Abstract

A SiN-Si dual-layer optical phased array (OPA) chip is designed and fabricated. It combines the low loss of SiN with the excellent modulation performance of Si, which improves the performance of Si single-layer OPA. A novel optical antenna and an improved phase modulation method are also proposed, and a two-dimensional scanning range of 96°×14° is achieved, which makes the OPA chip more practical.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. https://www.velodynelidar.com/ .
  2. https://www.ibeo-as.com/ .
  3. https://innoviz.tech/ .
  4. http://www.leddartech.com/ .
  5. https://quanergy.com/ .
  6. A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
    [Crossref]
  7. J. C. Hulme, J. K. Doylend, M. J. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23, 5861–5874 (2015).
    [Crossref]
  8. A. Feshali, C. T. Phare, D. N. Hutchison, H. Rong, J. Sun, J. Heck, J. K. Doylend, R. Kumar, and W. Kim, “High-resolution aliasing-free optical beam steering,” Optica 3, 887–890 (2016).
    [Crossref]
  9. C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.
  10. M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
    [Crossref]
  11. S. W. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
    [Crossref]
  12. C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
    [Crossref]
  13. W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27, 3642–3663 (2019).
    [Crossref]
  14. T. Kim, Realization of Integrated Coherent LiDAR, PhD Dissertation (University of California, Berkeley, 2019).
  15. M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.
  16. C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.
  17. J. Notaros, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased array butterfly architecture for independent amplitude and phase control,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2019), paper IM4A.4.
  18. F. Ashtiani and F. Aflatouni, “N × N optical phased array with 2N phase shifters,” Opt. Express 27, 27183–27190 (2019).
    [Crossref]
  19. H. Hashemi, “Large-scale monolithic optical phased arrays,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Tu3E.5.
  20. B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.
  21. S.-M. Kim, T.-H. Park, C.-S. Im, S.-S. Lee, T. Kim, and M.-C. Oh, “Temporal response of polymer waveguide beam scanner with thermo-optic phase-modulator array,” Opt. Express 28, 3768–3778 (2020).
    [Crossref]
  22. W. D. Sacher, Y. Huang, G.-Q. Lo, and J. K. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33, 901–910 (2015).
    [Crossref]
  23. Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
    [Crossref]
  24. M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
    [Crossref]
  25. W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).
  26. Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27, 1929–1940 (2019).
    [Crossref]
  27. W. D. Sacher, Y. Huang, G. Q. Lo, and J. K. S. Poon, “Multilayer silicon nitride-on-silicon integrated photonic platforms and devices,” J. Lightwave Technol. 33, 901–910 (2015).
    [Crossref]
  28. F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
    [Crossref]
  29. P. Wang, G. Luo, H. Yu, Y. Li, M. Wang, X. Zhou, W. Chen, Y. Zhang, and J. Pan, “Improving the performance of optical antenna for optical phased arrays through high-contrast grating structure on SOI substrate,” Opt. Express 27, 2703–2712 (2019).
    [Crossref]
  30. https://www.a-star.edu.sg/ime/ .
  31. http://www.vanjee.net/ .

2020 (1)

2019 (5)

2018 (2)

S. W. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
[Crossref]

2017 (1)

2016 (1)

2015 (3)

2014 (2)

2007 (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Abediasl, H.

S. W. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

Aflatouni, F.

Al Qubaisi, K.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Ashtiani, F.

Baets, R.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Barber, Z.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Bogaerts, W.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Bovington, J. T.

Bowers, J.

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27, 3642–3663 (2019).
[Crossref]

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

Bowers, J. E.

Brand, M.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Byrd, M. J.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

J. Notaros, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased array butterfly architecture for independent amplitude and phase control,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2019), paper IM4A.4.

Chang, Y.-C.

Chen, W.

Chung, S. W.

S. W. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

Claes, T.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Coldren, L.

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

Coldren, L. A.

Colosimo, J.

Coolbaugh, D.

Crouch, S.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Dallo, C.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Davenport, M.

Davenport, M. L.

Davids, P.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Dostart, N.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Doylend, J. K.

Feldkhun, D.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Feshali, A.

Gehl, M.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Gentry, C.

