Abstract

Random lasing was experimentally investigated in pyrromethene 597-doped strongly disordered chiral liquid crystals (CLCs) composed of the nematic liquid crystal SLC1717 and the chiral agent CB15. The concentration of the chiral agent tuned the bandgap, and disordered CLC microdomains were achieved by fast quenching of the mixture from the isotropic to the cholesteric phase. Random lasing and band edge lasing were observed synchronously, and their behavior changed with the spectral location of the bandgap. The emission band for band edge lasing shifted with the change of the bandgap, while the emission band for random lasing remained practically constant. The results show that the threshold for random lasing sharply decreases if the CLC selective reflection band overlaps with the fluorescence peak of the dye molecules and if the band edge coincides at the same time with the excitation wavelength.

© 2020 Chinese Laser Press

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” J. Exp. Theor. Phys. 26, 835–840 (1968).
  2. N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
    [Crossref]
  3. W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19, 1922–1924 (1994).
    [Crossref]
  4. M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
    [Crossref]
  5. G. Van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
    [Crossref]
  6. G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
    [Crossref]
  7. D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
    [Crossref]
  8. H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
    [Crossref]
  9. H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
    [Crossref]
  10. H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
    [Crossref]
  11. S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
    [Crossref]
  12. S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
    [Crossref]
  13. L. Sznitko, J. Mysliwiec, and A. Miniewicz, “The role of polymers in random lasing,” J. Polym. Sci. Part B: Polym. Phys. 53, 951–974 (2015).
    [Crossref]
  14. G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
    [Crossref]
  15. A. K. Tiwari and S. Mujumdar, “Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice,” Phys. Rev. Lett. 111, 233903 (2013).
    [Crossref]
  16. J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
    [Crossref]
  17. V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
    [Crossref]
  18. S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
    [Crossref]
  19. P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13, 2358–2363 (2005).
    [Crossref]
  20. S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
    [Crossref]
  21. H. Finkelmann, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2010).
    [Crossref]
  22. Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
    [Crossref]
  23. C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
    [Crossref]
  24. Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
    [Crossref]
  25. Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
    [Crossref]
  26. B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
    [Crossref]
  27. S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
    [Crossref]
  28. P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
    [Crossref]
  29. L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
    [Crossref]
  30. L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
    [Crossref]
  31. L. W. Li and L. G. Deng, “Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells,” Eur. Phys. J. B 86, 112 (2013).
    [Crossref]
  32. H. Lu, J. Xing, C. Wei, J. Xia, J. Sha, Y. Ding, G. Zhang, K. Xie, L. Qiu, and Z. Hu, “Band-gap-tailored random laser,” Photon. Res. 6, 390–395 (2018).
    [Crossref]
  33. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1993), Chap. 6.
  34. C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
    [Crossref]
  35. T. Okamoto and R. Yoshitome, “Random lasing in dye-doped polymer random media with a bubble structure,” J. Opt. Soc. Am. B 34, 1497–1502 (2017).
    [Crossref]
  36. V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
    [Crossref]
  37. Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
    [Crossref]

2018 (3)

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

H. Lu, J. Xing, C. Wei, J. Xia, J. Sha, Y. Ding, G. Zhang, K. Xie, L. Qiu, and Z. Hu, “Band-gap-tailored random laser,” Photon. Res. 6, 390–395 (2018).
[Crossref]

2017 (1)

2015 (1)

L. Sznitko, J. Mysliwiec, and A. Miniewicz, “The role of polymers in random lasing,” J. Polym. Sci. Part B: Polym. Phys. 53, 951–974 (2015).
[Crossref]

2013 (3)

A. K. Tiwari and S. Mujumdar, “Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice,” Phys. Rev. Lett. 111, 233903 (2013).
[Crossref]

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

L. W. Li and L. G. Deng, “Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells,” Eur. Phys. J. B 86, 112 (2013).
[Crossref]

