Abstract

An ultrahigh-Q silicon racetrack resonator is proposed and demonstrated with uniform multimode silicon photonic waveguides. It consists of two multimode straight waveguides connected by two multimode waveguide bends (MWBs). In particular, the MWBs are based on modified Euler curves, and a bent directional coupler is used to achieve the selective mode coupling for the fundamental mode and not exciting the higher-order mode in the racetrack. In this way, the fundamental mode is excited and propagates in the multimode racetrack resonator with ultralow loss and low intermode coupling. Meanwhile, it helps achieve a compact 180° bend to make a compact resonator with a maximized free spectral range (FSR). In this paper, for the chosen 1.6 μm wide silicon photonic waveguide, the effective radius Reff of the designed 180° bend is as small as 29 μm. The corresponding FSR is about 0.9 nm when choosing 260 μm long straight waveguides in the racetrack. The present high-Q resonator is realized with a simple standard single-etching process provided by a multiproject wafer foundry. The fabricated device, which has a measured intrinsic Q-factor as high as 2.3×106, is the smallest silicon resonator with a >106 Q-factor.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photon. Rev. 12, 1700237 (2018).
    [Crossref]
  2. D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106, 2117–2143 (2018).
    [Crossref]
  3. H. Qiu, F. Zhou, J. Qie, Y. Yao, X. Hu, Y. Zhang, X. Xiao, Y. Yu, J. Dong, and X. Zhang, “A continuously tunable sub-gigahertz microwave photonic bandpass filter based on an ultra-high-Q silicon microring resonator,” J. Lightwave Technol. 36, 4312–4318 (2018).
    [Crossref]
  4. M. S. Rasras, D. M. Kun-Yii Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27, 2105–2110 (2009).
    [Crossref]
  5. B. Stern, J. Xingchen, A. Dutt, and M. Lipson, “Compact narrow-linewidth integrated laser based on a low-loss silicon nitride ring resonator,” Opt. Lett. 42, 4541–4544 (2017).
    [Crossref]
  6. B. Q. Su, C. X. Wang, Q. Kan, and H. D. Chen, “Compact silicon-on-insulator dual-microring resonator optimized for sensing,” J. Lightwave Technol. 29, 1535–1541 (2011).
    [Crossref]
  7. D. Dai and S. He, “Highly sensitive sensor based on an ultra-high-Q Mach–Zehnder interferometer-coupled microring,” J. Opt. Soc. Am. B 26, 511–516 (2009).
    [Crossref]
  8. M. Pöllinger and A. Rauschenbeutel, “All-optical signal processing at ultra-low powers in bottle microresonators using the Kerr effect,” Opt. Express 18, 17764–17775 (2010).
    [Crossref]
  9. M. Pu, L. Ottaviano, E. Semenova, and K. Yvind, “Efficient frequency comb generation in AlGaAs-on-insulator,” Optica 3, 823–826 (2016).
    [Crossref]
  10. T. H. Chang, B. M. Fields, M. E. Kim, and C. L. Hung, “Microring resonators on a suspended membrane circuit for atom-light interactions,” Optica 6, 1203–1210 (2019).
    [Crossref]
  11. F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
    [Crossref]
  12. W. C. Jiang, J. Zhang, and Q. Lin, “Compact suspended silicon microring resonators with ultrahigh quality,” Opt. Express 22, 1187–1192 (2014).
    [Crossref]
  13. L. W. Luo, G. S. Wiederhecker, J. Cardenas, C. Poitras, and M. Lipson, “High quality factor etchless silicon photonic ring resonators,” Opt. Express 19, 6284–6289 (2011).
    [Crossref]
  14. A. Griffith, J. Cardenas, C. B. Poitras, and M. Lipson, “High quality factor and high confinement silicon resonators using etchless process,” Opt. Express 20, 21341–21345 (2012).
    [Crossref]
  15. M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.
  16. Y. Zhang, X. Hu, D. Chen, L. Wang, M. Li, P. Feng, X. Xiao, and S. Yu, “Design and demonstration of ultra-high-Q silicon microring resonator based on a multi-mode ridge waveguide,” Opt. Lett. 43, 1586–1589 (2018).
    [Crossref]
  17. M. Burla, B. Crockett, L. Chrostowski, and J. Azana, “Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing,” in International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.
  18. A. Biberman, M. J. Shaw, E. Timurdogan, J. B. Wright, and M. R. Watts, “Ultralow-loss silicon ring resonators,” Opt. Lett. 37, 4236–4238 (2012).
    [Crossref]
  19. S. Liu, W. Z. Sun, Y. J. Wang, X. Y. Yu, K. Xu, Y. Z. Huang, S. M. Xiao, and Q. H. Song, “End-fire injection of light into high-Q silicon microdisks,” Optica 5, 612–616 (2018).
    [Crossref]
  20. J. F. Bauters, M. J. Heck, D. John, D. Dai, M.-C. Tien, J. S. Barton, A. Leinse, R. G. Heideman, D. J. Blumenthal, and J. E. Bowers, “Ultra-low-loss high-aspect-ratio Si3N4 waveguides,” Opt. Express 19, 3163–3174 (2011).
    [Crossref]
  21. K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
    [Crossref]
  22. X. Jiang, H. Wu, and D. Dai, “Low-loss and low-crosstalk multimode waveguide bend on silicon,” Opt. Express 26, 17680–17689 (2018).
    [Crossref]
  23. M. K. Chin and S. T. Ho, “Design and modeling of waveguide-coupled single-mode microring resonators,” J. Lightwave Technol. 16, 1433–1446 (1998).
    [Crossref]
  24. D. Dai and J. Bowers, “Novel concept for ultracompact polarization splitter-rotator based on silicon nanowires,” Opt. Express 19, 10940–10949 (2011).
    [Crossref]
  25. X. Ji, F. A. Barbosa, S. P. Roberts, A. Dutt, J. Cardenas, Y. Okawachi, A. Bryant, A. L. Gaeta, and M. Lipson, “Ultra-low-loss on-chip resonators with sub-milliwatt parametric oscillation threshold,” Optica 4, 619–624 (2017).
    [Crossref]

