Abstract

A novel wavelength-selective 2×2 optical switch based on a Ge2Sb2Te5 (GST)-assisted microring-resonator (MRR) is proposed. The present GST-assisted MRR consists of two access optical waveguides and an MRR coupled with a bent GST-loaded silicon photonic waveguide. The 2×2 optical switch is switched ON or OFF by modifying the GST state to be crystalline or amorphous. In particular, the microring waveguide and the bent GST-loaded waveguide are designed to satisfy the phase-matching condition when the GST is crystalline. As a result, the MRR becomes highly lossy and the resonance peak is depressed significantly. On the other hand, when it is off, there is little coupling due to the significant phase mismatching. Consequently, one has a low-loss transmission at the drop port for the resonance wavelength. In this paper, the simulation using the three-dimensional finite-difference method shows that the extinction ratio of the designed photonic switch is 20  dB at the resonance wavelength, while the excess losses at the through port and drop port are 0.9 dB and 2 dB. In particular, the resonance wavelength changes little between the ON and OFF states, which makes it suitable for multichannel wavelength-division-multiplexing systems.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  2. Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
    [Crossref]
  3. Y. Arakawa and T. Nakamura, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51, 72–77 (2013).
    [Crossref]
  4. Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
    [Crossref]
  5. Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
    [Crossref]
  6. A. S. P. Khope, M. Saeidi, R. Yu, X. Wu, A. M. Netherton, Y. Liu, Z. Zhang, Y. Xia, G. Fleeman, A. Spott, S. Pinna, C. Schow, R. Helkey, L. Theogarajan, R. C. Alferness, A. A. M. Saleh, and J. E. Bowers, “Multi-wavelength selective crossbar switch,” Opt. Express 27, 5203–5216 (2019).
    [Crossref]
  7. S. Chen, Y. Shi, S. He, and D. Dai, “Low-loss and broadband 2 × 2 silicon thermo-optic Mach-Zehnder switch with bent directional couplers,” Opt. Lett. 41, 836–839 (2016).
    [Crossref]
  8. S. Wang and D. Dai, “Polarization-insensitive 2 × 2 thermo-optic Mach-Zehnder switch on silicon,” Opt. Lett. 43, 2531–2534 (2018).
    [Crossref]
  9. Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16 × 16 silicon optical switch based on dual-ring-assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36, 225–232 (2018).
    [Crossref]
  10. L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
    [Crossref]
  11. W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  12. M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
    [Crossref]
  13. K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optical phase change materials in integrated silicon photonic devices: review,” Opt. Mater. Express 8, 2415–2429 (2018).
    [Crossref]
  14. Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43, 94–97 (2018).
    [Crossref]
  15. M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
    [Crossref]
  16. J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8, 1551–1561 (2018).
    [Crossref]
  17. M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
    [Crossref]
  18. H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43, 5539–5542 (2018).
    [Crossref]
  19. C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
    [Crossref]
  20. N. Ali and R. Kumar, “Design of a novel nanoscale high performance phase-change silicon photonic switch,” Photon. Nanostr. Fundam. Appl. 32, 81–85 (2018).
    [Crossref]
  21. H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
    [Crossref]
  22. N. Ali and R. Kumar, “Mid-infrared silicon photonic switches using Ge2Sb2Te5 embedded in SOI waveguide,” Nanotechnology 31, 115207 (2020).
    [Crossref]
  23. M. Jafari and M. Rais-Zadeh, “Zero-static-power phase-change optical modulator,” Opt. Lett. 41, 1177–1180 (2016).
    [Crossref]
  24. Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
    [Crossref]
  25. C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
    [Crossref]
  26. W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
    [Crossref]
  27. M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
    [Crossref]
  28. Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
    [Crossref]
  29. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998).
    [Crossref]
  30. D. Dai and J. E. Bowers, “Novel ultra-short and ultra-broadband polarization beam splitter based on a bent directional coupler,” Opt. Express 19, 18614–18620 (2011).
    [Crossref]

2020 (1)

N. Ali and R. Kumar, “Mid-infrared silicon photonic switches using Ge2Sb2Te5 embedded in SOI waveguide,” Nanotechnology 31, 115207 (2020).
[Crossref]

2019 (4)

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
[Crossref]