2012 (2)

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
[Crossref]

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

2011 (1)

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

2010 (1)

H. Finkelmann, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2010).
[Crossref]

2008 (1)

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

2007 (1)

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

2006 (4)

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

G. Strangi, S. Ferjani, V. Barna, A. De Luca, C. Versace, N. Scaramuzza, and R. Bartolino, “Random lasing and weak localization of light in dye-doped nematic liquid crystals,” Opt. Express 14, 7737–7744 (2006).
[Crossref]

2005 (3)

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

P. V. Shibaev, R. L. Sanford, D. Chiappetta, V. Milner, A. Genack, and A. Bobrovsky, “Light controllable tuning and switching of lasing in chiral liquid crystals,” Opt. Express 13, 2358–2363 (2005).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

2004 (2)

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref]

2003 (3)

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
[Crossref]

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

2001 (1)

G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
[Crossref]

2000 (1)

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

1999 (2)

G. Van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

1996 (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

1995 (1)

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
[Crossref]

1994 (3)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

W. L. Sha, C. H. Liu, and R. R. Alfano, “Spectral and temporal measurements of laser action of Rhodamine 640 dye in strongly scattering media,” Opt. Lett. 19, 1922–1924 (1994).
[Crossref]

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

1968 (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” J. Exp. Theor. Phys. 26, 835–840 (1968).

Alfano, R. R.

Balachandran, R. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Barna, V.

Bartolino, R.

Bass, M.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

Beeckman, J.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

Belyakov, V. A.

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
[Crossref]

Bloemer, M. J.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Bobrovsky, A.

Bowden, C. M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Burin, A. L.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

Cao, H.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Caulfield, H. J.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
[Crossref]

Chang, R. P.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Chang, R. P. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Chang, S.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Chen, C. W.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
[Crossref]

Chiappetta, D.

Coles, H. J.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Cui, Y.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

de Gennes, P. G.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1993), Chap. 6.

De Luca, A.

Deng, L.

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

Deng, L. G.

L. W. Li and L. G. Deng, “Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells,” Eur. Phys. J. B 86, 112 (2013).
[Crossref]

Ding, Y.

Dowling, J. P.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Feng, Y.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Ferjani, S.

Finkelmann, H.

H. Finkelmann, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2010).
[Crossref]

Ford, A. D.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Fujii, A.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Furumi, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Gardiner, D. J.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

Genack, A.

Genack, A. Z.

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
[Crossref]

Gomes, A. S. L.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Gu, B.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Hands, P. J.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Hands, P. J. W.

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

He, B.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Ho, S. T.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Hong, Q.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Hu, Z.

Huang, Y.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

Jau, H. C.

Khoo, I. C.

Kopp, V. I.

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
[Crossref]

Lagendijk, A.

G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
[Crossref]

G. Van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

Lau, S. P.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Lawandy, N. M.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Lee, C. H.

Letokhov, V. S.

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” J. Exp. Theor. Phys. 26, 835–840 (1968).

Li, C. C.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

Li, L.

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

Li, L. W.

L. W. Li and L. G. Deng, “Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells,” Eur. Phys. J. B 86, 112 (2013).
[Crossref]

Liao, Q.

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Lin, T. H.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
[Crossref]

Ling, Y.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

Liu, B.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Liu, C. H.

Liu, X.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Lu, H.

Lu, Y.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Mashiko, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Matsuhisa, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Milner, V.

Miniewicz, A.

L. Sznitko, J. Mysliwiec, and A. Miniewicz, “The role of polymers in random lasing,” J. Polym. Sci. Part B: Polym. Phys. 53, 951–974 (2015).
[Crossref]

Morris, S. M.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Mowatt, C.

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

Mujumdar, S.

A. K. Tiwari and S. Mujumdar, “Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice,” Phys. Rev. Lett. 111, 233903 (2013).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref]

Mysliwiec, J.

