Abstract

Self-powered and flexible ultrabroadband photodetectors (PDs) are desirable in a wide range of applications. The current PDs based on the photothermoelectric (PTE) effect have realized broadband photodetection. However, most of them express low photoresponse and lack of flexibility. In this work, high-performance, self-powered, and flexible PTE PDs based on laser-scribed reduced graphene oxide (LSG)/CsPbBr3 are developed. The comparison experiment with LSG PD and fundamental electric properties show that the LSG/CsPbBr3 device exhibits enhanced ultrabroadband photodetection performance covering ultraviolet to terahertz range with high photoresponsivity of 100 mA/W for 405 nm and 10 mA/W for 118 μm at zero bias voltage, respectively. A response time of 18 ms and flexible experiment are also acquired at room temperature. Moreover, the PTE effect is fully discussed in the LSG/CsPbBr3 device. This work demonstrates that LSG/CsPbBr3 is a promising candidate for the construction of high-performance, flexible, and self-powered ultrabroadband PDs at room temperature.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
    [Crossref]
  2. J. T. W. Yeow and M. Zhang, “A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite,” Carbon 156, 339–345 (2020).
    [Crossref]
  3. Q.-M. Wang and Z.-Y. Yang, “Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity,” Carbon 138, 90–97 (2018).
    [Crossref]
  4. M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
    [Crossref]
  5. X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
    [Crossref]
  6. M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
    [Crossref]
  7. C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
    [Crossref]
  8. Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
    [Crossref]
  9. Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
    [Crossref]
  10. C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
    [Crossref]
  11. A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
    [Crossref]
  12. S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
    [Crossref]
  13. D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
    [Crossref]
  14. M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
    [Crossref]
  15. V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
    [Crossref]
  16. X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
    [Crossref]
  17. X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
    [Crossref]
  18. W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
    [Crossref]
  19. C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
    [Crossref]
  20. X. Lu, P. Jiang, and X. Bao, “Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector,” Nat. Commun. 10, 138 (2019).
    [Crossref]
  21. Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, and J. Yao, “Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams,” Photon. Res. 8, 368–374 (2020).
    [Crossref]
  22. X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
    [Crossref]
  23. M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
    [Crossref]
  24. R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
    [Crossref]
  25. J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
    [Crossref]
  26. H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
    [Crossref]
  27. Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
    [Crossref]
  28. L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
    [Crossref]
  29. T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
    [Crossref]
  30. A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
    [Crossref]
  31. K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
    [Crossref]
  32. X. Cao, Z. Yin, and H. Zhang, “Three-dimensional graphene materials: preparation, structures and application in supercapacitors,” Energy Environ. Sci. 7, 1850–1865 (2014).
    [Crossref]
  33. W. Xu and T.-W. Lee, “Recent progress in fabrication techniques of graphene nanoribbons,” Mater. Horiz. 3, 186–207 (2016).
    [Crossref]
  34. H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
    [Crossref]
  35. S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
    [Crossref]
  36. X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
    [Crossref]
  37. J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
    [Crossref]
  38. J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
    [Crossref]
  39. S. S. Shin, S. J. Lee, and S. I. Seok, “Metal oxide charge transport layers for efficient and stable perovskite solar cells,” Adv. Funct. Mater. 29, 1900455 (2019).
    [Crossref]
  40. G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105–114 (2008).
    [Crossref]
  41. A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
    [Crossref]
  42. L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
    [Crossref]
  43. K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
    [Crossref]
  44. X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
    [Crossref]
  45. F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
    [Crossref]
  46. H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
    [Crossref]
  47. X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
    [Crossref]

2020 (2)

2019 (9)

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
[Crossref]

X. Lu, P. Jiang, and X. Bao, “Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector,” Nat. Commun. 10, 138 (2019).
[Crossref]

S. S. Shin, S. J. Lee, and S. I. Seok, “Metal oxide charge transport layers for efficient and stable perovskite solar cells,” Adv. Funct. Mater. 29, 1900455 (2019).
[Crossref]

2018 (9)

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Q.-M. Wang and Z.-Y. Yang, “Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity,” Carbon 138, 90–97 (2018).
[Crossref]

