Abstract

High-speed ophthalmic optical coherence tomography (OCT) systems are of interest because they allow rapid, motion-free, and wide-field retinal imaging. Space-division multiplexing optical coherence tomography (SDM-OCT) is a high-speed imaging technology that takes advantage of the long coherence length of microelectromechanical vertical cavity surface emitting laser sources to multiplex multiple images along a single imaging depth. We demonstrate wide-field retinal OCT imaging, acquired at an effective A-scan rate of 800,000 A-scans/s with volumetric images covering up to 12.5  mm×7.4  mm on the retina and captured in less than 1 s. A clinical feasibility study was conducted to compare the ophthalmic SDM-OCT with commercial OCT systems, illustrating the high-speed capability of SDM-OCT in a clinical setting.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device

Yongyang Huang, Mudabbir Badar, Arthur Nitkowski, Aaron Weinroth, Nelson Tansu, and Chao Zhou
Biomed. Opt. Express 8(8) 3856-3867 (2017)

Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

Chen D. Lu, Martin F. Kraus, Benjamin Potsaid, Jonathan J. Liu, WooJhon Choi, Vijaysekhar Jayaraman, Alex E. Cable, Joachim Hornegger, Jay S. Duker, and James G. Fujimoto
Biomed. Opt. Express 5(1) 293-311 (2014)

Space-division multiplexing optical coherence tomography

Chao Zhou, Aneesh Alex, Janarthanan Rasakanthan, and Yutao Ma
Opt. Express 21(16) 19219-19227 (2013)

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [Crossref]
  2. J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
    [Crossref]
  3. L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
    [Crossref]
  4. M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
    [Crossref]
  5. M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
    [Crossref]
  6. A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
    [Crossref]
  7. H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
    [Crossref]
  8. A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
    [Crossref]
  9. V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
    [Crossref]
  10. E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
    [Crossref]
  11. S. H. Yun, G. J. Tearney, J. F. de Boer, and B. E. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004).
    [Crossref]
  12. R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
    [Crossref]
  13. K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3, 2950–2963 (2012).
    [Crossref]
  14. T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
    [Crossref]
  15. J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
    [Crossref]
  16. J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6, 1534–1552 (2015).
    [Crossref]
  17. M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
    [Crossref]
  18. I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
    [Crossref]
  19. D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
    [Crossref]
  20. S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
    [Crossref]
  21. M. A. Choma, M. V. Sarunic, C. Yang, and J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express 11, 2183–2189 (2003).
    [Crossref]
  22. C. Zhou, A. Alex, J. Rasakanthan, and Y. Ma, “Space-division multiplexing optical coherence tomography,” Opt. Express 21, 19219–19227 (2013).
    [Crossref]
  23. B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
    [Crossref]
  24. B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
    [Crossref]
  25. R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
    [Crossref]
  26. S. Zotter, M. Pircher, T. Torzicky, M. Bonesi, E. Götzinger, R. A. Leitgeb, and C. K. Hitzenberger, “Visualization of microvasculature by dual-beam phase-resolved Doppler optical coherence tomography,” Opt. Express 19, 1217–1227 (2011).
    [Crossref]
  27. N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
    [Crossref]
  28. H. Y. Lee, H. Sudkamp, T. Marvdashti, and A. K. Ellerbee, “Interleaved optical coherence tomography,” Opt. Express 21, 26542–26556 (2013).
    [Crossref]
  29. Y. Huang, M. Badar, A. Nitkowski, A. Weinroth, N. Tansu, and C. Zhou, “Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device,” Biomed. Opt. Express 8, 3856–3867 (2017).
    [Crossref]
  30. R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
    [Crossref]
  31. A. F. Fercher, C. K. Hitzenberger, M. Sticker, R. Zawadzki, B. Karamata, and T. Lasser, “Numerical dispersion compensation for partial coherence interferometry and optical coherence tomography,” Opt. Express 9, 610–615 (2001).
    [Crossref]
  32. Laser Institute of America, “American national standard for safe use of lasers in health care,” ANSI Z136.3-2018 (2018).
  33. J. Voke, “Radiation effects on the eye: Part 3b—Ocular effects of ultraviolet radiation,” Optometry Today (July30, 1999), 37–40.
  34. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008).
    [Crossref]
  35. S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
    [Crossref]
  36. R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography,” JAMA Ophthalmol. 133, 66–73 (2015).
    [Crossref]

