Abstract

Prior-free imaging beyond the memory effect (ME) is critical to seeing through the scattering media. However, methods proposed to exceed the ME range have suffered from the availability of prior information of imaging targets. Here, we propose a blind target position detection for large field-of-view scattering imaging. Only exploiting two captured multi-target near-field speckles at different imaging distances, the unknown number and locations of the isolated imaging targets are blindly reconstructed via the proposed scaling-vector-based detection. Autocorrelations can be calculated for the speckle regions centered by the derived positions via low-cross-talk region allocation strategy. Working with the modified phase retrieval algorithm, the complete scene of the multiple targets exceeding the ME range can be reconstructed without any prior information. The effectiveness of the proposed algorithm is verified by testing on a real scattering imaging system.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).
  2. S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
    [Crossref]
  3. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
    [Crossref]
  4. I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
    [Crossref]
  5. O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
    [Crossref]
  6. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
    [Crossref]
  7. X. Yang, Y. Pu, and D. Psaltis, “Imaging blood cells through scattering biological tissue using speckle scanning microscopy,” Opt. Express 22, 3405–3413 (2014).
    [Crossref]
  8. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
    [Crossref]
  9. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  10. W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [Crossref]
  11. G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in IEEE International Conference on Computational Photography (2018), pp. 1–10.
  12. S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
    [Crossref]
  13. V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
    [Crossref]
  14. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
    [Crossref]
  15. A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
    [Crossref]
  16. E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
    [Crossref]
  17. H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
    [Crossref]
  18. X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
    [Crossref]
  19. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
    [Crossref]
  20. M. Mounaix, H. B. Aguiar, and S. Gigan, “Temporal recompression through a scattering medium via a broadband transmission matrix,” Optica 4, 1289–1292 (2017).
    [Crossref]
  21. G. Kim and R. Menon, “Computational imaging enables a see-through lens-less camera,” Opt. Express 26, 22826–22836 (2018).
    [Crossref]
  22. L. Li, Q. Li, S. Sun, H. Z. Lin, W. T. Liu, and P. X. Chen, “Imaging through scattering layers exceeding memory effect range with spatial-correlation-achieved point-spread-function,” Opt. Lett. 43, 1670–1673 (2018).
    [Crossref]
  23. S. K. Sahoo, D. Tang, and C. Dang, “Single-shot multispectral imaging with a monochromatic camera,” Optica 4, 1209–1213 (2017).
    [Crossref]
  24. C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
    [Crossref]
  25. X. Wang, X. Jin, J. Li, X. Lian, X. Ji, and Q. Dai, “Prior-information-free single-shot scattering imaging beyond the memory effect,” Opt. Lett. 44, 1423–1426 (2019).
    [Crossref]
  26. A. Boniface, B. Blochet, J. Dong, and S. Gigan, “Noninvasive light focusing in scattering media using speckle variance optimization,” Optica 6, 1381–1385 (2019).
    [Crossref]
  27. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982).
    [Crossref]
  28. X. Jin, Z. Wang, X. Wang, and Q. Dai, “Depth of field extended scattering imaging by light field estimation,” Opt. Lett. 43, 4871–4874 (2018).
    [Crossref]
  29. P. Jain and S. E. Sarma, “Measuring light transport using speckle patterns as structured illumination,” Sci. Rep. 9, 11157 (2019).
    [Crossref]
  30. Y. Choi, P. Hosseini, W. Choi, R. R. Dasari, P. T. C. So, and Z. Yaqoob, “Dynamic speckle illumination wide-field reflection phase microscopy,” Opt. Lett. 39, 6062–6065 (2014).
    [Crossref]
  31. S. Schott, J. Bertolotti, J. F. Leger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23, 13505–13516 (2015).
    [Crossref]
  32. X. Jin, D. M. S. Wei, and Q. Dai, “Point spread function for diffuser cameras based on wave propagation and projection model,” Opt. Express 27, 12748–12761 (2019).
    [Crossref]
  33. M. A. Van Dam and R. G. Lane, “Wave-front slope estimation,” J. Opt. Soc. Am. 17, 1319–1324 (2000).
    [Crossref]
  34. J. Ko and C. C. Davis, “Comparison of the plenoptic sensor and the Shack-Hartmann sensor,” Appl. Opt. 56, 3689–3698 (2017).
    [Crossref]
  35. R. M. Haralick and L. G. Shapiro, Computer and Robot Vision (Addison Wesley, 1992).
  36. D. Brandner and G. Withers, “Multipolar neuron, Rattus from CIL:2907,” https://doi.org/doi:10.7295/W9CIL2907 (2010).
  37. G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
    [Crossref]