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

2017 (7)

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
[Crossref]

2016 (1)

W. Xu and T.-W. Lee, “Recent progress in fabrication techniques of graphene nanoribbons,” Mater. Horiz. 3, 186–207 (2016).
[Crossref]

2015 (5)

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
[Crossref]

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

2014 (7)

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

X. Cao, Z. Yin, and H. Zhang, “Three-dimensional graphene materials: preparation, structures and application in supercapacitors,” Energy Environ. Sci. 7, 1850–1865 (2014).
[Crossref]

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

2013 (2)

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
[Crossref]

2012 (2)

M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
[Crossref]

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

2011 (1)

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

2010 (1)

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

2008 (1)

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105–114 (2008).
[Crossref]

Ahuja, R.

X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
[Crossref]

Ajayan, P. M.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Alden, J. S.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

An, K.-S.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Ananthanarayanan, A.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Andersson, M. A.

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

Bao, X.

X. Lu, P. Jiang, and X. Bao, “Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector,” Nat. Commun. 10, 138 (2019).
[Crossref]

Barisic, O. S.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Barkelid, M.

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

Beltram, F.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Black, N. C. G.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Bobrinetskiy, I. I.

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Bourgès, C.

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

Bratschitsch, R.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

Bremner, S.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Burke, A.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Buscema, M.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Cao, X.

X. Cao, Z. Yin, and H. Zhang, “Three-dimensional graphene materials: preparation, structures and application in supercapacitors,” Energy Environ. Sci. 7, 1850–1865 (2014).
[Crossref]

Cao, Y.

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
[Crossref]

Castellanos-Gomez, A.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

Chang, H.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Chang, J.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Chang, S.-J.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Chen, G.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

Chen, H.

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Chen, H.-Y.

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Chen, I. J. A.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Chen, J.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Chen, M.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Chen, P.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Chen, W.

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

Chen, X.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Chen, Y.

Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, and J. Yao, “Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams,” Photon. Res. 8, 368–374 (2020).
[Crossref]

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Chen, Y. W. M.

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Chen, Z.

Cheng, B.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Chong, T. K.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

Chu, W.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Cohen, L. F.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Conibeer, G.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Coquillat, D.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Cui, H.

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

Dadarlat, D.

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

Dang, V. Q.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

de Sterke, C. M.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

Deng, T.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Ding, J.

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

Dong, Z.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Drew, H. D.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Du, L.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

Du, S.

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

Duy, L. T.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

Emelianov, A. V.

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Ercolani, D.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Fahlvik, S.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Fan, F.

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Fang, Y.

L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
[Crossref]

Forro, L.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Gaal, R.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Gabor, N. M.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

Gaskill, D. K.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Ge, Z.

Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, and J. Yao, “Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams,” Photon. Res. 8, 368–374 (2020).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Generalov, A.

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

Giannini, V.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Gilbertson, A. M.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Groenendijk, D. J.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

Gu, M.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Guan, Z.

W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
[Crossref]

Guilmeau, E.

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

Gusken, N. A.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

He, J.

H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
[Crossref]

Horvath, E.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Hu, Q.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Hu, W.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Huang, Q.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Huang, Y.

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Huang, Z.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Jacimovic, J.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Jadidi, M. M.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Jenkins, G. S.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Jeon, J.-H.

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

Jeong, J. R.

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

Ji, H.

M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
[Crossref]

Ji, W.

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

Jia, B.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Jiang, P.

X. Lu, P. Jiang, and X. Bao, “Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector,” Nat. Commun. 10, 138 (2019).
[Crossref]

Jiang, X.

X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
[Crossref]

Jin, Y.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

Kang, K.

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

Kang, M.-A.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Kim, B.-Y.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

Kim, D.-H.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Kim, D.-J.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

Kim, H.-J.

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

Kim, J.

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

Kim, S. J.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Kim, Y.

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

Kireev, D.

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Knap, W.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Lee, H. B.

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

Lee, M. H.

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

Lee, N.-E.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

Lee, S. H.

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

Lee, S. J.