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

A. S. P. Khope, M. Saeidi, R. Yu, X. Wu, A. M. Netherton, Y. Liu, Z. Zhang, Y. Xia, G. Fleeman, A. Spott, S. Pinna, C. Schow, R. Helkey, L. Theogarajan, R. C. Alferness, A. A. M. Saleh, and J. E. Bowers, “Multi-wavelength selective crossbar switch,” Opt. Express 27, 5203–5216 (2019).
[Crossref]

2018 (10)

K. J. Miller, R. F. Haglund, and S. M. Weiss, “Optical phase change materials in integrated silicon photonic devices: review,” Opt. Mater. Express 8, 2415–2429 (2018).
[Crossref]

Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, “Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit,” Opt. Lett. 43, 94–97 (2018).
[Crossref]

J. Zheng, A. Khanolkar, P. Xu, S. Colburn, S. Deshmukh, J. Myers, J. Frantz, E. Pop, J. Hendrickson, J. Doylend, N. Boechler, and A. Majumdar, “GST-on-silicon hybrid nanophotonic integrated circuits: a non-volatile quasi-continuously reprogrammable platform,” Opt. Mater. Express 8, 1551–1561 (2018).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43, 5539–5542 (2018).
[Crossref]

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

N. Ali and R. Kumar, “Design of a novel nanoscale high performance phase-change silicon photonic switch,” Photon. Nanostr. Fundam. Appl. 32, 81–85 (2018).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
[Crossref]

S. Wang and D. Dai, “Polarization-insensitive 2 × 2 thermo-optic Mach-Zehnder switch on silicon,” Opt. Lett. 43, 2531–2534 (2018).
[Crossref]

Z. Guo, L. Lu, L. Zhou, L. Shen, and J. Chen, “16 × 16 silicon optical switch based on dual-ring-assisted Mach-Zehnder interferometers,” J. Lightwave Technol. 36, 225–232 (2018).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

2017 (3)

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

2016 (3)

2015 (3)

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

2013 (3)

Y. Arakawa and T. Nakamura, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51, 72–77 (2013).
[Crossref]

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

2012 (1)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2011 (1)

1998 (1)

Abrams, N.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Alferness, R. C.

Ali, N.

N. Ali and R. Kumar, “Mid-infrared silicon photonic switches using Ge2Sb2Te5 embedded in SOI waveguide,” Nanotechnology 31, 115207 (2020).
[Crossref]

N. Ali and R. Kumar, “Design of a novel nanoscale high performance phase-change silicon photonic switch,” Photon. Nanostr. Fundam. Appl. 32, 81–85 (2018).
[Crossref]

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Arakawa, Y.

Y. Arakawa and T. Nakamura, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51, 72–77 (2013).
[Crossref]

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Baehr-Jones, T.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Baets, R.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bahadori, M.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
[Crossref]

Bergman, K.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
[Crossref]

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Bhaskaran, H.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Bienstman, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Boechler, N.

Bogaerts, W.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bowers, J. E.

Calhoun, D. M.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Chen, J.

Chen, S.

Chen, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Cheng, Q.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Q. Cheng, M. Bahadori, M. Glick, S. Rumley, and K. Bergman, “Recent advances in optical technologies for data centers: a review,” Optica 5, 1354–1370 (2018).
[Crossref]

Chin, M. K.

Chu, T.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Claes, T.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Colburn, S.

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Dai, D.

Deshmukh, S.

Ding, R.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Doylend, J.

Dumon, P.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Fleeman, G.

Frantz, J.

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Glick, M.

Gu, T.

Guo, Z.

Haglund, R. F.

He, S.

Helkey, R.

Hendrickson, J.

Heyn, P. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Ho, S. T.

Hochberg, M.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Y. Ma, Y. Zhang, S. Yang, A. Novack, R. Ding, A. E. Lim, G. Lo, T. Baehr-Jones, and M. Hochberg, “Ultralow loss single layer submicron silicon waveguide crossing for SOI optical interconnect,” Opt. Express 21, 29374–29382 (2013).
[Crossref]

Hosseini, P.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Hu, H.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

Hu, J.

Huang, Y.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Hung, Y.

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

Jafari, M.

Khanolkar, A.

Khope, A. S. P.