2019 (1)

2018 (6)

2017 (2)

2016 (1)

2014 (1)

2012 (2)

2011 (4)

2010 (1)

2009 (2)

2000 (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

1998 (1)

1994 (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Agarwal, A.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Azana, J.

M. Burla, B. Crockett, L. Chrostowski, and J. Azana, “Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing,” in International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.

Barbosa, F. A.

Barton, J. S.

Bauters, J. F.

Beals, M.

Beattie, J.

Biberman, A.

Blumenthal, D. J.

Bogaerts, W.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photon. Rev. 12, 1700237 (2018).
[Crossref]

Bowers, J.

Bowers, J. E.

Bryant, A.

Burla, M.

M. Burla, B. Crockett, L. Chrostowski, and J. Azana, “Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing,” in International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.

Cardenas, J.

Carothers, D.

Caverley, M.

M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.

Chang, T. H.

Chen, D.

Chen, H. D.

Chen, Y.-K.

Chin, M. K.

Chrostowski, L.

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photon. Rev. 12, 1700237 (2018).
[Crossref]

M. Burla, B. Crockett, L. Chrostowski, and J. Azana, “Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing,” in International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.

M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.

Cretu, E.

M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.

Crockett, B.

M. Burla, B. Crockett, L. Chrostowski, and J. Azana, “Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing,” in International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.

Dai, D.

Dong, J.

Dutt, A.

Feng, P.

Fields, B. M.

Foresi, J.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Gaeta, A. L.

Gill, D. M.

Griffith, A.

Guillén-Torres, M. A.

M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.

He, S.

Heck, M. J.

Heideman, R. G.

Ho, S. T.

Hu, X.

Huang, Y. Z.

Hung, C. L.

Jaeger, N. A.

M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.

Ji, X.

Jiang, W. C.

Jiang, X.

John, D.

Kan, Q.

Kim, M. E.

Kimerling, L. C.

M. S. Rasras, D. M. Kun-Yii Tu, D. M. Gill, Y.-K. Chen, A. E. White, S. S. Patel, A. Pomerene, D. Carothers, J. Beattie, M. Beals, J. Michel, and L. C. Kimerling, “Demonstration of a tunable microwave-photonic notch filter using low-loss silicon ring resonators,” J. Lightwave Technol. 27, 2105–2110 (2009).
[Crossref]

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Kun-Yii Tu, D. M.

Lacey, J. P. R.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Lee, K. K.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Leinse, A.

Li, M.

Lim, D. R.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Lin, Q.

Lipson, M.

Liu, S.

Luan, H. C.

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

Luo, L. W.

Michel, J.

