Abstract

High-order sideband nonlinear optical properties in a DNA–quantum dot coupled system are investigated theoretically here. In this paper, we demonstrate the significant enhancement of the third- and fifth-order optical nonlinear properties of the system by applying the pump-probe technique with pump-exciton detuning tuned to zero. It is shown clearly that these phenomena cannot occur without the DNA–quantum dot coupling, implying some potential applications like DNA detection. We can also obtain and tune the significantly amplified sideband beams at frequencies ωp±2ωD. This research could provide people a deeper insight into the nonlinear optical behaviors in coupled DNA–quantum dot systems.

© 2013 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. L. Falcao-Filho, B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
    [CrossRef]
  2. D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008).
    [CrossRef]
  3. R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
    [CrossRef]
  4. Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
    [CrossRef]
  5. F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
    [CrossRef]
  6. B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17, 1126–1135 (2009).
    [CrossRef]
  7. R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
    [CrossRef]
  8. E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
    [CrossRef]
  9. E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
    [CrossRef]
  10. R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
    [CrossRef]
  11. S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).
  12. Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
    [CrossRef]
  13. M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
    [CrossRef]
  14. O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
    [CrossRef]
  15. C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
    [CrossRef]
  16. S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
    [CrossRef]
  17. J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
    [CrossRef]
  18. A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
    [CrossRef]
  19. J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
    [CrossRef]
  20. W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
    [CrossRef]
  21. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
    [CrossRef]
  22. N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
    [CrossRef]
  23. J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
    [CrossRef]
  24. C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
    [CrossRef]
  25. C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).
  26. D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).
  27. H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).
  28. H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).
  29. C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
    [CrossRef]
  30. G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
    [CrossRef]
  31. B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).
  32. B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).
  33. V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
    [CrossRef]
  34. H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
    [CrossRef]
  35. J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
    [CrossRef]
  36. G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
    [CrossRef]
  37. C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
    [CrossRef]
  38. R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
    [CrossRef]
  39. B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
    [CrossRef]
  40. M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
    [CrossRef]
  41. Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
    [CrossRef]

2012 (3)

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[CrossRef]

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

2011 (3)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

2010 (4)

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

2009 (3)

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

B. Gu, W. Ji, X. Q. Huang, P. S. Patil, and S. M. Dharmaprakash, “Nonlinear optical properties of 2,4,5-trimethoxy-4-nitrochalcone: observation of two-photon-induced excited-state nonlinearities,” Opt. Express 17, 1126–1135 (2009).
[CrossRef]

2008 (4)

D. Rativa, R. E. de Araujo, and A. S. L. Gomes, “Nonresonant high-order nonlinear optical properties of silver nanoparticles in aqueous solution,” Opt. Express 16, 19244–19252 (2008).
[CrossRef]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

2007 (4)

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

E. L. Falcao-Filho, B. de Araujo, and J. J. Rodrigues, “High-order nonlinearities of aqueous colloids containing silver nanoparticles,” J. Opt. Soc. Am. B 24, 2948–2956 (2007).
[CrossRef]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
[CrossRef]

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

2006 (2)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[CrossRef]

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[CrossRef]

2005 (2)

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[CrossRef]

2004 (1)

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[CrossRef]

2002 (1)

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[CrossRef]

2001 (1)

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[CrossRef]

2000 (2)

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[CrossRef]

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[CrossRef]

1997 (1)

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[CrossRef]

1996 (1)

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

1995 (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

1994 (1)

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[CrossRef]

1985 (1)

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

1984 (1)

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

1983 (1)

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Adai, B. K.

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[CrossRef]

Alegre, T. P. M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Allman, M. S.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Amdursky, N.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Archer, L. A.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Arcizet, O.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Baba, M.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

Banin, U.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Barthelemy, A.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[CrossRef]

Birendra, S. T.

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Bode, M.

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[CrossRef]

Boltaev, G. S.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

Breuer, H. P.

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

Carmichael, H.

H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

Chan, J.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Chang, D. E.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Chen, H. M.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Chen, Y. H.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Cicak, K.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Couderc, V.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[CrossRef]

Couris, S.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[CrossRef]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

Davis, C. C.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

de Araujo, B.

de Araujo, R. E.

Deléglise, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Dharmaprakash, S. M.

Donega, C. M.