Hashemi, H.

S. W. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

H. Hashemi, “Large-scale monolithic optical phased arrays,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Tu3E.5.

Heck, J.

Heck, M. J.

Hoffman, G.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Huang, J.

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27, 3642–3663 (2019).
[Crossref]

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

Huang, Y.

Hulme, J. C.

Hutchison, D. N.

Im, C.-S.

Kadlec, E.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Khandaker, M.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Khilo, A.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Kim, S.-M.

Kim, T.

Kim, W.

Komljenovic, T.

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27, 3642–3663 (2019).
[Crossref]

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

Kumar, R.

Leake, G.

Lee, S.-S.

Li, Y.

Ling, Y.-C.

Liow, T.-Y.

Lipson, M.

Lo, G. Q.

Lo, G.-Q.

Long, C.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Luo, G.

Luo, X.

Mohan, R. K.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Mohanty, A.

Moresco, M.

Moss, B.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Notaros, J.

J. Notaros, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased array butterfly architecture for independent amplitude and phase control,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2019), paper IM4A.4.

O’Faolain, L.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Oh, M.-C.

Onural, D.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Pan, J.

Park, T.-H.

Peters, J. D.

Phare, C. T.

Pintus, P.

Poon, J. K.

Poon, J. K. S.

Popovic, M. A.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Poulton, C. V.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Raval, M.

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
[Crossref]

J. Notaros, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased array butterfly architecture for independent amplitude and phase control,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2019), paper IM4A.4.

Roberts, S. P.

Rong, H.

Russo, P.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Sacher, W. D.

Sadighi, D.

Scheerlinck, S.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Schrauwen, J.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Song, J.

Starbuck, A.

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

Su, Z.

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.

Sun, J.

Suni, P.

Taillaert, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Timurdogan, E.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Torres, A.

Tran, J.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Tran, M.

Van Laere, F.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Van Thourhout, D.

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

Vermeulen, D.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

Wagner, K.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Wang, M.

Wang, P.

Watts, M. R.

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

M. Raval, C. V. Poulton, and M. R. Watts, “Unidirectional waveguide grating antennas with uniform emission for optical phased arrays,” Opt. Lett. 42, 2563–2566 (2017).
[Crossref]

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

J. Notaros, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased array butterfly architecture for independent amplitude and phase control,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2019), paper IM4A.4.

Whaley, G.

Xie, W.

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27, 3642–3663 (2019).
[Crossref]

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

Yaacobi, A.

A. Yaacobi, J. Sun, M. Moresco, G. Leake, D. Coolbaugh, and M. R. Watts, “Integrated phased array for wide-angle beam steering,” Opt. Lett. 39, 4575–4578 (2014).
[Crossref]

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.

Yoo, S. B.

Yu, H.

Zadka, M.

Zhang, B.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

Zhang, K.

Zhang, Y.

Zhou, X.

IEEE J. Sel. Top. Quantum Electron. (1)

C. V. Poulton, M. J. Byrd, P. Russo, E. Timurdogan, M. Khandaker, D. Vermeulen, and M. R. Watts, “Long-range LiDAR and free-space data communication with high-performance optical phased arrays,” IEEE J. Sel. Top. Quantum Electron. 25, 7700108 (2019).
[Crossref]

IEEE J. Solid-State Circuits (1)

S. W. Chung, H. Abediasl, and H. Hashemi, “A monolithically integrated large-scale optical phased array in silicon-on-insulator CMOS,” IEEE J. Solid-State Circuits 53, 275–296 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Van Laere, T. Claes, J. Schrauwen, S. Scheerlinck, W. Bogaerts, D. Taillaert, L. O’Faolain, D. Van Thourhout, and R. Baets, “Compact focusing grating couplers for silicon-on-insulator integrated circuits,” IEEE Photon. Technol. Lett. 19, 1919–1921 (2007).
[Crossref]

J. Lightwave Technol. (2)

Opt. Express (8)

S.-M. Kim, T.-H. Park, C.-S. Im, S.-S. Lee, T. Kim, and M.-C. Oh, “Temporal response of polymer waveguide beam scanner with thermo-optic phase-modulator array,” Opt. Express 28, 3768–3778 (2020).
[Crossref]