Kumar, R.

N. Ali and R. Kumar, “Mid-infrared silicon photonic switches using Ge2Sb2Te5 embedded in SOI waveguide,” Nanotechnology 31, 115207 (2020).
[Crossref]

N. Ali and R. Kumar, “Design of a novel nanoscale high performance phase-change silicon photonic switch,” Photon. Nanostr. Fundam. Appl. 32, 81–85 (2018).
[Crossref]

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Li, H.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

Li, J.

Li, M.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

Li, Q.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Lim, A. E.

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Liu, Y.

A. S. P. Khope, M. Saeidi, R. Yu, X. Wu, A. M. Netherton, Y. Liu, Z. Zhang, Y. Xia, G. Fleeman, A. Spott, S. Pinna, C. Schow, R. Helkey, L. Theogarajan, R. C. Alferness, A. A. M. Saleh, and J. E. Bowers, “Multi-wavelength selective crossbar switch,” Opt. Express 27, 5203–5216 (2019).
[Crossref]

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Lo, G.

Lu, L.

Ma, E.

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
[Crossref]

Ma, Y.

Majumdar, A.

Mazzarello, R.

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
[Crossref]

Miller, K. J.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Myers, J.

Nakamura, T.

Y. Arakawa and T. Nakamura, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51, 72–77 (2013).
[Crossref]

Netherton, A. M.

Nikolova, D.

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Novack, A.

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Osmond, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pello, J.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Pernice, W. H. P.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Pinna, S.

Pop, E.

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Pruneri, V.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Qiao, L.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Rahman, B. M. A.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43, 5539–5542 (2018).
[Crossref]

Rais-Zadeh, M.

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Ríos, C.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Roelkens, G.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Rudé, M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Rumley, S.

Saeidi, M.

Saleh, A. A. M.

Scherer, T.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Schow, C.

Selvaraja, S. K.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Shen, L.

Shi, Y.

Simpson, R. E.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Soref, R.

Spott, A.

Stegmaier, M.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Takeuchi, I.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

Tang, W.

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Taubner, T.

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

Theogarajan, L.

Thourhout, D. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vaerenbergh, T. V.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

van der Tol, J. J. G. M.

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

Vos, K. D.

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wang, D.

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Wang, N.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

Wang, S.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Weiss, S. M.

Wright, C. D.

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

Wu, C.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

Wu, X.

Wu, Y.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Wuttig, M.

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

Xia, Y.

Xu, J.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43, 5539–5542 (2018).
[Crossref]

Xu, P.

Yang, S.

Yu, H.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

Yu, R.

Yu, Z.

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Zhang, H.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

H. Zhang, L. Zhou, J. Xu, L. Lu, J. Chen, and B. M. A. Rahman, “All-optical non-volatile tuning of an AMZI-coupled ring resonator with GST phase-change material,” Opt. Lett. 43, 5539–5542 (2018).
[Crossref]

Zhang, Q.

Zhang, W.

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

Zhang, X.

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

Zhang, Y.

Zhang, Z.

Zheng, J.

Zhou, L.

Zhou, Z.

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

ACS Photon. (3)

C. Wu, H. Yu, H. Li, X. Zhang, I. Takeuchi, and M. Li, “Low-loss integrated photonic switch using subwavelength patterned phase change material,” ACS Photon. 6, 87–92 (2018).
[Crossref]

M. Stegmaier, C. Ríos, H. Bhaskaran, and W. H. P. Pernice, “Thermo-optical effect in phase-change nanophotonics,” ACS Photon. 3, 828–835 (2016).
[Crossref]

H. Zhang, L. Zhou, L. Lu, J. Xu, N. Wang, H. Hu, B. M. A. Rahman, Z. Zhou, and J. Chen, “Miniature multilevel optical memristive switch using phase change material,” ACS Photon. 6, 2205–2212 (2019).
[Crossref]

Adv. Opt. Mater. (1)

M. Stegmaier, C. Ríos, H. Bhaskaran, C. D. Wright, and W. H. P. Pernice, “Nonvolatile all-optical 1 × 2 switch for chipscale photonic networks,” Adv. Opt. Mater. 5, 1600346 (2017).
[Crossref]

Appl. Phys. Lett. (1)