S. S. Shin, S. J. Lee, and S. I. Seok, “Metal oxide charge transport layers for efficient and stable perovskite solar cells,” Adv. Funct. Mater. 29, 1900455 (2019).
[Crossref]

Lee, S. S.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Lee, T.-W.

W. Xu and T.-W. Lee, “Recent progress in fabrication techniques of graphene nanoribbons,” Mater. Horiz. 3, 186–207 (2016).
[Crossref]

Lehmann, N. S.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Lei, W.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Lemoine, P.

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

Li, C.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Li, D.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Li, F.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Li, G.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Li, H.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Li, J.

Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, and J. Yao, “Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams,” Photon. Res. 8, 368–374 (2020).
[Crossref]

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Li, Q.

Li, S.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Li, T.

Li, Y.

Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, and J. Yao, “Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams,” Photon. Res. 8, 368–374 (2020).
[Crossref]

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Li, Y.-L.

X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
[Crossref]

Liang, J.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Lim, H.

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

Lim, J.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Lim, K.-H.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Lim, S.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Limpert, S.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Lin, H.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Lin, K.-T.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

Linke, H.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Liu, C.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

Liu, Q.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Liu, W.

W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
[Crossref]

Liu, X.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Liu, Y.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Liu, Z.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Lu, W.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

Lu, X.

X. Lu, P. Jiang, and X. Bao, “Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector,” Nat. Commun. 10, 138 (2019).
[Crossref]

Ma, C.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Ma, W.

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Maier, S. A.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

McEuen, P. L.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

Mohammad, M. A.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Moon, H. K.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

Murphy, T. E.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Myung, S.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Nalla, V.

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

Ni, H.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Niu, Y.

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Offenhäusser, A.

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Oh, I.-K.

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

Otero, N.

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Oulton, R. F.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Park, C.-Y.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Pettes, M. T.

M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
[Crossref]

Pisoni, A.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Pistol, M. E.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Pitanti, A.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Qiu, L.

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Ren, T. L.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

Ren, T.-L.

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Ren, Y.

Romero, P. M.

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Routh, P.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Ruoff, R. S.

M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
[Crossref]

Sana, B.

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Seok, S. I.

S. S. Shin, S. J. Lee, and S. I. Seok, “Metal oxide charge transport layers for efficient and stable perovskite solar cells,” Adv. Funct. Mater. 29, 1900455 (2019).
[Crossref]

Shautsova, V.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Sheikh, A. D.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Sheng, Q.

Shi, L.

M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
[Crossref]

Shi, Q.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Shin, S. S.

S. S. Shin, S. J. Lee, and S. I. Seok, “Metal oxide charge transport layers for efficient and stable perovskite solar cells,” Adv. Funct. Mater. 29, 1900455 (2019).
[Crossref]

Sidiropoulos, T.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Singh, R. S.

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

Snyder, G. J.

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105–114 (2008).
[Crossref]

Song, W.

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

Sorba, L.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Spina, M.

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

Stake, J.

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

Steele, G. A.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

Sturmberg, B. C. P.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

Su, F.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Su, X.

L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
[Crossref]

Suess, R. J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Sun, J.

H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
[Crossref]

Sun, J.-L.

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Sun, Z.

L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
[Crossref]

Sushkov, A. B.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Tang, W.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Tao, Z.

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Teppe, F.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Thelander, C.

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

Tian, H.

H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
[Crossref]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Tiwary, C. S.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Toberer, E. S.

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105–114 (2008).
[Crossref]

Tredicucci, A.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Tripon, C.

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

Trung, T. Q.

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

van der Zande, A. M.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

van der Zant, H. S.

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

van der Zant, H. S. J.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

Vasconcellos, S. M. D.

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

Viti, L.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Vitiello, M. S.

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

Vorobiev, A.

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

Wang, H.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Wang, L.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Wang, P.

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Wang, Q.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Wang, Q.-M.

Q.-M. Wang and Z.-Y. Yang, “Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity,” Carbon 138, 90–97 (2018).
[Crossref]

Wang, S.-W.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Wang, W.