2019 (5)

2018 (4)

2017 (4)

2016 (2)

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

2015 (2)

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

S. Schott, J. Bertolotti, J. F. Leger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23, 13505–13516 (2015).
[Crossref]

2014 (3)

2012 (2)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

2010 (2)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

2007 (1)

2000 (1)

M. A. Van Dam and R. G. Lane, “Wave-front slope estimation,” J. Opt. Soc. Am. 17, 1319–1324 (2000).
[Crossref]

1991 (2)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

1990 (2)

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
[Crossref]

1988 (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

1982 (1)

Aguiar, H. B.

Alfano, R. R.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Bertolotti, J.

S. Schott, J. Bertolotti, J. F. Leger, L. Bourdieu, and S. Gigan, “Characterization of the angular memory effect of scattered light in biological tissues,” Opt. Express 23, 13505–13516 (2015).
[Crossref]

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Blochet, B.

Blum, C.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Boccara, A. C.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Boniface, A.

Bourdieu, L.

Chai, T.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chen, P. X.

Choi, W.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Y. Choi, P. Hosseini, W. Choi, R. R. Dasari, P. T. C. So, and Z. Yaqoob, “Dynamic speckle illumination wide-field reflection phase microscopy,” Opt. Lett. 39, 6062–6065 (2014).
[Crossref]

Choi, Y.

Dai, Q.

Dang, C.

Dasari, R. R.

Davis, C. C.

Denk, W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

Dong, J.

Edrei, E.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

Feng, S.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Fienup, J. R.

Fink, M.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Freund, I.

I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Gigan, S.

Goodman, J. W.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Guo, C.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Haralick, R. M.

R. M. Haralick and L. G. Shapiro, Computer and Robot Vision (Addison Wesley, 1992).

He, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Heidmann, P.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Ho, P. P.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Hosseini, P.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Jain, P.

P. Jain and S. E. Sarma, “Measuring light transport using speckle patterns as structured illumination,” Sci. Rep. 9, 11157 (2019).
[Crossref]

Jarabo, A.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Jeong, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Ji, X.

Jin, X.

Joo, J. H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Kane, C.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Kang, S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Katz, O.

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

Kim, G.

Ko, H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Ko, J.

Lagendijk, A.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

Lane, R. G.

M. A. Van Dam and R. G. Lane, “Wave-front slope estimation,” J. Opt. Soc. Am. 17, 1319–1324 (2000).
[Crossref]

Lee, J. S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Lee, P. A.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Leger, J. F.

Lerosey, G.

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Li, J.

Li, L.

Li, Q.

Li, W.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Lian, X.

Liang, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Lim, Y. S.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lin, H. Z.

Liu, C.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Liu, J.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Liu, W. T.

Liu, Y.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Masia, B.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Menon, R.

Mosk, A. P.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007).
[Crossref]

Mounaix, M.

Ntziachristos, V.

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Park, Q. H.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Popoff, S.

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Psaltis, D.

Pu, Y.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Raskar, R.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in IEEE International Conference on Computational Photography (2018), pp. 1–10.

Rosenbluh, M.

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Sahoo, S. K.

Sarma, S. E.

P. Jain and S. E. Sarma, “Measuring light transport using speckle patterns as structured illumination,” Sci. Rep. 9, 11157 (2019).
[Crossref]

Satat, G.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in IEEE International Conference on Computational Photography (2018), pp. 1–10.

Scarcelli, G.

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

Schott, S.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Shao, X.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Shapiro, L. G.

R. M. Haralick and L. G. Shapiro, Computer and Robot Vision (Addison Wesley, 1992).

So, P. T. C.

Stingson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Stone, A. D.

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

Strickler, J. H.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

Sun, S.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Tancik, M.

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in IEEE International Conference on Computational Photography (2018), pp. 1–10.

Tang, D.

Van Dam, M. A.

M. A. Van Dam and R. G. Lane, “Wave-front slope estimation,” J. Opt. Soc. Am. 17, 1319–1324 (2000).
[Crossref]

van Putten, E. G.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Vellekoop, I. M.

Vos, W. L.

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Wang, G.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Wang, J.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Wang, L.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Wang, X.