L. Sznitko, J. Mysliwiec, and A. Miniewicz, “The role of polymers in random lasing,” J. Polym. Sci. Part B: Polym. Phys. 53, 951–974 (2015).
[Crossref]

Neyts, K.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

Noginov, M. A.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
[Crossref]

Noginova, N. E.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
[Crossref]

Nys, I.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

Okamoto, T.

Otomo, A.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Ozaki, M.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Ozaki, R.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Park, W. I.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Pivnenko, M. N.

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

Poelwijk, F. J.

G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
[Crossref]

Prost, J.

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1993), Chap. 6.

Qasim, M. M.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Qiu, L.

Rapaport, A.

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

Ricci, M.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref]

Sanford, R. L.

Sauvain, E.

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Scalora, M.

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

Scaramuzza, N.

Seelig, E. W.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Seeling, E. W.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

Sha, J.

Sha, W. L.

Shibaev, P. V.

Sprik, R.

G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
[Crossref]

Strangi, G.

Sznitko, L.

L. Sznitko, J. Mysliwiec, and A. Miniewicz, “The role of polymers in random lasing,” J. Polym. Sci. Part B: Polym. Phys. 53, 951–974 (2015).
[Crossref]

Takao, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Tiwari, A. K.

A. K. Tiwari and S. Mujumdar, “Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice,” Phys. Rev. Lett. 111, 233903 (2013).
[Crossref]

Tomita, M.

Torre, R.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref]

van Soest, G.

G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
[Crossref]

G. Van Soest, M. Tomita, and A. Lagendijk, “Amplifying volume in scattering media,” Opt. Lett. 24, 306–308 (1999).
[Crossref]

Venkateswarlu, P.

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
[Crossref]

Versace, C.

Wang, C. T.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

C. W. Chen, H. C. Jau, C. T. Wang, C. H. Lee, I. C. Khoo, and T. H. Lin, “Random lasing in blue phase liquid crystals,” Opt. Express 20, 23978–23984 (2012).
[Crossref]

Wang, Q. H.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Wang, Y.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Wei, C.

White, I. H.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

Wiersma, D. S.

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref]

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

Wilkinson, T. D.

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

Wu, S. T.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

Xia, J.

Xie, K.

Xing, J.

Xu, J. Y.

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Yang, T. H.

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

Ye, L.

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Yi, G. C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Yokoyama, S.

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

Yoshitome, R.

Yu, S. F.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Yuen, C.

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

Zhang, D. Z.

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

Zhang, G.

Zhang, Z. Q.

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
[Crossref]

Zhao, Y. G.

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

Zhou, Y.

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Y. Zhou, Y. Huang, and S. T. Wu, “Enhancing cholesteric liquid crystal laser performance using a cholesteric reflector,” Opt. Express 14, 3906–3916 (2006).
[Crossref]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

Adv. Mater. (1)

H. Finkelmann, “Tunable mirrorless lasing in cholesteric liquid crystalline elastomers,” Adv. Mater. 13, 1069–1072 (2010).
[Crossref]

Appl. Phys. Lett. (7)

S. Furumi, S. Yokoyama, A. Otomo, and S. Mashiko, “Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals,” Appl. Phys. Lett. 82, 16–18 (2003).
[Crossref]

S. F. Yu, C. Yuen, S. P. Lau, W. I. Park, and G. C. Yi, “Random laser action in ZnO nanorod arrays embedded in ZnO epilayers,” Appl. Phys. Lett. 84, 3241–3243 (2004).
[Crossref]

C. T. Wang, C. W. Chen, T. H. Yang, I. Nys, C. C. Li, T. H. Lin, K. Neyts, and J. Beeckman, “Electrically assisted bandedge mode selection of photonic crystal lasing in chiral nematic liquid crystals,” Appl. Phys. Lett. 112, 043301 (2018).
[Crossref]