W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
[Crossref]

Wang, X.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Wang, Y.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Wee, A. T. S.

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

Wei, D.

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

Wei, J.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Wen, J.

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Wong, H.-S. P.

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Wu, C.

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Wu, D.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

Wu, T.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Wu, W.

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Xiao, P.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Xiao, X.

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

Xie, Y.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Xu, G.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Xu, H.

W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
[Crossref]

Xu, W.

W. Xu and T.-W. Lee, “Recent progress in fabrication techniques of graphene nanoribbons,” Mater. Horiz. 3, 186–207 (2016).
[Crossref]

Xu, X.

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

Xue, Q.-T.

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Yan, F.

Yan, J.

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Yang, F.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Yang, N.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Yang, X.

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

Yang, Y.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

Yang, Z.-Y.

Q.-M. Wang and Z.-Y. Yang, “Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity,” Carbon 138, 90–97 (2018).
[Crossref]

Yao, J.

Yeow, J. T. W.

J. T. W. Yeow and M. Zhang, “A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite,” Carbon 156, 339–345 (2020).
[Crossref]

Yin, J.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Yin, Z.

X. Cao, Z. Yin, and H. Zhang, “Three-dimensional graphene materials: preparation, structures and application in supercapacitors,” Energy Environ. Sci. 7, 1850–1865 (2014).
[Crossref]

Yu, K.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Yu, W.

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

Yu, Y.

Zhan, X.

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

Zhang, H.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

X. Cao, Z. Yin, and H. Zhang, “Three-dimensional graphene materials: preparation, structures and application in supercapacitors,” Energy Environ. Sci. 7, 1850–1865 (2014).
[Crossref]

Zhang, L.

L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
[Crossref]

Zhang, M.

J. T. W. Yeow and M. Zhang, “A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite,” Carbon 156, 339–345 (2020).
[Crossref]

Zhang, T.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Zhang, Y.

Y. Li, Y. Zhang, Y. Yu, Z. Chen, Q. Li, T. Li, J. Li, H. Zhao, Q. Sheng, F. Yan, Z. Ge, Y. Ren, Y. Chen, and J. Yao, “Ultraviolet-to-microwave room-temperature photodetectors based on three-dimensional graphene foams,” Photon. Res. 8, 368–374 (2020).
[Crossref]

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Zhang, Z.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Zhao, H.

Zhao, J.

X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
[Crossref]

Zhao, K.

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Zhao, M.

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Zhao, Y.

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

Zhao, Z.

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Zheng, J.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Zheng, X.

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Zhou, J.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Zhou, L.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Zhou, W.

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

Zhou, Y.

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

Zhu, J.-L.

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Zhuang, D.

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Zuo, Y.

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Zuo, Z.

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

Zwiller, V.

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

ACS Appl. Mater. Interfaces (2)

Y. Liu, J. Yin, P. Wang, Q. Hu, Y. Wang, Y. Xie, Z. Zhao, Z. Dong, J.-L. Zhu, W. Chu, N. Yang, J. Wei, W. Ma, and J.-L. Sun, “High-performance, ultra-broadband, ultraviolet to terahertz photodetectors based on suspended carbon nanotube films,” ACS Appl. Mater. Interfaces 10, 36304–36311 (2018).
[Crossref]

Y. W. M. Chen, J. Wen, H. Chen, W. Ma, F. Fan, Y. Huang, and Z. Zhao, “Annealing temperature-dependent terahertz thermal–electrical conversion characteristics of three-dimensional microporous graphene,” ACS Appl. Mater. Interfaces 11, 6411–6420 (2019).
[Crossref]

ACS Nano (2)

R. S. Singh, V. Nalla, W. Chen, A. T. S. Wee, and W. Ji, “Laser patterning of epitaxial graphene for Schottky junction photodetectors,” ACS Nano 5, 5969–5975 (2011).
[Crossref]

J. Kim, J.-H. Jeon, H.-J. Kim, H. Lim, and I.-K. Oh, “Durable and water-floatable ionic polymer actuator with hydrophobic and asymmetrically laser-scribed reduced graphene oxide paper electrodes,” ACS Nano 8, 2986–2997 (2014).
[Crossref]

