Abstract

Frequency comb swept lasers are the enabling technology of circular interferometric imaging, which was proposed to break the bottleneck of data acquisition and processing in optical coherence tomography (OCT) at video rate. In this paper, we propose and demonstrate a highly coherent frequency comb swept laser by using a high-quality (high-Q) microring comb filter to discretize a Fourier-domain mode-locked (FDML) laser. The microring filter has a Q factor of 2×106 and a linewidth of 90  MHz. To demonstrate the improvement in performance, a Fabry–Pérot comb filter with a Q factor of 6.2×104 and a linewidth of 3.1 GHz is also used in the experiment for comparison. Both comb filters have free spectral ranges (FSRs) of 50  GHz for consistence. Stable and clearly discretized temporal waveforms and frequency comb spectra with 50 GHz FSR are observed. Adoption of the high-Q microring filter narrows the instantaneous linewidth of the FDML laser down to 1.5 GHz. The OCT system with the frequency comb swept laser source with a microring filter demonstrates an ultralong imaging range, which has a 6, 10, and 15 dB sensitivity roll-off length of 53, 73, and over 100 mm, respectively.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D.-P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20, 13138–13145 (2012).
    [Crossref]
  2. D. Chen, C. Shu, and S. He, “Multiple fiber Bragg grating interrogation based on a spectrum-limited Fourier domain mode-locking fiber laser,” Opt. Lett. 33, 1395–1397 (2008).
    [Crossref]
  3. C.-Y. Ryu and C.-S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
    [Crossref]
  4. R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
    [Crossref]
  5. R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
    [Crossref]
  6. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
    [Crossref]
  7. T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8, 828–859 (2017).
    [Crossref]
  8. W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
    [Crossref]
  9. J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6, 1340–1350 (2015).
    [Crossref]
  10. A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
    [Crossref]
  11. A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3, 633–649 (2012).
    [Crossref]
  12. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
    [Crossref]
  13. J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett. 36, 4788–4790 (2011).
    [Crossref]
  14. M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
    [Crossref]
  15. J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9, 120–130 (2018).
    [Crossref]
  16. K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
    [Crossref]
  17. D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
    [Crossref]
  18. W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
    [Crossref]
  19. T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9, 4130–4148 (2018).
    [Crossref]
  20. F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).
  21. J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
    [Crossref]
  22. N. Lippok, B. E. Bouma, and B. J. Vakoc, “Stable multi-megahertz circular-ranging optical coherence tomography at 13 μm,” Biomed. Opt. Express 11, 174–185 (2020).
    [Crossref]
  23. T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17, 21257–21270 (2009).
    [Crossref]
  24. S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).
    [Crossref]
  25. T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
    [Crossref]
  26. M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, and P. K. A. Wai, “Time and Fourier domain jointly mode locked frequency comb swept fiber laser,” Opt. Express 25, 32705–32712 (2017).
    [Crossref]
  27. T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
    [Crossref]
  28. D. T. Spencer, J. F. Bauters, M. J. R. Heck, and J. E. Bowers, “Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime,” Optica 1, 153–157 (2014).
    [Crossref]
  29. X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]
  30. W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, “Robust soliton crystals in a thermally controlled microresonator,” Opt. Lett. 43, 2002–2005 (2018).
    [Crossref]
  31. M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
    [Crossref]
  32. D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
    [Crossref]
  33. T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–560 (2011).
    [Crossref]
  34. T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
    [Crossref]
  35. D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
    [Crossref]
  36. Z. Cen, F. Li, Q. Li, and P. K. A. Wai, “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

2020 (1)

2019 (1)

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

2018 (6)

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, “Robust soliton crystals in a thermally controlled microresonator,” Opt. Lett. 43, 2002–2005 (2018).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9, 120–130 (2018).
[Crossref]

T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9, 4130–4148 (2018).
[Crossref]

2017 (3)

2015 (1)

2014 (3)

2013 (1)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

2012 (5)

2011 (4)

J. Zhang, J. Jing, P. Wang, and Z. Chen, “Polarization-maintaining buffered Fourier domain mode-locked swept source for optical coherence tomography,” Opt. Lett. 36, 4788–4790 (2011).
[Crossref]

K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
[Crossref]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–560 (2011).
[Crossref]

2009 (1)

2008 (1)

2007 (1)

2006 (2)

2005 (1)

2003 (2)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

2002 (1)

C.-Y. Ryu and C.-S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Adler, D. C.