Y. Zhou, Y. Huang, A. Rapaport, M. Bass, and S. T. Wu, “Doubling the optical efficiency of a chiral liquid crystal laser using a reflector,” Appl. Phys. Lett. 87, 231107 (2005).
[Crossref]

S. M. Morris, D. J. Gardiner, P. J. Hands, M. M. Qasim, T. D. Wilkinson, I. H. White, and H. J. Coles, “Electrically switchable random to photonic band-edge laser emission in chiral nematic liquid crystals,” Appl. Phys. Lett. 100, 071110 (2012).
[Crossref]

P. J. W. Hands, D. J. Gardiner, S. M. Morris, C. Mowatt, T. D. Wilkinson, and H. J. Coles, “Band-edge and random lasing in paintable liquid crystal emulsions,” Appl. Phys. Lett. 98, 141102 (2011).
[Crossref]

Y. Matsuhisa, Y. Huang, Y. Zhou, S. T. Wu, R. Ozaki, Y. Takao, A. Fujii, and M. Ozaki, “Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal,” Appl. Phys. Lett. 90, 091114 (2007).
[Crossref]

Eur. Phys. J. B (1)

L. W. Li and L. G. Deng, “Random lasing from dye-doped chiral nematic liquid crystals in oriented and non-oriented cells,” Eur. Phys. J. B 86, 112 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

H. Cao, J. Y. Xu, Y. Ling, A. L. Burin, E. W. Seeling, X. Liu, and R. P. Chang, “Random lasers with coherent feedback,” IEEE J. Sel. Top. Quantum Electron. 9, 111–119 (2003).
[Crossref]

J. Appl. Phys. (2)

J. P. Dowling, M. Scalora, M. J. Bloemer, and C. M. Bowden, “The photonic band edge laser: a new approach to gain enhancement,” J. Appl. Phys. 75, 1896–1899 (1994).
[Crossref]

S. M. Morris, A. D. Ford, M. N. Pivnenko, and H. J. Coles, “Enhanced emission from liquid-crystal lasers,” J. Appl. Phys. 97, 023103 (2005).
[Crossref]

J. Exp. Theor. Phys. (1)

V. S. Letokhov, “Generation of light by a scattering medium with negative resonance absorption,” J. Exp. Theor. Phys. 26, 835–840 (1968).

J. Opt. Soc. Am. B (1)

J. Polym. Sci. Part B: Polym. Phys. (1)

L. Sznitko, J. Mysliwiec, and A. Miniewicz, “The role of polymers in random lasing,” J. Polym. Sci. Part B: Polym. Phys. 53, 951–974 (2015).
[Crossref]

Laser Phys. (1)

L. Li and L. Deng, “Low threshold and coherent random lasing from dye-doped cholesteric liquid crystals using oriented cells,” Laser Phys. 23, 085001 (2013).
[Crossref]

Laser Phys. Lett. (1)

L. Ye, Y. Wang, Y. Feng, B. Liu, B. Gu, Y. Cui, and Y. Lu, “Thermally switchable photonic band-edge to random laser emission in dye-doped cholesteric liquid crystals,” Laser Phys. Lett. 15, 035002 (2018).
[Crossref]

Mol. Cryst. Liq. Cryst. (1)

V. A. Belyakov, “Low threshold DFB lasing in chiral LC at diffraction of pumping wave,” Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).
[Crossref]

Nature (1)

N. M. Lawandy, R. M. Balachandran, A. S. L. Gomes, and E. Sauvain, “Laser action in strongly scattering media,” Nature 368, 436–438 (1994).
[Crossref]

Opt. Commun. (2)

M. A. Noginov, H. J. Caulfield, N. E. Noginova, and P. Venkateswarlu, “Line narrowing in the dye solution with scattering centers,” Opt. Commun. 118, 430–437 (1995).
[Crossref]

