Abstract

Nonlinear optical processes in waveguides play important roles in compact integrated photonics, while efficient coupling and manipulations inside the waveguides still remain challenging. In this work, we propose a new scheme for second-harmonic generation as well as beam shaping in lithium niobate slab waveguides with the assistance of well-designed grating metasurfaces at λ=1064  nm. By encoding the amplitude and phase into the holographic gratings, we further demonstrate strong functionalities of nonlinear beam shaping by the metasurface design, including dual focusing and Airy beam generation. Our approach would inspire new designs in the miniaturization and integration of compact multifunctional nonlinear light sources on chip.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [Crossref]
  2. F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
    [Crossref]
  3. E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
    [Crossref]
  4. J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).
  5. K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
    [Crossref]
  6. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
    [Crossref]
  7. T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
    [Crossref]
  8. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  9. A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
    [Crossref]
  10. N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
    [Crossref]
  11. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
    [Crossref]
  12. D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).
  13. B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
    [Crossref]
  14. G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
    [Crossref]
  15. C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
    [Crossref]
  16. J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
    [Crossref]
  17. M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
    [Crossref]
  18. R. Wolf, Y. Jia, S. Bonaus, C. S. Werner, S. J. Herr, I. Breunig, K. Buse, and H. Zappe, “Quasi-phase-matched nonlinear optical frequency conversion in on-chip whispering galleries,” Optica 5, 872–875 (2018).
    [Crossref]
  19. R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
    [Crossref]
  20. C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
    [Crossref]
  21. M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
    [Crossref]
  22. X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
    [Crossref]
  23. M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
    [Crossref]
  24. M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
    [Crossref]
  25. D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
    [Crossref]
  26. R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
    [Crossref]
  27. L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
    [Crossref]
  28. C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
    [Crossref]
  29. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
    [Crossref]
  30. R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).
  31. L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
    [Crossref]
  32. A. Rao, M. Malinowski, A. Honardoost, J. R. Talukder, P. Rabiei, P. Delfyett, and S. Fathpour, “Second-harmonic generation in periodically-poled thin film lithium niobate wafer-bonded on silicon,” Opt. Express 24, 29941–29947 (2016).
    [Crossref]
  33. C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
    [Crossref]
  34. C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
    [Crossref]
  35. A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
    [Crossref]
  36. W. H. Lee, “Binary computer-generated holograms,” Appl. Opt. 18, 3661–3669 (1979).
    [Crossref]
  37. I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
    [Crossref]
  38. J. Chen, L. Li, T. Li, and S. N. Zhu, “Indefinite plasmonic beam engineering by in-plane holography,” Sci. Rep. 6, 28926 (2016).
    [Crossref]
  39. C. Zhao, J. Chen, H. Li, T. Li, and S. Zhu, “Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes,” Chin. Opt. Lett. 16, 070901 (2018).
    [Crossref]
  40. I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642–1647 (2014).
    [Crossref]
  41. L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
    [Crossref]
  42. L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
    [Crossref]
  43. Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39, 3900–3902 (2014).
    [Crossref]

2019 (6)

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

2018 (7)

2017 (4)

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

2016 (3)

2015 (2)

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

2014 (4)

2013 (1)

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
[Crossref]

2012 (2)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[Crossref]

2011 (2)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

2008 (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

2007 (1)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

2006 (2)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

B. Jalali and S. Fathpour, “Silicon photonics,” J. Lightwave Technol. 24, 4600–4615 (2006).
[Crossref]

2002 (1)

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

2001 (1)

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

2000 (1)

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

1989 (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

1979 (1)

1962 (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Alberti, E.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Andrade, N.

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Arie, A.

I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642–1647 (2014).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[Crossref]

Armstrong, J. A.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Arnold, S.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Atikian, H. A.

Bertrand, M.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Bliss, D.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Bloembergen, N.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Boes, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

Bogoni, A.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Bonaus, S.

Bowers, J.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

Bowers, J. E.

Breunig, I.