Armani, D. K.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Bao, X.

Barbosa, F. A. S.

Bauters, J. F.

Belding, J.

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Bouma, B. E.

Bowers, J. E.

Bryant, A.

Cao, Y.

Cardenas, J.

Cen, Z.

Z. Cen, F. Li, Q. Li, and P. K. A. Wai, “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

Chen, D.

Chen, L.

Chen, Z.

Chu, S. T.

W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, “Robust soliton crystals in a thermally controlled microresonator,” Opt. Lett. 43, 2002–2005 (2018).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Delfyett, P. J.

K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
[Crossref]

Dhalla, A.-H.

Diddams, S. A.

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–560 (2011).
[Crossref]

Draxinger, W.

Drexler, W.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Dutt, A.

Eibl, M.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9, 120–130 (2018).
[Crossref]

Eigenwillig, C. M.

Feng, X.

Fercher, A. F.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Fujimoto, J. G.

Gaeta, A. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Gargesha, M.

Gavartin, E.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Gorodetsky, M. L.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Guan, B.

Hakert, H.

Hartinger, K.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

He, S.

Heck, M. J. R.

Herr, T.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Hitzenberger, C. K.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Holzwarth, R.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–560 (2011).
[Crossref]

Hong, C.-S.

C.-Y. Ryu and C.-S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Hsu, K.

Huang, D.

Huber, R.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9, 120–130 (2018).
[Crossref]

T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9, 4130–4148 (2018).
[Crossref]

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8, 828–859 (2017).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
[Crossref]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[Crossref]

R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking: unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975–2977 (2006).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref]

Huber, R. A.

Izatt, J. A.

Jenkins, M. W.

Ji, X.

Jing, J.

Jirauschek, C.

Kang, Z.

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Karpf, S.

Kippenberg, T. J.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–560 (2011).
[Crossref]

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Klee, J.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Klein, T.

Kolb, J. P.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9, 120–130 (2018).
[Crossref]

Kong, C.

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

Kutz, J. N.

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Lasser, T.

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Lee, K.-S.

K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
[Crossref]

Li, F.

M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, and P. K. A. Wai, “Time and Fourier domain jointly mode locked frequency comb swept fiber laser,” Opt. Express 25, 32705–32712 (2017).
[Crossref]

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Z. Cen, F. Li, Q. Li, and P. K. A. Wai, “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

Li, Q.

Z. Cen, F. Li, Q. Li, and P. K. A. Wai, “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

Li, W.

Lippok, N.

N. Lippok, B. E. Bouma, and B. J. Vakoc, “Stable multi-megahertz circular-ranging optical coherence tomography at 13 μm,” Biomed. Opt. Express 11, 174–185 (2020).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Lipson, M.

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

X. Ji, F. A. S. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
[Crossref]

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

Little, B. E.

W. Wang, Z. Lu, W. Zhang, S. T. Chu, B. E. Little, L. Wang, X. Xie, M. Liu, Q. Yang, L. Wang, J. Zhao, G. Wang, Q. Sun, Y. Liu, Y. Wang, and W. Zhao, “Robust soliton crystals in a thermally controlled microresonator,” Opt. Lett. 43, 2002–2005 (2018).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Liu, M.

Liu, Y.

Lu, Z.

Meemon, P.

K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
[Crossref]

Morandotti, R.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Moss, D. J.

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Nakkeeran, K.

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Nankivil, D.

Okawachi, Y.

Park, Y.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Pasquazi, A.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Peccianti, M.

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Petermann, M.

Pfeiffer, T.

Qin, Z.

Riemensberger, J.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Roberts, S. P.

Rolland, J. P.

K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
[Crossref]

Rollins, M.

Rothenberg, F.

Ryu, C.-Y.

C.-Y. Ryu and C.-S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Schmitt, J. M.

Shu, C.

Siddiqui, M.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).
[Crossref]

Spencer, D. T.