Y. Huang, Y. Zhou, Q. Hong, A. Rapaport, M. Bass, and S. T. Wu, “Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser,” Opt. Commun. 261, 91–96 (2006).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Opt. Mater. (1)

B. He, Q. Liao, and Y. Huang, “Random lasing in a dye doped cholesteric liquid crystal polymer solution,” Opt. Mater. 31, 375–379 (2008).
[Crossref]

Photon. Res. (1)

Phys. Rev. E (1)

D. S. Wiersma and A. Lagendijk, “Light diffusion with gain and random lasers,” Phys. Rev. E 54, 4256–4265 (1996).
[Crossref]

Phys. Rev. Lett. (5)

H. Cao, Y. G. Zhao, S. T. Ho, E. W. Seelig, Q. H. Wang, and R. P. H. Chang, “Random laser action in semiconductor powder,” Phys. Rev. Lett. 82, 2278–2281 (1999).
[Crossref]

H. Cao, J. Y. Xu, D. Z. Zhang, S. Chang, S. T. Ho, E. W. Seelig, X. Liu, and R. P. Chang, “Spatial confinement of laser light in active random media,” Phys. Rev. Lett. 84, 5584–5587 (2000).
[Crossref]

G. van Soest, F. J. Poelwijk, R. Sprik, and A. Lagendijk, “Dynamics of a random laser above threshold,” Phys. Rev. Lett. 86, 1522–1525 (2001).
[Crossref]

A. K. Tiwari and S. Mujumdar, “Random lasing over gap states from a quasi-one-dimensional amplifying periodic-on-average random superlattice,” Phys. Rev. Lett. 111, 233903 (2013).
[Crossref]

S. Mujumdar, M. Ricci, R. Torre, and D. S. Wiersma, “Amplified extended modes in random lasers,” Phys. Rev. Lett. 93, 053903 (2004).
[Crossref]

Prog. Quantum Electron. (1)

V. I. Kopp, Z. Q. Zhang, and A. Z. Genack, “Lasing in chiral photonic structures,” Prog. Quantum Electron. 27, 369–416 (2003).
[Crossref]

Other (1)

P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, 2nd ed. (Oxford University, 1993), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Sketch of the experimental setup.
Fig. 2.
Fig. 2. (a) Reflection spectra and (b) transmission spectra for dye-doped planarly oriented CLC samples with different concentrations of the chiral agent CB15. The black solid curve is the fluorescence spectrum of PM597.
Fig. 3.
Fig. 3. Texture patterns of samples with different concentrations of the chiral agent CB15 in nonoriented cells observed by a POM with a 20× objective. (a) S1*, (b) S2*, (c) S3*, (d) S4*, (e) S5* in reflection mode. (f)–(j) Corresponding textures in transmission mode. All cell gaps are 230 μm.
Fig. 4.
Fig. 4. Spectra (a)–(e) represent emission for different disordered samples S1*, S2*, S3*, S4*, S5*, respectively. (f) The dependence of the peak intensities of the random lasing on the pump energy for different concentrations of the chiral agent. The black lines in spectra (g)–(k) are the emission spectra corresponding to spectra (a)–(e); the red lines in spectra (g)–(k) are reflection spectra for oriented CLC samples, respectively.
Fig. 5.
Fig. 5. (a) Emission spectra for different pump positions across the sample S2*. (b) Emission spectra of the sample S2* for different single-pump shots.
Fig. 6.
Fig. 6. Working mechanism of RL in a dye-doped CLC random system with a selective reflection band (a) coinciding with the fluorescence peak and (b) far away from the fluorescence peak. The yellow arrows represent the scattering light beams at the wavelength of the fluorescent peak. The helical axes of microdomains designated by red arrows exhibit a small angle with the direction of the incident light, which results in enhanced reflective behavior when the selective reflection band of the sample overlaps with the fluorescence peak of the dye. The dark and light yellow arrows represent strong and weak feedback, respectively.

Metrics