M. Rudé, J. Pello, R. E. Simpson, J. Osmond, G. Roelkens, J. J. G. M. van der Tol, and V. Pruneri, “Optical switching at 1.55  μm in silicon racetrack resonators using phase change materials,” Appl. Phys. Lett. 103, 141119 (2013).
[Crossref]

IEEE Commun. Mag. (1)

Y. Arakawa and T. Nakamura, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51, 72–77 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

Q. Cheng, M. Bahadori, Y. Hung, Y. Huang, N. Abrams, and K. Bergman, “Scalable microring-based silicon Clos switch fabric with switch-and-select stages,” IEEE J. Sel. Top. Quantum Electron. 25, 1–11 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (2)

Q. Li, D. Nikolova, D. M. Calhoun, Y. Liu, R. Ding, T. Baehr-Jones, M. Hochberg, and K. Bergman, “Single microring-based 2 × 2 silicon photonic crossbar switches,” IEEE Photon. Technol. Lett. 27, 1981–1984 (2015).
[Crossref]

Z. Yu, J. Zheng, P. Xu, W. Zhang, and Y. Wu, “Ultracompact electro-optical modulator-based Ge2Sb2Te5 on silicon,” IEEE Photon. Technol. Lett. 30, 250–253 (2018).
[Crossref]

J. Lightwave Technol. (2)

Laser Photon. Rev. (1)

W. Bogaerts, P. D. Heyn, T. V. Vaerenbergh, K. D. Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. V. Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Nanotechnology (1)

N. Ali and R. Kumar, “Mid-infrared silicon photonic switches using Ge2Sb2Te5 embedded in SOI waveguide,” Nanotechnology 31, 115207 (2020).
[Crossref]

Nat. Photonics (2)

C. Ríos, M. Stegmaier, P. Hosseini, D. Wang, T. Scherer, C. D. Wright, H. Bhaskaran, and W. H. P. Pernice, “Integrated all-photonic non-volatile multi-level memory,” Nat. Photonics 9, 725–732 (2015).
[Crossref]

M. Wuttig, H. Bhaskaran, and T. Taubner, “Phase-change materials for non-volatile photonic applications,” Nat. Photonics 11, 465–476 (2017).
[Crossref]

Nat. Rev. Mater. (1)

W. Zhang, R. Mazzarello, M. Wuttig, and E. Ma, “Designing crystallization in phase-change materials for universal memory and neuro- inspired computing,” Nat. Rev. Mater. 4, 150–168 (2019).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y. Chen, K. Asanović, R. J. Ram, M. A. Popović, and V. M. Stojanović, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. Express (2)

Optica (1)

Photon. Nanostr. Fundam. Appl. (1)

N. Ali and R. Kumar, “Design of a novel nanoscale high performance phase-change silicon photonic switch,” Photon. Nanostr. Fundam. Appl. 32, 81–85 (2018).
[Crossref]

Sci. Rep. (1)

L. Qiao, W. Tang, and T. Chu, “32 × 32 silicon electro-optic switch with built-in monitors and balanced-status units,” Sci. Rep. 7, 42306 (2017).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic configuration of the proposed wavelength-selective photonic switch based on a GST-assisted MRR: (a) 3D view, (b) top view, (c) the cross section of the coupling region.
Fig. 2.
Fig. 2. (a) Calculated products of neff0R0 and neff1R1 for the fundamental TE mode as the GST-strip width varies. (b) Calculated transmission at the output end of the microring waveguide when the TE0 mode is launched from input end.
Fig. 3.
Fig. 3. (a) Calculated transmission of the local coupling region for the two states of the GST as a function of the coupling angle. The inset shows the schematic configuration of the simulation model. Optical field distribution of the local coupling region simulated by the 3D-FDTD method in the GST (b) crystalline and (c) amorphous state. Here WGST=168  nm and λ=1550  nm.
Fig. 4.
Fig. 4. Spectral responses of the designed microring switch simulated by the 3D-FDTD method in the GST (a) amorphous and (b) crystalline state. Optical power distribution of the designed microring switch at the resonance wavelength near 1563 nm in the GST (c) amorphous and (d) crystalline state.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

neff0R0=neff1R1,
R1=R0+W0/2+Wg+W1/2.