Wang, Z.

Webb, W. W.

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

Wei, D. M. S.

Wu, G.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Wu, T.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Xie, X.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Xu, X.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Yang, T. D.

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Yang, X.

Yaqoob, Z.

Zhang, G.

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

Zhang, Y.

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

Zhou, J.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Zhu, L.

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Zhuang, H.

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

Appl. Opt. (2)

IEEE J. Sel. Top. Signal Process. (1)

G. Wu, B. Masia, A. Jarabo, Y. Zhang, L. Wang, Q. Dai, T. Chai, and Y. Liu, “Light field image processing: an overview,” IEEE J. Sel. Top. Signal Process. 11, 926–954 (2017).
[Crossref]

J. Opt. Soc. Am. (1)

M. A. Van Dam and R. G. Lane, “Wave-front slope estimation,” J. Opt. Soc. Am. 17, 1319–1324 (2000).
[Crossref]

Nat. Commun. (1)

S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010).
[Crossref]

Nat. Methods (1)

V. Ntziachristos, “Going deeper than microscopy: the optical imaging frontier in biology,” Nat. Methods 7, 603–614 (2010).
[Crossref]

Nat. Photonics (3)

A. P. Mosk, A. Lagendijk, G. Lerosey, and M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012).
[Crossref]

O. Katz, P. Heidmann, M. Fink, and S. Gigan, “Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations,” Nat. Photonics 8, 784–790 (2014).
[Crossref]

S. Kang, S. Jeong, W. Choi, H. Ko, T. D. Yang, J. H. Joo, J. S. Lee, Y. S. Lim, Q. H. Park, and W. Choi, “Imaging deep within a scattering medium using collective accumulation of single-scattered waves,” Nat. Photonics 9, 253–258 (2015).
[Crossref]

Nature (1)

J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012).
[Crossref]

Opt. Commun. (1)

C. Guo, J. Liu, W. Li, T. Wu, L. Zhu, J. Wang, G. Wang, and X. Shao, “Imaging through scattering layers exceeding memory effect range by exploiting prior information,” Opt. Commun. 434, 203–208 (2019).
[Crossref]

Opt. Express (4)

Opt. Lett. (5)

Optica (3)

Phys. A (1)

I. Freund, “Looking through walls and around corners,” Phys. A 168, 49–65 (1990).
[Crossref]

Phys. Rev. Lett. (2)

S. Feng, C. Kane, P. A. Lee, and A. D. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988).
[Crossref]

I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988).
[Crossref]

Sci. Rep. (4)

P. Jain and S. E. Sarma, “Measuring light transport using speckle patterns as structured illumination,” Sci. Rep. 9, 11157 (2019).
[Crossref]

E. Edrei and G. Scarcelli, “Memory-effect based deconvolution microscopy for super-resolution imaging through scattering media,” Sci. Rep. 6, 33558 (2016).
[Crossref]

H. Zhuang, H. He, X. Xie, and J. Zhou, “High speed color imaging through scattering media with a large field of view,” Sci. Rep. 6, 32696 (2016).
[Crossref]

X. Xie, H. Zhuang, H. He, X. Xu, H. Liang, Y. Liu, and J. Zhou, “Extended depth-resolved imaging through a thin scattering medium with PSF manipulation,” Sci. Rep. 8, 4585 (2018).
[Crossref]

Science (3)

L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-D imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stingson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

W. Denk, J. H. Strickler, and W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[Crossref]

Other (4)

G. Satat, M. Tancik, and R. Raskar, “Towards photography through realistic fog,” in IEEE International Conference on Computational Photography (2018), pp. 1–10.

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2007).