Brotzer, P.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Burek, M. J.

Buscaino, B.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Buse, K.

Byer, R. L.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

Cai, L.

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

Cai, X.

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Chai, Z.

Chandrasekhar, S.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Chang, L.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

L. Chang, Y. Li, N. Volet, L. Wang, J. Peters, and J. E. Bowers, “Thin film wavelength converters for photonic integrated circuits,” Optica 3, 531–535 (2016).
[Crossref]

Chen, H.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Chen, J.

C. Zhao, J. Chen, H. Li, T. Li, and S. Zhu, “Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes,” Chin. Opt. Lett. 16, 070901 (2018).
[Crossref]

J. Chen, L. Li, T. Li, and S. N. Zhu, “Indefinite plasmonic beam engineering by in-plane holography,” Sci. Rep. 6, 28926 (2016).
[Crossref]

Chen, L.

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Chen, W.

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Chen, X.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Cheng, Q. Q.

Cheng, R.

Cheng, Y.

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Corcoran, B.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Delfyett, P.

Desiatov, B.

Diziain, S.

Dolev, I.

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[Crossref]

Ducuing, J.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Epstein, I.

I. Epstein, Y. Lilach, and A. Arie, “Shaping plasmonic light beams with near-field plasmonic holograms,” J. Opt. Soc. Am. B 31, 1642–1647 (2014).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[Crossref]

Escalé, M. R.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Fang, W.

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Fang, Z.

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Fathpour, S.

Fejer, M. M.

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Gao, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Geiss, R.

George, M.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Giaccari, P.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Grange, R.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

Guldimann, B.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Günter, P.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Guo, C.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Guo, G.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Hansch, T. W.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Hänsch, T. W.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

Harris, J. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

He, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

He, Y.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Hedges, M. P.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Herr, S. J.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Honardoost, A.

Hu, H.

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Huang, I. C.

Hurlbut, W. C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Jalali, B.

Jankowski, M.

Jia, Y.

Jian, J.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Kahn, J. M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Kaufmann, F.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Kim, M.

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Kippenberg, T. J.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Kley, E.-B.

Knappe, R.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

Knight, J. C.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Kozlov, V. G.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Langrock, C.

Laue, C.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

Lee, W. H.

Lee, Y. S.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Li, H.

Li, L.

J. Chen, L. Li, T. Li, and S. N. Zhu, “Indefinite plasmonic beam engineering by in-plane holography,” Sci. Rep. 6, 28926 (2016).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39, 3900–3902 (2014).
[Crossref]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Li, M.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Li, T.

C. Zhao, J. Chen, H. Li, T. Li, and S. Zhu, “Mode division multiplexed holography by out-of-plane scattering of plasmon/guided modes,” Chin. Opt. Lett. 16, 070901 (2018).
[Crossref]

J. Chen, L. Li, T. Li, and S. N. Zhu, “Indefinite plasmonic beam engineering by in-plane holography,” Sci. Rep. 6, 28926 (2016).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39, 3900–3902 (2014).
[Crossref]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Li, Y.

Li, Z.

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Liang, H.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Lilach, Y.

Lim, E. J.

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

Lin, J.

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Lin, Q.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Lin, Z.

Liu, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Loncar, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

Luo, R.

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Highly tunable efficient second-harmonic generation in a lithium niobate nanophotonic waveguide,” Optica 5, 1006–1011 (2018).
[Crossref]

Lynch, C.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Madi, M.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Malinowski, M.

Mallahzadeh, H.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Marandi, A.

Meier, U.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Meyn, J. P.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

Mitchell, A.

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

Mookherjea, S.

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

Nikogosyan, D. N.

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Nuccio, S. R.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Oblak, D.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Pershan, P. S.

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Pertsch, T.

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Peters, J.

Poberaj, G.

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Pohl, D.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Qiao, L.

R. Wu, J. Zhang, N. Yao, W. Fang, L. Qiao, Z. Chai, J. Lin, and Y. Cheng, “Lithium niobate micro-disk resonators of quality factors above 107,” Opt. Lett. 43, 4116–4119 (2018).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Rabiei, P.