M. Zadka, Y.-C. Chang, A. Mohanty, C. T. Phare, S. P. Roberts, and M. Lipson, “On-chip platform for a phased array with minimal beam divergence and wide field-of-view,” Opt. Express 26, 2528–2534 (2018).
[Crossref]

Y. Zhang, Y.-C. Ling, K. Zhang, C. Gentry, D. Sadighi, G. Whaley, J. Colosimo, P. Suni, and S. B. Yoo, “Sub-wavelength-pitch silicon-photonic optical phased array for large field-of-regard coherent optical beam steering,” Opt. Express 27, 1929–1940 (2019).
[Crossref]

F. Ashtiani and F. Aflatouni, “N × N optical phased array with 2N phase shifters,” Opt. Express 27, 27183–27190 (2019).
[Crossref]

Y. Huang, J. Song, X. Luo, T.-Y. Liow, and G.-Q. Lo, “CMOS compatible monolithic multi-layer Si3N4-on-SOI platform for low-loss high performance silicon photonics dense integration,” Opt. Express 22, 21859–21865 (2014).
[Crossref]

J. C. Hulme, J. K. Doylend, M. J. Heck, J. D. Peters, M. L. Davenport, J. T. Bovington, L. A. Coldren, and J. E. Bowers, “Fully integrated hybrid silicon two dimensional beam scanner,” Opt. Express 23, 5861–5874 (2015).
[Crossref]

P. Wang, G. Luo, H. Yu, Y. Li, M. Wang, X. Zhou, W. Chen, Y. Zhang, and J. Pan, “Improving the performance of optical antenna for optical phased arrays through high-contrast grating structure on SOI substrate,” Opt. Express 27, 2703–2712 (2019).
[Crossref]

W. Xie, T. Komljenovic, J. Huang, M. Tran, M. Davenport, A. Torres, P. Pintus, and J. Bowers, “Heterogeneous silicon photonics sensing for autonomous cars [Invited],” Opt. Express 27, 3642–3663 (2019).
[Crossref]

Opt. Lett. (2)

Optica (1)

Other (15)

https://www.a-star.edu.sg/ime/ .

http://www.vanjee.net/ .

https://www.velodynelidar.com/ .

https://www.ibeo-as.com/ .

https://innoviz.tech/ .

http://www.leddartech.com/ .

https://quanergy.com/ .

C. V. Poulton, A. Yaacobi, Z. Su, M. J. Byrd, and M. R. Watts, “Optical phased array with small spot size, high steering range and grouped cascaded phase shifters,” in Advanced Photonics 2016 (Optical Society of America, 2016), paper IW1B.2.

T. Kim, Realization of Integrated Coherent LiDAR, PhD Dissertation (University of California, Berkeley, 2019).

M. Gehl, G. Hoffman, P. Davids, A. Starbuck, C. Dallo, Z. Barber, E. Kadlec, R. K. Mohan, S. Crouch, and C. Long, “Phase optimization of a silicon photonic two-dimensional electro-optic phased array,” in CLEO: Science and Innovations (Optical Society of America, 2019), paper JTh2A.39.

C. V. Poulton, P. Russo, B. Moss, M. Khandaker, M. J. Byrd, J. Tran, E. Timurdogan, D. Vermeulen, and M. R. Watts, “Small-form-factor optical phased array module for technology adoption in custom applications,” in CLEO: Applications and Technology (Optical Society of America, 2019), paper JTh5B.6.

J. Notaros, M. J. Byrd, M. Raval, and M. R. Watts, “Integrated optical phased array butterfly architecture for independent amplitude and phase control,” in Integrated Photonics Research, Silicon and Nanophotonics (Optical Society of America, 2019), paper IM4A.4.

H. Hashemi, “Large-scale monolithic optical phased arrays,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper Tu3E.5.

B. Zhang, N. Dostart, A. Khilo, M. Brand, K. Al Qubaisi, D. Onural, D. Feldkhun, M. A. Popović, and K. Wagner, “Serpentine optical phased array silicon photonic aperture tile with two-dimensional wavelength beam steering,” in Optical Fiber Communication Conference (Optical Society of America, 2019), paper M4E.5.