R. M. Haralick and L. G. Shapiro, Computer and Robot Vision (Addison Wesley, 1992).

D. Brandner and G. Withers, “Multipolar neuron, Rattus from CIL:2907,” https://doi.org/doi:10.7295/W9CIL2907 (2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of our multi-target large FOV scattering imaging system via the blind target position detection. Multiple isolated targets, O1,O2,,On, behind the diffuser form a large FOV scene.
Fig. 2.
Fig. 2. Simulated experiments to analyze the relationship between two PSFs at different imaging distances (d0=120mm, pixel size=4.8μm, 600×600 pixels). The point light source was set at the optical axis (u=300,v=300), as the corresponding point where Ok located in the object plane. (a) Normalized PSFd1k with d1=17mm. (b) Normalized PSFd2k with d2=19mm. (c) The estimated low-density scaling vectors based on (a) and (b). The space between any two vectors vertically or horizontally is 20 pixels. The green rectangle in (b) is the matched block of the green rectangle in (a) and the enlarged arrow in (c) represents the estimated scaling vector corresponding to these two green rectangles. The blue point in (c) is the location of the light source. (d) The histogram distribution of m values extracted from all the scaling vectors in (c). Scale bar, 50 camera pixels.
Fig. 3.
Fig. 3. The block diagram of the scaling-vector-based detection algorithm.
Fig. 4.
Fig. 4. Multi-target large FOV scattering imaging system setup via the blind target position detection.
Fig. 5.
Fig. 5. Tests on a real scattering imaging system. (a) The multi-target mask “2FL” with the detailed parameters as the imaging targets. (b) The final large FOV reconstruction with the detected position information. (c) The captured near-field speckle with d2=17.0mm. (d) The captured near-field speckle with d1=16.5mm and the extracted autocorrelation of each imaging target centered by the detected locations in (e). (e) The estimated scaling vectors (shown as the red arrows) by block matching and the detected locations (shown as the blue points). The connected component analysis result is shown in the bottom right in a smaller scale. (f)–(j) As in (a)–(e) for a larger and more complex scene “01234.” Scale bar, 50 camera pixels.
Fig. 6.
Fig. 6. Real tests for biological scattering observation. (a) The neuron-shape mask with the detailed parameters as the imaging targets. (b) The final reconstructed scene. (c) The captured near-field speckle with d1=16.5mm. Scale bar, 50 camera pixels.
Fig. 7.
Fig. 7. Real reconstructions for mask “2FL” when the spacing is decreasing from 3.25 mm to 1.5 mm. (a) The original imaging targets with detailed distance parameters. (b) The final reconstructed large FOV scenes corresponding to (a). (c) The averaged PSNRs curve between reconstructions and original targets with respect to the decreasing spacing. (d) The estimated scaling vectors and locations when spacing equals 2.75 mm as an example of reconstructions in good quality. (e) The estimated scaling vectors and locations when spacing equals 1.75 mm as an example of degraded reconstructions.

Tables (1)

Tables Icon

Table 1. PSNRs Between Reconstructions and Targets

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

Id1=k=1nId1k=k=1nOk*PSFd1k,
PSFd1k(x,y)=C(xuk,yvk)·Sd1k(x,y),
Id1(x,y)=k=1nC(xuk,yvk)·(Ok*Sd1k)(x,y).
Us(xs,ys)=ej2πd0/λjλd0+δ(u,v)|u=0v=0·ejπλd0[(uxs)2+(vys)2]dudv=ej2πd0/λjλd0·ejπλd0(xs2+ys2),
h1(x,y)=ej2πd0/λd1λ2d0xs,ysTM(xs,ys)·ejπλd0(xs2+ys2)·ej2πλd12+(xsx)2+(ysy)2d12+(xsx)2+(ysy)2dxsdysej2π(d0+d1)/λd1λ2d0ejπλd1(x2+y2)xs,ysTM(xs,ys)·ejπλf(xs2+ys2)·ej2π(xλd1xs+yλd1ys)d12+(xsx)2+(ysy)2dxsdys,
PSFd1k(x,y)=|h1(x,y)|2=(d1λ2d0)2|xs,ysTM(xs,ys)·ejπλf(xs2+ys2)·ej2π(xλd1xs+yλd1ys)d12+(xsx)2+(ysy)2dxsdys|2.
T(d1,d2,m)=PSFd1k(x,y)·PSFd2k(mx,my)dxdy,
(xd2,yd2)=argmax(x,y)[Corr(Mx,y,Nxd1,yd1)],
PSFd1k(x,y)PSFd2k(mx,my),
PSFd1k(x,y)PSFd2k[mx(m1)uk,my(m1)vk],
Id1k(Δx+uk,Δy+vk)Id2k(m·Δx+uk,m·Δy+vk),
ε={(x,y)|(x,y)(u1,v1)2(x,y)(uk,vk)2(x,y)(u1,v1)β/2,k=2,,n}.
C(xu1,yv1)C(xuk,yvk),k=2,,n,(x,y)ε.
IεIε(x,y)=k=1nC(xuk,yvk)2·OkOk(x,y)C(xu1,yv1)2·O1O1(x,y)O1O1(x,y),

Metrics