ACS Photon. (2)

Y. Wang, Y. Niu, M. Chen, J. Wen, W. Wu, Y. Jin, D. Wu, and Z. Zhao, “Ultrabroadband, sensitive, and fast photodetection with needle-like EuBiSe3 single crystal,” ACS Photon. 6, 895–903 (2019).
[Crossref]

A. V. Emelianov, D. Kireev, A. Offenhäusser, N. Otero, P. M. Romero, and I. I. Bobrinetskiy, “Thermoelectrically driven photocurrent generation in femtosecond laser patterned graphene junctions,” ACS Photon. 5, 3107–3115 (2018).
[Crossref]

Adv. Funct. Mater. (5)

S. S. Shin, S. J. Lee, and S. I. Seok, “Metal oxide charge transport layers for efficient and stable perovskite solar cells,” Adv. Funct. Mater. 29, 1900455 (2019).
[Crossref]

X. Jiang, J. Zhao, Y.-L. Li, and R. Ahuja, “Tunable assembly of sp3 cross-linked 3D graphene monoliths: a first-principles prediction,” Adv. Funct. Mater. 23, 5846–5853 (2013).
[Crossref]

Z. Huang, H. Chen, Y. Huang, Z. Ge, Y. Zhou, Y. Yang, P. Xiao, J. Liang, T. Zhang, Q. Shi, G. Li, and Y. Chen, “Ultra-broadband wide-angle terahertz absorption properties of 3D graphene foam,” Adv. Funct. Mater. 28, 1704363 (2017).
[Crossref]

L. T. Duy, D.-J. Kim, T. Q. Trung, V. Q. Dang, B.-Y. Kim, H. K. Moon, and N.-E. Lee, “High performance three-dimensional chemical sensor platform using reduced graphene oxide formed on high aspect-ratio micro-pillars,” Adv. Funct. Mater. 25, 883–890 (2015).
[Crossref]

A. Ananthanarayanan, X. Wang, P. Routh, B. Sana, S. Lim, D.-H. Kim, K.-H. Lim, J. Li, and P. Chen, “Facile synthesis of graphene quantum dots from 3D graphene and their application for Fe3+ sensing,” Adv. Funct. Mater. 24, 3021–3026 (2014).
[Crossref]

Appl. Phys. Lett. (1)

X. Yang, A. Vorobiev, A. Generalov, M. A. Andersson, and J. Stake, “A flexible graphene terahertz detector,” Appl. Phys. Lett. 111, 021102 (2017).
[Crossref]

Appl. Surf. Sci. (1)

L. Zhang, X. Su, Z. Sun, and Y. Fang, “Laser-induced thermoelectric voltage effect of La0.9Sr0.1NiO3 films,” Appl. Surf. Sci. 351, 693–696 (2015).
[Crossref]

Carbon (5)

J. T. W. Yeow and M. Zhang, “A flexible, scalable, and self-powered mid-infrared detector based on transparent PEDOT: PSS/graphene composite,” Carbon 156, 339–345 (2020).
[Crossref]

Q.-M. Wang and Z.-Y. Yang, “Graphene photodetector with polydiacetylenes acting as both transfer-supporting and light-absorbing layers: flexible, broadband, ultrahigh photoresponsivity and detectivity,” Carbon 138, 90–97 (2018).
[Crossref]

M.-A. Kang, S. J. Kim, W. Song, S.-J. Chang, C.-Y. Park, S. Myung, J. Lim, S. S. Lee, and K.-S. An, “Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method,” Carbon 116, 167–173 (2017).
[Crossref]

C. Liu, L. Wang, X. Chen, J. Zhou, W. Hu, X. Wang, J. Li, Z. Huang, W. Zhou, W. Tang, G. Xu, S.-W. Wang, and W. Lu, “Room-temperature photoconduction assisted by hot-carriers in graphene for sub-terahertz detection,” Carbon 130, 233–240 (2018).
[Crossref]