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[CrossRef]

Dong, F.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[CrossRef]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

Dorfman, B. H.

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Edwards, G. S.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

Eichenfield, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Falcao-Filho, E. L.

Ganeev, R. A.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[CrossRef]

Gardiner, C. W.

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[CrossRef]

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

Gavartin, E.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Gazit, E.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Ghayoury, A. E.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Gill, R.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Giovannetti, V.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[CrossRef]

Gomes, A. S. L.

Grote, J. G.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Z. Yu, W. Li, J. A. Hagen, Y. Zhou, D. Klotzkin, J. G. Grote, and A. J. Steckl, “Photoluminescence and lasing from deoxyribonucleic acid (DNA) thin films doped with sulforhodamine,” Appl. Opt. 46, 1507–1513 (2007).
[CrossRef]

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[CrossRef]

Gu, B.

Gu, C. M.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

Guo, Q. X.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

Hagen, J. A.

He, W.

He, W. Q.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

Hill, J. T.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Huang, X. Q.

Ichihara, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

Jacobs, K.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[CrossRef]

James, G. G.

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Ji, W.

Jiang, W.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Jung, E. M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Kajzar, F.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Kipperberg, T. J.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Klotzkin, D.

Kong, X. X.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Koudoumas, E.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[CrossRef]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

Krupka, O.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Kuroda, H.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

Kuroki, M. T.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[CrossRef]

Leach, S.

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[CrossRef]

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

Li, D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Li, J. J.

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[CrossRef]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

Li, W.

Lin, Q.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Lou, X. W.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Marko, J. F.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

Meijerink, A.

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[CrossRef]

Milburn, G. J.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[CrossRef]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Molotskii, M.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Ogawa, H.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

Painter, O.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Patil, P. S.

Petruccione, F.

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

Quemard, C.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[CrossRef]

Rativa, D.

Rau, I.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Rivière, R.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Rodrigues, J. J.

Rosenman, G.

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

Ryasnyanskii, A. I.

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[CrossRef]

Safavi-Naeini, A. H.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Saffer, J. D.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

Sahraoui, B.

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Samoc, A.

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[CrossRef]

Samoc, M.

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[CrossRef]

Schliesser, A.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Selke, M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Serdar, S. N.

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Shen, W. Z.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

Shi, L. X.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Shweky, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Si, L. G.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Siggia, E. D.

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

Simmonds, R. W.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Sirois, A. J.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Smektala, F.

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[CrossRef]

Steckl, A. J.

Suzuki, M.

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

Swicord, M. L.

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

Teufel, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Trzoss, M.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Tsay, M. J.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Tugushev, R. I.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[CrossRef]

Tzatzadaki, M. D.

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

Usmanov, T.

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

Vitali, D.

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[CrossRef]

Walls, D. F.

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[CrossRef]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

Wang, L.

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Wang, T. H.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[CrossRef]

Weis, S.

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Weiss, S.

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

Whittaker, J. D.

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

Willner, I.

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Winger, M.

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Wu, Y.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Xiong, H.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Yang, X. X.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Yeh, H. C.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[CrossRef]

Yu, Z.

Yuan, C. L.

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Zandt, L. L.

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Zhang, C. Y.

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[CrossRef]

Zhang, Z. Q.

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

Zheng, A. S.

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Zhou, Y.

Zhu, K. D.

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[CrossRef]

W. He, J. J. Li, and K. D. Zhu, “Coupling-rate determination based on radiation pressure-induced normal mode splitting in cavity optomechanical systems,” Opt. Lett. 35, 339–341 (2010).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

Zoller, P.

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[CrossRef]

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

Adv. Polym. Sci. (1)

S. T. Birendra, S. N. Serdar, and G. G. James, “Bio-organic optoelectronic devices using DNA,” Adv. Polym. Sci. 223, 189–212 (2010).