Rao, A.

Reimer, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Ren, X.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Ren, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Ricken, R.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Ruan, Z.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Ruesing, M.

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

Russell, P. St. J.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Saglamyurek, E.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Saravi, S.

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schrempel, F.

Sergeyev, A.

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

R. Geiss, S. Saravi, A. Sergeyev, S. Diziain, F. Setzpfandt, F. Schrempel, R. Grange, E.-B. Kley, A. Tünnermann, and T. Pertsch, “Fabrication of nanoscale lithium niobate waveguides for second-harmonic generation,” Opt. Lett. 40, 2715–2718 (2015).
[Crossref]

Setzpfandt, F.

Shams-Ansari, A.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

Simon, C.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Sinclair, N.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Slater, J. A.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Sohler, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

Stark, P.

Sun, S.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Talukder, J. R.

Tittel, W.

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

Tünnermann, A.

Udem, T.

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Venkataraman, V.

Vodopyanov, K. L.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Volet, N.

Vollmer, F.

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Wadsworth, W. J.

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

Wallenstein, R.

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

Wang, C.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

C. Wang, M. J. Burek, Z. Lin, H. A. Atikian, V. Venkataraman, I. C. Huang, P. Stark, and M. Lončar, “Integrated high quality factor lithium niobate microdisk resonators,” Opt. Express 22, 30924–30933 (2014).
[Crossref]

Wang, J.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Wang, L.

Wang, M.

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Wang, N.

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Wang, S. M.

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39, 3900–3902 (2014).
[Crossref]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Wang, X.

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

Wang, Y.

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

Weigel, P. O.

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Wen, X.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Werner, C. S.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Willner, A. E.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Winzer, P.

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

Wolf, R.

Wu, R.

Wu, X.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Xiong, X.

C. Wang, X. Xiong, N. Andrade, V. Venkataraman, X. Ren, G. Guo, and M. Lončar, “Second harmonic generation in nano-structured thin-film lithium niobate waveguides,” Opt. Express 25, 6963–6973 (2017).
[Crossref]

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Xu, J.

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Xu, M.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Xu, Y.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Yao, N.

Yilmaz, O. F.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Yu, N.

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Yu, S.

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Yu, X.

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Zappe, H.

Zhang, C.

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

Zhang, J.

Zhang, L.

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

Zhang, M.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

C. Wang, C. Langrock, A. Marandi, M. Jankowski, M. Zhang, B. Desiatov, M. M. Fejer, and M. Lončar, “Ultrahigh-efficiency wavelength conversion in nanophotonic periodically poled lithium niobate waveguides,” Optica 5, 1438–1441 (2018).
[Crossref]

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, C. Wang, R. Cheng, A. Shams-Ansari, and M. Lončar, “Monolithic ultra-high-Q lithium niobate microring resonator,” Optica 4, 1536–1537 (2017).
[Crossref]

Zhao, C.

Zhao, J.

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

Zhou, L.

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

Zhu, R.

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

Zhu, S.

Zhu, S. N.

J. Chen, L. Li, T. Li, and S. N. Zhu, “Indefinite plasmonic beam engineering by in-plane holography,” Sci. Rep. 6, 28926 (2016).
[Crossref]

Q. Q. Cheng, T. Li, L. Li, S. M. Wang, and S. N. Zhu, “Mode division multiplexing in a polymer-loaded plasmonic planar waveguide,” Opt. Lett. 39, 3900–3902 (2014).
[Crossref]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

APL Photon. (2)

X. Wang, P. O. Weigel, J. Zhao, M. Ruesing, and S. Mookherjea, “Achieving beyond-100-GHz large-signal modulation bandwidth in hybrid silicon photonics Mach Zehnder modulators using thin film lithium niobate,” APL Photon. 4, 096101 (2019).
[Crossref]

M. Xu, W. Chen, M. He, X. Wen, Z. Ruan, J. Xu, L. Chen, L. Liu, S. Yu, and X. Cai, “Michelson interferometer modulator based on hybrid silicon and lithium niobate platform,” APL Photon. 4, 100802 (2019).
[Crossref]

Appl. Opt. (1)

Appl. Phys. B (1)

J. P. Meyn, C. Laue, R. Knappe, R. Wallenstein, and M. M. Fejer, “Fabrication of periodically poled lithium tantalate for UV generation with diode lasers,”Appl. Phys. B 73, 111–114 (2001).