J. Wen, Y. Niu, P. Wang, M. Chen, W. Wu, Y. Cao, J.-L. Sun, M. Zhao, D. Zhuang, and Y. Wang, “Ultra-broadband self-powered reduced graphene oxide photodetectors with annealing temperature-dependent responsivity,” Carbon 153, 274–284 (2019).
[Crossref]

Dalton Trans. (1)

K. Yu, L. Zhou, F. Yang, J. Zheng, Y. Zuo, C. Li, B. Cheng, and Q. Wang, “All-inorganic perovskite quantum dot/mesoporous TiO2 composite-based photodetectors with enhanced performance,” Dalton Trans. 46, 1766–1769 (2017).
[Crossref]

Energy Environ. Sci. (1)

X. Cao, Z. Yin, and H. Zhang, “Three-dimensional graphene materials: preparation, structures and application in supercapacitors,” Energy Environ. Sci. 7, 1850–1865 (2014).
[Crossref]

J. Phys. Chem. C (1)

J. Ding, S. Du, Z. Zuo, Y. Zhao, H. Cui, and X. Zhan, “High detectivity and rapid response in perovskite CsPbBr3 single-crystal photodetector,” J. Phys. Chem. C 121, 4917–4923 (2017).
[Crossref]

J. Phys. Chem. Lett. (1)

A. Pisoni, J. Jacimovic, O. S. Barisic, M. Spina, R. Gaal, L. Forro, and E. Horvath, “Ultra-low thermal conductivity in organic-inorganic hybrid perovskite CH3NH3PbI3,” J. Phys. Chem. Lett. 5, 2488–2492 (2014).
[Crossref]

J. Therm. Anal. Calorim. (1)

C. Tripon, D. Dadarlat, C. Bourgès, P. Lemoine, and E. Guilmeau, “Photothermoelectric (PTE) characterization of CuCrO2 and Cu4Sn7S16 thermoelectric materials,” J. Therm. Anal. Calorim. 131, 3151–3156 (2018).
[Crossref]

Mater. Horiz. (1)

W. Xu and T.-W. Lee, “Recent progress in fabrication techniques of graphene nanoribbons,” Mater. Horiz. 3, 186–207 (2016).
[Crossref]

Nano Lett. (9)

H. Tian, H.-Y. Chen, T.-L. Ren, C. Li, Q.-T. Xue, M. A. Mohammad, C. Wu, Y. Yang, and H.-S. P. Wong, “Cost-effective, transfer-free, flexible resistive random access memory using laser-scribed reduced graphene oxide patterning technology,” Nano Lett. 14, 3214–3219 (2014).
[Crossref]

S. H. Lee, H. B. Lee, Y. Kim, J. R. Jeong, M. H. Lee, and K. Kang, “Neurite guidance on laser-scribed reduced graphene oxide,” Nano Lett. 18, 7421–7427 (2018).
[Crossref]

M. T. Pettes, H. Ji, R. S. Ruoff, and L. Shi, “Thermal transport in three-dimensional foam architectures of few-layer graphene and ultrathin graphite,” Nano Lett. 12, 2959–2964 (2012).
[Crossref]

T. Deng, Z. Zhang, Y. Liu, Y. Wang, F. Su, S. Li, Y. Zhang, H. Li, H. Chen, Z. Zhao, Y. Li, and Z. Liu, “Three-dimensional graphene field-effect transistors as high-performance photodetectors,” Nano Lett. 19, 1494–1503 (2019).
[Crossref]

M. S. Vitiello, D. Coquillat, L. Viti, D. Ercolani, F. Teppe, A. Pitanti, F. Beltram, L. Sorba, W. Knap, and A. Tredicucci, “Room-temperature terahertz detectors based on semiconductor nanowire field-effect transistors,” Nano Lett. 12, 96–101 (2012).
[Crossref]

X. Xu, N. M. Gabor, J. S. Alden, A. M. van der Zande, and P. L. McEuen, “Photo-thermoelectric effect at a graphene interface junction,” Nano Lett. 10, 562–566 (2010).
[Crossref]