Appl. Opt. (1)

Appl. Phys. Lett. (3)

Z. Q. Zhang, W. Q. He, C. M. Gu, W. Z. Shen, H. Ogawa, and Q. X. Guo, “Determination of the third- and fifth-order nonlinear refractive indices in InN thin films,” Appl. Phys. Lett. 91, 221902 (2007).
[CrossRef]

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Self-assembled bioinspired quantum dots: optical properties,” Appl. Phys. Lett. 94, 261907 (2009).
[CrossRef]

J. J. Li and K. D. Zhu, “A scheme for measuring vibrational frequency and coupling strength in a coupled annomechancial resonator-quantum DTO system,” Appl. Phys. Lett. 94, 063116 (2009).
[CrossRef]

Biophys. J. (2)

G. S. Edwards, C. C. Davis, J. D. Saffer, and M. L. Swicord, “Microwave-field-driven acoustic modes in DNA,” Biophys. J. 47, 799–807 (1985).
[CrossRef]

B. K. Adai, “Vibrational resonances in biological systems at microwave,” Biophys. J. 82, 1147–1152 (2002).
[CrossRef]

Biopolymers (1)

B. H. Dorfman and L. L. Zandt, “Vibration of DNA polymer in viscous solvent,” Biopolymers 22, 2639–2665 (1983).

Chem. Phys. Lett. (1)

M. Samoc, A. Samoc, and J. G. Grote, “Complex nonlinear refractive index of DNA,” Chem. Phys. Lett. 431, 132–134 (2006).
[CrossRef]

Dissert. Abstr. Int. (1)

B. H. Dorfman, “The effects of viscous water on the normal mode vibrations of DNA,” Dissert. Abstr. Int. 45, 2213 (1984).

Eur. Phys. J. D (1)

R. A. Ganeev, G. S. Boltaev, R. I. Tugushev, T. Usmanov, M. Baba, and H. Kuroda, “Low- and high-order nonlinear optical characterization of C60-containing media,” Eur. Phys. J. D 64, 109–114 (2011).
[CrossRef]

J. Am. Chem. Soc. (2)

N. Amdursky, M. Molotskii, E. Gazit, and G. Rosenman, “Elementary building blocks of self-assembled peptide nanotubes,” J. Am. Chem. Soc. 132, 15632–15636 (2010).
[CrossRef]

M. J. Tsay, M. Trzoss, L. X. Shi, X. X. Kong, M. Selke, E. M. Jung, and S. Weiss, “Singlet oxygen production by peptide-coated quantum dot-photosensitizer conjugates,” J. Am. Chem. Soc. 129, 6865–6871 (2007).
[CrossRef]

J. Appl. Phys. (1)

R. A. Ganeev, M. Suzuki, M. Baba, M. Ichihara, and H. Kuroda, “Low- and high-order nonlinear optical properties of Au, Pt, Pd, and Ru nanoparticles,” J. Appl. Phys. 103, 063102 (2008).
[CrossRef]

J. Non-Cryst. Solids (1)

F. Smektala, C. Quemard, V. Couderc, and A. Barthelemy, “Non-linear optical properties of chalcogenide glasses measured by Z-scan,” J. Non-Cryst. Solids 274, 232–237 (2000).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. Phys. B (1)

E. Koudoumas, F. Dong, M. D. Tzatzadaki, S. Couris, and S. Leach, “High-order nonlinear optical response of C60-toluene solutions in the sub-picosecond regime,” J. Phys. B 29, L773–L778 (1996).
[CrossRef]

J. Phys. Chem. B (1)

R. Gill, I. Willner, I. Shweky, and U. Banin, “Fluorescence resonance energy transfer in CdSe/ZnS-DNA conjugates: probing hybridization and DNA cleavage,” J. Phys. Chem. B 109, 23715–23719 (2005).
[CrossRef]

Macromolecules (1)

J. F. Marko and E. D. Siggia, “Stretching DNA,” Macromolecules 28, 8759–8770 (1995).
[CrossRef]

Nano. Res. Lett. (1)

J. J. Li and K. D. Zhu, “Coherent optical spectroscopy in a biological semiconductor quantum dot-DNA hybrid system,” Nano. Res. Lett. 7, 1–7 (2012).
[CrossRef]

Nat. Mater. (1)

C. Y. Zhang, H. C. Yeh, M. T. Kuroki, and T. H. Wang, “Single-quantum-dot-based DNA nanosensor,” Nat. Mater. 4, 826–831 (2005).
[CrossRef]

Nature (2)

J. D. Teufel, D. Li, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, and R. W. Simmonds, “Circuit cavity electromechanics in the strong-coupling regime,” Nature 471, 204–208 (2011).
[CrossRef]