Appl. Phys. Lett. (1)

K. L. Vodopyanov, M. M. Fejer, X. Yu, J. S. Harris, Y. S. Lee, W. C. Hurlbut, V. G. Kozlov, D. Bliss, and C. Lynch, “Terahertz-wave generation in quasi-phase-matched GaAs,” Appl. Phys. Lett. 89, 141119 (2006).
[Crossref]

Chin. Opt. Lett. (1)

Electron. Lett. (1)

E. J. Lim, M. M. Fejer, and R. L. Byer, “Second-harmonic generation of green light in periodically poled planar lithium niobate waveguide,” Electron. Lett. 25, 174–175 (1989).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

A. E. Willner, O. F. Yilmaz, J. Wang, X. Wu, A. Bogoni, L. Zhang, and S. R. Nuccio, “Optically efficient nonlinear signal processing,” IEEE J. Sel. Top. Quantum Electron. 17, 320–332 (2011).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (3)

G. Poberaj, H. Hu, W. Sohler, and P. Günter, “Lithium niobate on insulator (LNOI) for micro-photonic devices,” Laser Photon. Rev. 6, 488–503 (2012).
[Crossref]

R. Luo, Y. He, H. Liang, M. Li, and Q. Lin, “Semi-nonlinear nanophotonic waveguides for highly efficient second-harmonic generation,” Laser Photon. Rev. 13, 1800288 (2019).

A. Boes, B. Corcoran, L. Chang, J. Bowers, and A. Mitchell, “Status and potential of lithium niobate on insulator (LNOI) for photonic integrated circuits,” Laser Photon. Rev. 12, 1700256 (2018).
[Crossref]

Nat. Commun. (1)

C. Wang, Z. Li, M. Kim, X. Xiong, X. Ren, G. Guo, N. Yu, and M. Lončar, “Metasurface-assisted phase-matching-free second harmonic generation in lithium niobate waveguides,” Nat. Commun. 8, 2098 (2017).
[Crossref]

Nat. Methods (1)

F. Vollmer and S. Arnold, “Whispering-gallery-mode biosensing: label-free detection down to single molecules,” Nat. Methods 5, 591–596 (2008).
[Crossref]

Nat. Photonics (2)

M. He, M. Xu, Y. Ren, J. Jian, Z. Ruan, Y. Xu, S. Gao, S. Sun, X. Wen, L. Zhou, L. Liu, C. Guo, H. Chen, S. Yu, L. Liu, and X. Cai, “High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s–1 and beyond,” Nat. Photonics 13, 359–364 (2019).
[Crossref]

D. Pohl, M. R. Escalé, M. Madi, F. Kaufmann, P. Brotzer, A. Sergeyev, B. Guldimann, P. Giaccari, E. Alberti, U. Meier, and R. Grange, “An integrated broadband spectrometer on thin-film lithium niobate,” Nat. Photonics 14, 24–29 (2019).
[Crossref]

Nature (4)

C. Wang, M. Zhang, X. Chen, M. Bertrand, A. Shams-Ansari, S. Chandrasekhar, P. Winzer, and M. Lončar, “Integrated lithium niobate electro-optic modulators operating at CMOS-compatible voltages,” Nature 562, 101–104 (2018).
[Crossref]

M. Zhang, B. Buscaino, C. Wang, A. Shams-Ansari, C. Reimer, R. Zhu, J. M. Kahn, and M. Lončar, “Broadband electro-optic frequency comb generation in a lithium niobate microring resonator,” Nature 568, 373–377 (2019).
[Crossref]