Okawachi, Y.

Ottaviano, L.

Patel, S. S.

Payne, F. P.

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Poitras, C.

Poitras, C. B.

Pöllinger, M.

Pomerene, A.

Pu, M.

Qie, J.

Qiu, H.

Rasras, M. S.

Rauschenbeutel, A.

Roberts, S. P.

Semenova, E.

Shaw, M. J.

Song, Q. H.

Stern, B.

Su, B. Q.

Sun, W. Z.

Tien, M.-C.

Timurdogan, E.

Wang, C. X.

Wang, L.

Wang, Y. J.

Watts, M. R.

White, A. E.

Wiederhecker, G. S.

Wright, J. B.

Wu, H.

Xiao, S. M.

Xiao, X.

Xingchen, J.

Xu, K.

Yao, Y.

Yu, S.

Yu, X. Y.

Yu, Y.

Yvind, K.

Zhang, J.

Zhang, X.

Zhang, Y.

Zhou, F.

Appl. Phys. Lett. (1)

K. K. Lee, D. R. Lim, H. C. Luan, A. Agarwal, J. Foresi, and L. C. Kimerling, “Effect of size and roughness on light transmission in a Si/SiO2 waveguide: experiments and model,” Appl. Phys. Lett. 77, 1617–1619 (2000).
[Crossref]

J. Lightwave Technol. (4)

J. Opt. Soc. Am. B (1)

Laser Photon. Rev. (1)

W. Bogaerts and L. Chrostowski, “Silicon photonics circuit design: methods, tools and challenges,” Laser Photon. Rev. 12, 1700237 (2018).
[Crossref]

Opt. Express (7)

Opt. Lett. (3)

Opt. Quantum Electron. (1)

F. P. Payne and J. P. R. Lacey, “A theoretical analysis of scattering loss from planar optical waveguides,” Opt. Quantum Electron. 26, 977–986 (1994).
[Crossref]

Optica (4)

Proc. IEEE (1)

D. Dai, “Advanced passive silicon photonic devices with asymmetric waveguide structures,” Proc. IEEE 106, 2117–2143 (2018).
[Crossref]

Other (2)

M. A. Guillén-Torres, M. Caverley, E. Cretu, N. A. Jaeger, and L. Chrostowski, “Large-area, high-Q SOI ring resonators,” in Proceedings of IEEE Photonics Conference (IEEE, 2014), pp. 336–337.

M. Burla, B. Crockett, L. Chrostowski, and J. Azana, “Ultra-high Q multimode waveguide ring resonators for microwave photonics signal processing,” in International Topical Meeting on Microwave Photonics (IEEE, 2015), pp. 1–4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Schematic configurations of the proposed ultrahigh-Q MRR. (a) 3D view and (b) top view.
Fig. 2.
Fig. 2. (a) Cross section of the SOI waveguide. (b) Mode field distribution at a waveguide width W=1.6  μm. (c) Calculated transmission loss as the waveguide core width Wco increases with different mean deviation σ at the wavelength of 1550 nm.
Fig. 3.
Fig. 3. (a) Calculated MERs of the TE modes at the SMWG–MWB junction as the radius Rmax varied when the TE0 mode is launched from the SMWG. Calculated light transmissions in the waveguide consisting of an input SMWG, a 180° Euler MWB, and an output SMWG when (b) Rmin=5  μm, (c) Rmin=10  μm, and (d) Rmin=15  μm. The insets show the simulated light propagation in the designed waveguide and the modal profile at the output port.
Fig. 4.
Fig. 4. (a) Microscope images of the fabricated ultrahigh-Q resonator. (b) Zoom-in view of bent DC. Inset: Enlarged view of coupling region around R=Rmin. (c) Grating couplers for chip–fiber coupling.
Fig. 5.
Fig. 5. (a) Measured spectral responses at the through port of the fabricated MRRs. (b) Enlarged view of the measured major fundamental mode resonance peak with the Lorentzian transmission matrix model fitted. (c) Enlarged view of the measured mode splitting.

Tables (1)

Tables Icon

Table 1. Comparison of Ultrahigh-Q Silicon Photonic Resonatorsa

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

dPraddLprop=02π0π(S·r^)T(Ω)(βk0ncladsinθsinφ)r2sinθdθdφ,
T(Ω)=2σ2Lc1+Lc2Ω2,
dθdL=1R=LA2+1Rmax,

Metrics