W. Xie, J. Huang, T. Komljenovic, L. Coldren, and J. Bowers, “Diffraction limited centimeter scale radiator: metasurface grating antenna for phased array LiDAR,” arXiv:1810.00109 (2018).

Supplementary Material (2)

NameDescription
» Visualization 1       The far-field test system can accurately measure the spot size, and a small range of scanning (± 20 °).
» Visualization 2       A scanning range of 96° was measured by the scanning test system.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1.
Fig. 1. Optical micrograph of the proposed SiN-Si dual-layer optical phased array.
Fig. 2.
Fig. 2. Micrographs of the separate devices: (a) SiN edge coupler, (b) SiN grating coupler, (c) SiN MMI, (d) SiN-Si dual-layer transitions, (e) phase modulators, and (f) optical antenna.
Fig. 3.
Fig. 3. (a) Schematic of the proposed SiN-Si double grating coupler. (b) Sectional view of the proposed SiN-Si double grating coupler. (c) Simulated far-field spot of the proposed SiN-Si double grating coupler. (d) Simulated coupling efficiency of the proposed SiN-Si double grating coupler.
Fig. 4.
Fig. 4. (a) Schematic of the proposed SiN edge coupler. (b) Simulated coupling efficiency of the proposed SiN edge coupler.
Fig. 5.
Fig. 5. (a) Schematic of the proposed SiN MMI. (b) Field distribution in the proposed SiN MMI. (c) Simulated transmission efficiency of the proposed SiN MMI.
Fig. 6.
Fig. 6. (a) Schematic of the proposed SiN-Si dual-layer transition. (b) Light intensity transfer between two layers. (c) Optical mode change process at the proposed SiN-Si dual-layer transition. (d) Light transfer efficiency between two layers.
Fig. 7.
Fig. 7. (a) Schematic diagram of the thermo-optic phase modulator. (b) Power consumption of phase modulators with different structures.
Fig. 8.
Fig. 8. (a) Schematic diagram of the proposed antenna. (b) Scanning far-field spots of the proposed optical antenna.
Fig. 9.
Fig. 9. (a) Reflection of the antenna. (b) Vector at the beginning of the antenna. (c) Upward and downward emission of the antenna.
Fig. 10.
Fig. 10. (a) Near field and far field with channel1 input light. (b) Near field and far field with channel16 input light. (c) Near field and far field with channel32 input light.
Fig. 11.
Fig. 11. Test results of the separate devices: (a) loss of the grating coupler, (b) loss of the waveguide, (c) loss of MMI, and (d) loss of SiN-Si dual-layer transition.
Fig. 12.
Fig. 12. (a) Modulation characteristics of Si thermo-optic phase modulator. (b) Modulation characteristics of SiN thermo-optic phase modulator.
Fig. 13.
Fig. 13. Speed test results of phase modulator.
Fig. 14.
Fig. 14. (a) Photo of far-field test system and the schematic diagram. (b) Photo of scanning test system and the schematic diagram.
Fig. 15.
Fig. 15. (a) Beam steering in Φ axis. (b) Beam steering in θ axis. See Visualization 1 for video showing the 2D scanning tested by the far-field test system.
Fig. 16.
Fig. 16. (a) Scanning range in Φ axis. (b) Scanning range in θ axis. See Visualization 2 for video showing the 2D scanning tested by the scanning test system.
Fig. 17.
Fig. 17. Simulation result of far-field spot size.
Fig. 18.
Fig. 18. Output spot power of Si OPA and SiN-Si OPA as a function of input power.
Fig. 19.
Fig. 19. Schematic diagram of proportional heating length phase modulators.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δφn,n+1=φn+1φn=nTΔLΔT2πλ,
ΔL=Ln+1Ln,
ΔT(ΔU2Rn+1ΔU2Rn),
ΔT(1Ln+11Ln).
Δφn,n+1ΔLΔT=(Ln+1Ln)2Ln+1Ln.
Δφn1,nΔLΔT=(LnLn1)2LnLn1.
Δφn,n+1=Δφn1,n.
LnLn1=Ln+1Ln,

Metrics