Spillane, S. M.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Sun, Q.

Taira, K.

Tan, S.

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).
[Crossref]

Trepanier, F.

Trépanier, F.

Tsai, T.-H.

Tsia, K. K.

Tsia, K. K. M.

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

Vahala, K. J.

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Vakoc, B. J.

Wai, P. K. A.

M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, and P. K. A. Wai, “Time and Fourier domain jointly mode locked frequency comb swept fiber laser,” Opt. Express 25, 32705–32712 (2017).
[Crossref]

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Z. Cen, F. Li, Q. Li, and P. K. A. Wai, “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

Wan, M.

Wang, C. Y.

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

Wang, G.

Wang, L.

Wang, P.

Wang, W.

Wang, X.

Wang, Y.

Watanabe, M.

Wei, X.

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6, 1340–1350 (2015).
[Crossref]

Wieser, W.

Wilson, D. L.

Wojtkowski, M.

Wong, K. K. Y.

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6, 1340–1350 (2015).
[Crossref]

Xie, X.

Xu, J.

Yang, Q.

Yang, T.

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

Yu, L.

Yuan, J.

M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, and P. K. A. Wai, “Time and Fourier domain jointly mode locked frequency comb swept fiber laser,” Opt. Express 25, 32705–32712 (2017).
[Crossref]

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Zhang, C.

Zhang, J.

Zhang, W.

Zhang, X.

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Zhao, J.

Zhao, W.

Zhou, C.

Zhou, D.-P.

Biomed. Opt. Express (8)

T. Klein and R. Huber, “High-speed OCT light sources and systems [Invited],” Biomed. Opt. Express 8, 828–859 (2017).
[Crossref]

W. Wieser, W. Draxinger, T. Klein, S. Karpf, T. Pfeiffer, and R. Huber, “High definition live 3D-OCT in vivo: design and evaluation of a 4D OCT engine with 1 GVoxel/s,” Biomed. Opt. Express 5, 2963–2977 (2014).
[Crossref]

J. Xu, X. Wei, L. Yu, C. Zhang, J. Xu, K. K. Y. Wong, and K. K. Tsia, “High-performance multi-megahertz optical coherence tomography based on amplified optical time-stretch,” Biomed. Opt. Express 6, 1340–1350 (2015).
[Crossref]

A.-H. Dhalla, D. Nankivil, and J. A. Izatt, “Complex conjugate resolved heterodyne swept source optical coherence tomography using coherence revival,” Biomed. Opt. Express 3, 633–649 (2012).
[Crossref]

J. P. Kolb, T. Pfeiffer, M. Eibl, H. Hakert, and R. Huber, “High-resolution retinal swept source optical coherence tomography with an ultra-wideband Fourier-domain mode-locked laser at MHz A-scan rates,” Biomed. Opt. Express 9, 120–130 (2018).
[Crossref]

W. Wieser, T. Klein, D. C. Adler, F. Trépanier, C. M. Eigenwillig, S. Karpf, J. M. Schmitt, and R. Huber, “Extended coherence length megahertz FDML and its application for anterior segment imaging,” Biomed. Opt. Express 3, 2647–2657 (2012).
[Crossref]

T. Pfeiffer, M. Petermann, W. Draxinger, C. Jirauschek, and R. Huber, “Ultra low noise Fourier domain mode locked laser for high quality megahertz optical coherence tomography,” Biomed. Opt. Express 9, 4130–4148 (2018).
[Crossref]

N. Lippok, B. E. Bouma, and B. J. Vakoc, “Stable multi-megahertz circular-ranging optical coherence tomography at 13 μm,” Biomed. Opt. Express 11, 174–185 (2020).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

T. Yang, X. Wei, C. Kong, S. Tan, K. K. M. Tsia, and K. K. Y. Wong, “An ultrafast wideband discretely swept fiber laser,” IEEE J. Sel. Top. Quantum Electron. 24, 8800105 (2018).
[Crossref]

Nat. Commun. (1)

M. Peccianti, A. Pasquazi, Y. Park, B. E. Little, S. T. Chu, D. J. Moss, and R. Morandotti, “Demonstration of a stable ultrafast laser based on a nonlinear microcavity,” Nat. Commun. 3, 765 (2012).
[Crossref]