A. H. Safavi-Naeini, T. P. M. Alegre, J. Chan, M. Eichenfield, M. Winger, Q. Lin, J. T. Hill, D. E. Chang, and O. Painter, “Electromagnetically induced transparency and slow light with optomechanics,” Nature 472, 69–73 (2011).
[CrossRef]

Opt. Commun. (1)

E. Koudoumas, F. Dong, S. Couris, and S. Leach, “High order nonlinear optical response of fullerene solutions in the nanosecond regime,” Opt. Commun. 138, 301–304 (1997).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Spectrosc. (1)

R. A. Ganeev, A. I. Ryasnyanskii, and R. I. Tugushev, “Effect of higher order nonlinear optical processes on optical absorption in the photorefractive BSO and BGO crystals,” Opt. Spectrosc. 96, 526–531 (2004).
[CrossRef]

Phy. Rev. A (3)

V. Giovannetti and D. Vitali, “Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion,” Phy. Rev. A 63, 023812 (2001).
[CrossRef]

C. W. Gardiner and P. Zoller, “Quantum kinetic theory. V. Quantum kinetic master equation for mutual interaction of condensate and noncondensate,” Phy. Rev. A 61, 033601 (2000).
[CrossRef]

G. J. Milburn, K. Jacobs, and D. F. Walls, “Quantum-limited measurements with the atomic force microscope,” Phy. Rev. A 50, 5256–5263 (1994).
[CrossRef]

Phys. Rev. A (1)

H. Xiong, L. G. Si, A. S. Zheng, X. X. Yang, and Y. Wu, “Higher-order sidebands in optomechanically induced transparency,” Phys. Rev. A 86, 013815 (2012).
[CrossRef]

Phys. Rev. B (1)

C. M. Donega, M. Bode, and A. Meijerink, “Size-and temperature-dependence of exciton lifetimes in CdSe quantum dots,” Phys. Rev. B 74, 085320 (2006).
[CrossRef]

Phys. Rev. Lett. (1)

C. L. Yuan, H. M. Chen, X. W. Lou, and L. A. Archer, “DNA bending stiffness on small length scales,” Phys. Rev. Lett. 100, 018102 (2008).
[CrossRef]

Science (1)

S. Weis, R. Rivière, S. Deléglise, E. Gavartin, O. Arcizet, A. Schliesser, and T. J. Kipperberg, “Optomechanically induced transparency,” Science 330, 1520–1523 (2010).
[CrossRef]

Talanta (1)

Y. H. Chen, L. Wang, and W. Jiang, “Micrococcal nuclease detection based on peptide-bridged energy transfer between quantum dots and dye-labeled DNA,” Talanta 97, 533–538 (2012).
[CrossRef]

Thin Solid Films (1)

O. Krupka, A. E. Ghayoury, I. Rau, B. Sahraoui, J. G. Grote, and F. Kajzar, “NLO properties of functionalized DNA thin films,” Thin Solid Films 516, 8932–8936 (2008).
[CrossRef]

Other (4)

C. W. Gardiner and P. Zoller, Quantum Noise, 2nd ed. (Springer, 2000).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer, 1994).

H. Carmichael, Statistical Methods in Quantum Optics (Springer, 1999).

H. P. Breuer and F. Petruccione, The Theory of Open Quantum Systems (Oxford University, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1.

DNA and peptide quantum dot coupling system: a peptide quantum dot coupled to DNA molecules in the simultaneous presence of two optical fields. The energy level structure of the quantum dot dressed by the vibrational modes of DNA molecules is also shown.

Fig. 2.
Fig. 2.

Optical dispersions and nonlinear absorptions (in units of Σ 3 and Σ 5 for χ ( ω p 2 ω s ) eff ( 3 ) and χ ( 3 ω p + 2 ω s ) eff ( 5 ) , respectively) with pump beam on-resonance ( Δ p = 0 ). (a) Third-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 0 . (b) Third-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 2 GHz . (c) Fifth-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 0 . (d) Fifth-order optical dispersion and nonlinear absorption as functions of probe-exciton detuning Δ s in the case λ = 2 GHz .

Fig. 3.
Fig. 3.

