonic nanoclusters: geometrical and chemical tunability,” Nano Lett. 10, 3184–3189 (2010).
[CrossRef]

V. E. Ferry, M. A. Verschuuren, M. C. Van Lare, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Optimized spatial correlations for broadband light trapping nanopatterns in high efficiency ultrathin film a-Si:H solar cells,” Nano Lett. 11, 4239–4245 (2011).
[CrossRef]

Nat. Mater. (1)

H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9, 205–213 (2010).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. Express (3)

Prog. Photovoltaics (1)

F. J. Beck, S. Mokkapati, and K. R. Catchpole, “Plasmonic light-trapping for Si solar cells using self-assembled Ag Nanoparticles,” Prog. Photovoltaics 18, 500–504 (2010).
[CrossRef]

Sol. Energy Mater. Sol. Cells (2)

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

T. L. Temple, G. D. K. Mahanama, H. S. Reehal, and D. M. Bagnall, “Influence of localized surface plasmon excitation in silver nanoparticles on the performance of silicon solar cells,” Sol. Energy Mater. Sol. Cells 93, 1978–1985 (2009).
[CrossRef]

Other (2)

X. Chen, B. Jia, Y. Zhang, and M. Gu, “Breaking the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets,” Light Sci. Appl. (to be published).

FDTD solutions, www.lumerical.com .

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1.

J sc enhancements of thin-film a-Si solar cells integrated with Ag lumpy nanoparticles and smoothly surfaced nanoparticles with the same size and size distribution. Inset: schematic drawings of the integration of the lumpy Ag particle with solar cells. [Reproduced with permission from Ref. 21. Copyright The Optical Society 2013.]

Fig. 2.
Fig. 2.

Spectral characteristics of Si absorbance for the optimized Al (green), Ag (blue), and Au (red) nanoparticles placed on the front surface of an Si wafer compared with bare silicon. [Reproduced with permission from [11]. Copyright The American Institute of Physics 2012.]

Fig. 3.
Fig. 3.

Schematic diagram depicting the dip-coating process to integrate nanoparticles (NPs onto the top surface of silicon solar cells (Scs). The real photograph of the experimental setup is included. [Reproduced with permission from [10]. Copyright The Optical Society 2012.]

Fig. 4.
Fig. 4.

(a) Schematic diagram showing the structure of the plasmonic solar module. (b) Enlarged schematic cross section of the solar cells integrated with silver lumpy nanoparticles. (c) Photo of the plasmonic thin-film module. The white circles provide an example of where the EQE is measured on a solar cell for the J sc mapping.

Fig. 5.
Fig. 5.

J sc enhancement mapping produced from the EQE data for the solar minimodule containing 13 small solar cells integrated with 200 nm lumpy nanoparticles at a 5% coverage density compared with the reference module without nanoparticle integration.

Fig. 6.
Fig. 6.

Statistics of the major parameters: (a)  J sc , (b) fill factor, (c)  V oc , and (d) efficiency of the solar cells in the solar modules with (red) and without (blue) the nanoparticle integration.

Fig. 7.
Fig. 7.

(a) Measured EQE curve of the highest efficiency solar cell with nanoparticles compared to a reference solar cell without nanoparticles. Inset: enhancement of EQE. (b) Current density versus voltage curves for the highest efficiency solar cell with nanoparticles and the nanoplasmonic module compared to a reference solar cell without nanoparticles.

Metrics