Nat. Photonics (3)

D. J. Moss, R. Morandotti, A. L. Gaeta, and M. Lipson, “New CMOS-compatible platforms based on silicon nitride and Hydex for nonlinear optics,” Nat. Photonics 7, 597–607 (2013).
[Crossref]

T. Herr, K. Hartinger, J. Riemensberger, C. Y. Wang, E. Gavartin, R. Holzwarth, M. L. Gorodetsky, and T. J. Kippenberg, “Universal formation dynamics and noise of Kerr-frequency combs in microresonators,” Nat. Photonics 6, 480–487 (2012).
[Crossref]

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Nature (1)

D. K. Armani, T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Ultra-high-Q toroid microcavity on a chip,” Nature 421, 925–928 (2003).
[Crossref]

Opt. Express (8)

M. Wan, F. Li, X. Feng, X. Wang, Y. Cao, B. Guan, D. Huang, J. Yuan, and P. K. A. Wai, “Time and Fourier domain jointly mode locked frequency comb swept fiber laser,” Opt. Express 25, 32705–32712 (2017).
[Crossref]

T.-H. Tsai, C. Zhou, D. C. Adler, and J. G. Fujimoto, “Frequency comb swept lasers,” Opt. Express 17, 21257–21270 (2009).
[Crossref]

S. Tozburun, M. Siddiqui, and B. J. Vakoc, “A rapid, dispersion-based wavelength-stepped and wavelength-swept laser for optical coherence tomography,” Opt. Express 22, 3414–3424 (2014).
[Crossref]

D. C. Adler, W. Wieser, F. Trepanier, J. M. Schmitt, and R. A. Huber, “Extended coherence length Fourier domain mode locked lasers at 1310 nm,” Opt. Express 19, 20930–20939 (2011).
[Crossref]

M. W. Jenkins, D. C. Adler, M. Gargesha, R. Huber, F. Rothenberg, J. Belding, M. Watanabe, D. L. Wilson, J. G. Fujimoto, and M. Rollins, “Ultrahigh-speed optical coherence tomography imaging and visualization of the embryonic avian heart using a buffered Fourier domain mode locked laser,” Opt. Express 15, 6251–6267 (2007).
[Crossref]

D.-P. Zhou, Z. Qin, W. Li, L. Chen, and X. Bao, “Distributed vibration sensing with time-resolved optical frequency-domain reflectometry,” Opt. Express 20, 13138–13145 (2012).
[Crossref]

R. Huber, M. Wojtkowski, and J. G. Fujimoto, “Fourier domain mode locking (FDML): a new laser operating regime and applications for optical coherence tomography,” Opt. Express 14, 3225–3237 (2006).
[Crossref]

R. Huber, M. Wojtkowski, K. Taira, J. G. Fujimoto, and K. Hsu, “Amplified, frequency swept lasers for frequency domain reflectometry and OCT imaging: design and scaling principles,” Opt. Express 13, 3513–3528 (2005).
[Crossref]

Opt. Lett. (4)

Optica (2)

Photon. Sens. (1)

K. Hsu, P. Meemon, K.-S. Lee, P. J. Delfyett, and J. P. Rolland, “Broadband Fourier-domain mode-locked lasers,” Photon. Sens. 1, 222–227 (2011).
[Crossref]

PLoS ONE (1)

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Rep. Prog. Phys. (1)

A. F. Fercher, W. Drexler, C. K. Hitzenberger, and T. Lasser, “Optical coherence tomography—principles and applications,” Rep. Prog. Phys. 66, 239–303 (2003).
[Crossref]

Science (2)

T. J. Kippenberg, R. Holzwarth, and S. A. Diddams, “Microresonator-based optical frequency combs,” Science 332, 555–560 (2011).
[Crossref]

T. J. Kippenberg, A. L. Gaeta, M. Lipson, and M. L. Gorodetsky, “Dissipative Kerr solitons in optical microresonators,” Science 361, eaan8083 (2018).
[Crossref]

Smart Mater. Struct. (1)

C.-Y. Ryu and C.-S. Hong, “Development of fiber Bragg grating sensor system using wavelength-swept fiber laser,” Smart Mater. Struct. 11, 468–473 (2002).
[Crossref]

Other (2)

F. Li, K. Nakkeeran, J. N. Kutz, J. Yuan, Z. Kang, X. Zhang, and P. K. A. Wai, “Eckhaus instability in the fourier-domain mode locked fiber laser cavity,” arXiv:1707.08304 (2017).