ζ 3 value caused by third-order nonlinearity with pump beam off-resonance. (a)  ζ 3 value as a function of probe-pump detuning in the case Δ p = ω D . (b)  ζ 3 value as a function of probe-pump detuning in the case Δ p = 1.25 ω D . (c) Parametric process of point δ / ω D = 1 in Fig. 3(a), where ω sd = ω p 2 ω D is the frequency of the sideband beam.

Fig. 4.
Fig. 4.

ζ 3 value by third-order nonlinearity with different Rabi frequency and exciton-pump detuning. (a)  ζ 3 value as a function of Rabi frequency in the case Δ p = ω D and δ = ω D . (b)  ζ 3 value as a function of exciton-pump detuning Δ p in the case δ = ω D and Ω p = 5 GHz .

Fig. 5.
Fig. 5.

ζ 5 value caused by fifth-order nonlinearity with exciton-pump detuning Δ p = ω D and different δ . (a)  ζ 5 value as a function of Rabi frequency in the case δ = ω D . (b)  ζ 5 value as a function of Rabi frequency in the case δ = ω D .

Equations (19)

Equations on this page are rendered with MathJax. Learn more.

H = Δ p s z + i = 1 n ( p i 2 2 m i + 1 2 m i ω i 2 q i 2 ) Ω p ( s + + s ) + ϑ s z μ [ E s s + exp ( i δ t ) + E s * s exp ( i δ t ) ] ,
d s z d t = Γ 1 ( s z + 1 / 2 ) + i Ω p ( s + s ) + i μ E s exp ( i δ t ) s + i μ E s * exp ( i δ t ) s ,
d s d t = ( i Δ p + i ϑ + Γ 2 ) s 2 i Ω p s z 2 i μ E s exp ( i δ t ) s z + F n ,
d 2 ϑ d t 2 + d ϑ τ D d t + ω D 2 ϑ = λ ω D 2 s z + ξ n ,
ξ + ( t ) ξ ( t ) = 1 τ D ω D ω + ω coth ( ω 2 k B T ) 2 π e i ω ( t t ) d ω .
s 0 = 2 i Ω p s z 0 i λ s z 0 Γ 2 i Δ p , ϑ 0 = λ s z 0 ,
1 2 Γ 1 Γ 2 2 + 1 2 Γ 1 Δ p 2 = ( Γ 1 λ 2 ) s z 0 3 + ( Γ 1 λ 2 2 + 2 Γ 1 λ Δ p ) s z 0 2 + ( Γ 1 Δ p 2 Γ 1 Γ 2 2 + Γ 1 λ Δ p 4 Γ 2 Ω p 2 ) s z 0 .
δ ˙ s z = i Ω p ( δ s * δ s ) Γ 1 δ s z + i μ E s exp ( i δ t ) ( s 0 * + δ s * ) i μ E s * exp ( i δ t ) ( s 0 + δ s ) ,
δ ˙ s = ( i Δ p + Γ 2 ) δ s 2 i Ω p δ s z i ( ϑ 0 δ s + δ ϑ s 0 + δ s δ ϑ ) 2 i μ E s exp ( i δ t ) ( s z 0 + δ s z ) ,
δ ¨ ϑ + δ ˙ ϑ τ D + ω D 2 δ ϑ = λ ω D 2 δ s z .
s 2 = M s z 2 + A ,
s + 2 = M + s z + 2 + A + + M 0 s z + E s ,
χ ( ω p 2 ω s ) eff ( 3 ) = N μ 2 s + 2 3 ε 0 Ω p E s 2 = Σ 3 χ ( 3 ) ,
χ ( 3 ω p + 2 ω s ) eff ( 5 ) = N μ 4 s 2 5 ε 0 3 Ω p 3 E s * 2 = Σ 5 χ ( 5 ) ,
P all = N μ δ s = ε 0 j = 1 ε j E j = j = 1 P j ,
ζ 3 100 = Im ( P ω p 2 ω s ) ω e g z 2 c ε 0 | E s | = N μ Im ( s + 2 ) ω e g z 2 c ε 0 | E s | ,
ζ 5 100 = Im ( P 3 ω p + 2 ω s ) ω e g z 2 c ε 0 | E s | = N μ Im ( s 2 ) ω e g z 2 c ε 0 | E s | ,
E o = E i exp ( Im ( ε ) ω z / 2 c ) ,
E o E i ( 1 Im ( ε ) ω z / 2 c ) .

Metrics