S. Limpert, A. Burke, I. J. A. Chen, N. S. Lehmann, S. Fahlvik, S. Bremner, G. Conibeer, C. Thelander, M. E. Pistol, and H. Linke, “Bipolar photothermoelectric effect across energy filters in single nanowires,” Nano Lett. 17, 4055–4060 (2017).
[Crossref]

D. J. Groenendijk, M. Buscema, G. A. Steele, S. M. D. Vasconcellos, R. Bratschitsch, H. S. J. van der Zant, and A. Castellanos-Gomez, “Photovoltaic and photothermoelectric effect in a double-gated WSe2 device,” Nano Lett. 14, 5846–5852 (2014).
[Crossref]

M. Buscema, M. Barkelid, V. Zwiller, H. S. van der Zant, G. A. Steele, and A. Castellanos-Gomez, “Large and tunable photothermoelectric effect in single-layer MoS2,” Nano Lett. 13, 358–363 (2013).
[Crossref]

Nanoscale (2)

W. Liu, W. Wang, Z. Guan, and H. Xu, “A plasmon modulated photothermoelectric photodetector in silicon nanostripes,” Nanoscale 11, 4918–4924 (2019).
[Crossref]

X. Liu, H. Ni, Z. Tao, Q. Huang, J. Chen, Q. Liu, J. Chang, and W. Lei, “Highly sensitive and fast graphene nanoribbons/CsPbBr3 quantum dots phototransistor with enhanced vertically metal oxide heterostructures,” Nanoscale 10, 10182–10189 (2018).
[Crossref]

Nat. Commun. (5)

F. Li, C. Ma, H. Wang, W. Hu, W. Yu, A. D. Sheikh, and T. Wu, “Ambipolar solution-processed hybrid perovskite phototransistors,” Nat. Commun. 6, 8238 (2015).
[Crossref]

X. Wang, H. Tian, M. A. Mohammad, C. Li, C. Wu, Y. Yang, and T. L. Ren, “A spectrally tunable all-graphene-based flexible field-effect light-emitting device,” Nat. Commun. 6, 7767 (2015).
[Crossref]

V. Shautsova, T. Sidiropoulos, X. Xiao, N. A. Gusken, N. C. G. Black, A. M. Gilbertson, V. Giannini, S. A. Maier, L. F. Cohen, and R. F. Oulton, “Plasmon induced thermoelectric effect in graphene,” Nat. Commun. 9, 5190 (2018).
[Crossref]

X. Lu, P. Jiang, and X. Bao, “Phonon-enhanced photothermoelectric effect in SrTiO3 ultra-broadband photodetector,” Nat. Commun. 10, 138 (2019).
[Crossref]

X. Zheng, B. Jia, H. Lin, L. Qiu, D. Li, and M. Gu, “Highly efficient and ultra-broadband graphene oxide ultrathin lenses with three-dimensional subwavelength focusing,” Nat. Commun. 6, 9433 (2015).
[Crossref]

Nat. Mater. (1)

G. J. Snyder and E. S. Toberer, “Complex thermoelectric materials,” Nat. Mater. 7, 105–114 (2008).
[Crossref]

Nat. Nanotechnol. (1)

X. Cai, A. B. Sushkov, R. J. Suess, M. M. Jadidi, G. S. Jenkins, L. O. Nyakiti, R. L. Myers-Ward, S. Li, J. Yan, D. K. Gaskill, T. E. Murphy, H. D. Drew, and M. S. Fuhrer, “Sensitive room-temperature terahertz detection via the photothermoelectric effect in graphene,” Nat. Nanotechnol. 9, 814–819 (2014).
[Crossref]

Nat. Photonics (1)

H. Lin, B. C. P. Sturmberg, K.-T. Lin, Y. Yang, X. Zheng, T. K. Chong, C. M. de Sterke, and B. Jia, “A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light,” Nat. Photonics 13, 270–276 (2019).
[Crossref]

NPG Asia Mater. (1)

C. Liu, L. Du, W. Tang, D. Wei, J. Li, L. Wang, G. Chen, X. Chen, and W. Lu, “Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors,” NPG Asia Mater. 10, 318–327 (2018).
[Crossref]

Photon. Res. (1)