Z. Cen, F. Li, Q. Li, and P. K. A. Wai, “High quality pulse train from discrete Fourier domain mode locked laser with a comb filter,” in Asia Communications and Photonics Conference (ACP) (2018), paper M1A.7.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic diagram of an FDML laser with a comb filter. FFP-TF, Fiber Fabry–Pérot tunable filter; SOA, semiconductor optical amplifier; ISO, isolator; AWG, arbitrary-waveform generator; OC, optical coupler; PC, polarization controller; CIR, circulator; SMF, single-mode fiber; DCF, dispersion compensation fiber; FRM, Faraday rotating mirror; CF, comb filter (microring or F–P comb filter). The inset shows a photo of the Hydex glass microring comb filter.
Fig. 2.
Fig. 2. Schematic diagram of the point spread function and sensitivity roll-off measurement system. OC, optical coupler; PD, photodetector; BPD, balanced photodetector; CIR, circulator; PC, polarization controller; VODL, variable optical delay line.
Fig. 3.
Fig. 3. (a) Transmission spectrum of the microring filter. (b) The fine structures of a pair of resonances for TE and TM modes; (c) and (d) respectively show the TM and TE resonances shown in (b) with Lorentzian fittings. (e) Transmission spectrum of the F–P comb filter. (f) The fine structure of one resonance of the F–P comb filter with Lorentzian fitting. All the spectra are captured with averaging of 30 measurements.
Fig. 4.
Fig. 4. Performance of a discrete FDML laser with F–P comb filter. (a) Output spectra and (b) the zoom-in view from 1555 to 1565 nm. (c) The instantaneous linewidth of the swept signal with Lorentzian fitting measured by the optical complex spectrum analyzer, (d) the temporal waveform, and (f) the zoom-in view from 10 to 10.3 μs without averaging. (e) The temporal waveform and (g) the zoom-in view with averaging of 10 measurements.
Fig. 5.
Fig. 5. Performance of the discrete FDML laser with microring comb filter. (a) The output spectra and (b) the zoom-in view from 1555 to 1565 nm. (c) The instantaneous linewidth of the swept signal with Lorentzian fitting measured by the optical complex spectrum analyzer, (d) the temporal waveform, and (f) the zoom-in view from 10 to 10.3 μs without averaging. (e) The temporal waveform and (g) the zoom-in view with averaging of 10 measurements.
Fig. 6.
Fig. 6. (a) Example of raw interference fringe pattern with an F–P comb filter captured by the BPD. (b) Resampled interference spectrum with self-clocking. (c) Axial resolution estimation with PSF calculated from the signal of (b). (d)–(g) The measured PSFs of the frequency comb swept laser with an F–P comb filter for different OCT imaging ranges. (d) The imaging range from 0 to 14 mm. (e) The zoom-in view from 0 to 1.5 mm. (f) The zoom-in view from 6.1 to 7.6 mm, covering the 6 dB sensitivity roll-off length. (g) The zoom-in view from 12.4 to 13.9 mm, covering the 20 dB sensitivity roll-off length.
Fig. 7.
Fig. 7. (a) Example of raw interference fringe pattern with microring comb filter captured by the BPD. (b) Resampled interference spectrum with self-clocking. (c) Axial resolution estimation with PSF calculated from the signal of (b). (d)–(g) The measured PSFs of frequency comb swept laser with microring comb filter for different OCT imaging ranges. (d) The imaging range from 0 to 104 mm. (e) The zoom in view from 0 to 1.5 mm. (f) The zoom-in view from 51.7 to 53.2 mm, covering the 6 dB sensitivity roll-off length. (g) The zoom-in view from 102.6 to 104.1 mm, covering the 15 dB sensitivity roll-off length.

Metrics