T. Udem, R. Holzwarth, and T. W. Hänsch, “Optical frequency metrology,” Nature 416, 233–237 (2002).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Commun. (1)

L. Cai, Y. Wang, and H. Hu, “Efficient second harmonic generation in χ(2) profile reconfigured lithium niobate thin film,” Opt. Commun. 387, 405–408 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (3)

Optica (5)

Phys. Rev. (1)

J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between light waves in a nonlinear dielectric,” Phys. Rev. 127, 1918–1939 (1962).
[Crossref]

Phys. Rev. Lett. (6)

N. Sinclair, E. Saglamyurek, H. Mallahzadeh, J. A. Slater, M. George, R. Ricken, M. P. Hedges, D. Oblak, C. Simon, W. Sohler, and W. Tittel, “Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control,” Phys. Rev. Lett. 113, 053603 (2014).
[Crossref]

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. St. J. Russell, “Optical frequency synthesizer for precision spectroscopy,” Phys. Rev. Lett. 85, 2264–2267 (2000).
[Crossref]

I. Dolev, I. Epstein, and A. Arie, “Surface-plasmon holographic beam shaping,” Phys. Rev. Lett. 109, 203903 (2012).
[Crossref]

L. Li, T. Li, S. M. Wang, C. Zhang, and S. N. Zhu, “Plasmonic Airy beam generated by in-plane diffraction,” Phys. Rev. Lett. 107, 126804 (2011).
[Crossref]

L. Li, T. Li, S. M. Wang, and S. N. Zhu, “Collimated plasmon beam: nondiffracting versus linearly focused,” Phys. Rev. Lett. 110, 046807 (2013).
[Crossref]

Sci. China Phys. Mech. Astron. (1)

J. Lin, Y. Xu, Z. Fang, M. Wang, N. Wang, L. Qiao, W. Fang, and Y. Cheng, “Second harmonic generation in a high-Q lithium niobate microresonator fabricated by femtosecond laser micromachining,” Sci. China Phys. Mech. Astron. 58, 114209 (2015).
[Crossref]

Sci. Rep. (1)

J. Chen, L. Li, T. Li, and S. N. Zhu, “Indefinite plasmonic beam engineering by in-plane holography,” Sci. Rep. 6, 28926 (2016).
[Crossref]

Other (1)

D. N. Nikogosyan, Nonlinear Optical Crystals: A Complete Survey (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic illustration of the phase-matching process and the simulations. (a) Theoretical principle of the proposed SHG in the LN slab waveguide. (b) Simulated evolution of the electric field in the waveguide at the SH frequency, indicating an efficient SHG process. The grating distributed region is emphasized with the pink box. (c) Simulated SHG intensity versus propagation length with different incident angles θ. (d) Simulated sinc2-dependence of the SHG on the incident angle.
Fig. 2.
Fig. 2. Experimental demonstration of the SHG in the slab waveguide. (a) SEM images of the fabricated samples with Ag cladding. (b) Schematic illustration of the measurement setup. (c) Measured SHG power at the output port of samples with different lengths of the coupling regions, in comparison with the simulations. (d) Quadratic power dependence between the pump and the SH signal in the experiments.
Fig. 3.
Fig. 3. Manipulation of SHG guided wave. Zoomed SEM images of structures for (a) an ordinary plane wave, (b) a focal lens, (c) a dual-focus lens, and (d) an Airy beam generator in the waveguide. (e)–(h) Measured light spot intensity profile coupling out from the facet of waveguides for four different beam manipulations. (i)–(l) Corresponding vertical cross sections of the light spots (black solid curves), in comparison with the simulation results (red dashed curves).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

neff·2πλ532=22πλ1064sinθ+m2πs,
h(y,x)=h02{1+sign{cos[2πsy+ϕi(x)]cos[πq(x)]}}.
E(x)=n1rnEnexp(ikrn),
EAiry(x)=Ai(xx0).