RSC Adv. (1)

H. Tian, Y. Cao, J. Sun, and J. He, “Enhanced broadband photoresponse of substrate-free reduced graphene oxide photodetectors,” RSC Adv. 7, 46536 (2017).
[Crossref]

Sci. Adv. (1)

K. Zhao, T. Zhang, H. Chang, Y. Yang, P. Xiao, H. Zhang, C. Li, C. S. Tiwary, P. M. Ajayan, and Y. Chen, “Super-elasticity of three-dimensionally cross-linked graphene materials all the way to deep cryogenic temperatures,” Sci. Adv. 5, eaav2589 (2019).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a)–(e) Processing procedures of the LSG/CsPbBr3 PD; (f) schematic structure of the LSG/CsPbBr3 PD; (g) surface morphology of laser reduced GO with different laser powers under electron microscope view (10×40).
Fig. 2.
Fig. 2. (a) XRD pattern of the CsPbBr3; (b) Raman characterization of the GO and LSG; (c) absorption spectra of the LSG and LSG/CsPbBr3; (d) PL spectra of the LSG, LSG/CsPbBr3, and CsPbBr3; (e) surface and cross section SEM image of the LSG/CsPbBr3; (f) EDS spectrum of LSG/CsPbBr3.
Fig. 3.
Fig. 3. (a), (b) Photocurrent voltage (IV) curves of the LSG and LSG/CsPbBr3 PDs under different 532 nm power densities irradiation; (c), (d) optical switching characteristics and time responses of the LSG PD and LSG/CsPbBr3 PD under 932.48  mW/cm2 power intensity at 532 nm laser.
Fig. 4.
Fig. 4. Optical-electrical response characteristics of the LSG/CsPbBr3 PD under different power densities of 532 nm illumination at 0 V bias voltage. (a) Optical switching characteristics of the device under different power intensities; (b) photoresponsivities and photocurrents curves as a function of the laser intensity Ee of the LSG/CsPbBr3 PD; (c), (d) D* and NEP curves as a function of the laser intensity Ee, respectively.
Fig. 5.
Fig. 5. (a) Temporal photocurrent responses of the LSG device under 1064 and 1177 nm illumination at 390  mW/cm2; (b) temporal photocurrent responses of the LSG device under 10.6 and 118 μm (2.52 THz) illumination at 390  mW/cm2; (c) temporal photocurrent responses of the LSG/CsPbBr3 device under 405, 532, and 1064 nm illumination at 390  mW/cm2; (d) temporal photocurrent responses of the LSG/CsPbBr3 device under 10.6 and 118 μm (2.52 THz) illumination at 390  mW/cm2; (e) multiwavelength optical switch photocurrent curves from 405 nm to 118 μm; (f) ultrabroadband R and NEP curves of the device with the wavelength range from 405 nm to 118 μm at 0 V bias voltage.
Fig. 6.
Fig. 6. (a) Mechanism schematic for PTE effect; (b) schematic of photocurrent generation process of the device; (c) temperature profile of active location under dark and 532 nm illumination; inset, infrared imaging temperature distribution map of the device under 532 nm illumination; (d) increased temperature profile of the device under 532 nm laser illumination; (e), (f) current voltage (IV) characteristics of the device under 532 and 1177 nm laser irradiation, respectively; (g) photocurrent and temperature variation curves of the device under 532 nm laser illumination.
Fig. 7.
Fig. 7. (a) IV curves of the LSG/CsPbBr3 device under 532 nm irradiation (Ee=58.28  mW/cm2) before and after bending with different bending states; (b) temporal photocurrent curves of the LSG/CsPbBr3 device before (solid lines) and after (dotted lines) a bending test for 1000 times under 532 nm laser illumination (Ee=58.28  mW/cm2) at 0 V voltage.

Tables (1)

Tables Icon

Table 1. Optoelectronic Characteristics of Typical Photodetectors Based on Graphene and Other 2D/3D Materials

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R=ΔIP=IilluIdarkEe×A,
D*=RA1/2(2eIdark)1/2,
NEP=A1/2/D*,
VPTE=S*T,