2019 (1)

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

2018 (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

2017 (2)

Y. Huang, M. Badar, A. Nitkowski, A. Weinroth, N. Tansu, and C. Zhou, “Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device,” Biomed. Opt. Express 8, 3856–3867 (2017).
[Crossref]

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

2016 (3)

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
[Crossref]

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref]

2015 (6)

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography,” JAMA Ophthalmol. 133, 66–73 (2015).
[Crossref]

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6, 1534–1552 (2015).
[Crossref]

2013 (3)

2012 (4)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]

2011 (1)

2010 (2)

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

S. J. Chiu, X. T. Li, P. Nicholas, C. A. Toth, J. A. Izatt, and S. Farsiu, “Automatic segmentation of seven retinal layers in SDOCT images congruent with expert manual segmentation,” Opt. Express 18, 19413–19428 (2010).
[Crossref]

2009 (1)

L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
[Crossref]

2008 (2)

M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel image registration algorithms,” Opt. Lett. 33, 156–158 (2008).
[Crossref]

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
[Crossref]

2007 (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[Crossref]

2004 (1)

2003 (1)

2001 (1)

1999 (1)

H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
[Crossref]

1996 (1)

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

1995 (1)

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Alex, A.

Anna, T.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[Crossref]

Arathorn, D. W.

Badar, M.

Baumal, C. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

Baumann, B.

Blatter, C.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

Bonesi, M.

Bouma, B. E.

Braaf, B.

Cable, A. E.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Chiu, S. J.

Choma, M. A.

Coker, J. G.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

Cooney, M. J.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography,” JAMA Ophthalmol. 133, 66–73 (2015).
[Crossref]

de Boer, J. F.

DeLeon-Ortega, J.

L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
[Crossref]

Draxinger, W.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Drexler, W.

Dubey, S. K.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[Crossref]

Duker, J. S.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

Eibl, M.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Ellerbee, A. K.

Farsiu, S.

Fechtig, D. J.

Fercher, A. F.

Ferenczy, S.

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

Fienup, J. R.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Fujimoto, J.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

Fujimoto, J. G.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

Girkin, C. A.

L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
[Crossref]

Gohdo, T.

H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
[Crossref]

Götzinger, E.

Grajciar, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Grulkowski, I.

Guizar-Sicairos, M.

Haindl, R.

Hangai, M.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Hee, M. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Heim, P. J. S.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Hirakawa, H.

H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
[Crossref]

Hitzenberger, C. K.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Huang, Y.

Huber, R.

Iijima, H.

H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
[Crossref]

Ishibazawa, A.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Izatt, J. A.

Jayaraman, V.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Jiang, J.

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Kampik, A.

Karamata, B.

Khoo, C. T. L.

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

Klancnik, J. M.

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography,” JAMA Ophthalmol. 133, 66–73 (2015).
[Crossref]

Klee, J.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Klein, T.

Kolb, J. P.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6, 1534–1552 (2015).
[Crossref]

Kufner, C. L.

Lalane, R. A.

A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
[Crossref]

Larin, K. V.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
[Crossref]

Lasser, T.

Lee, H. Y.

Lee, K. K. C.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Leitgeb, R. A.

Leung, M. K. K.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Li, X. T.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Lippok, N.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Liu, J. J.

Lu, C. D.

Ma, Y.

Magrath, G. N.

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

Manapuram, R. K.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
[Crossref]

Manjunath, V.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Manne, V. G. R.

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
[Crossref]

Mariampillai, A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Marvdashti, T.

Matsumoto, K.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Mehta, D. S.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[Crossref]

Menon, G.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Munce, N. R.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Nagaoka, T.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Nagiel, A.

A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
[Crossref]

Nam, A. S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Neubauer, A.

Neubauer, A. S.

Nicholas, P.

Nitkowski, A.

Omae, T.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Ooto, S.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Papastavrou, V.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Peto, T.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Pfeiffer, T.

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Pircher, M.

Potsaid, B.

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Puliafito, C. A.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Rasakanthan, J.

Reichel, E.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

Reznicek, L.

Roorda, A.

Rutledge, B.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

Sadda, S. R.

A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
[Crossref]

Sakata, L. M.

L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
[Crossref]

Sakata, V.

L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
[Crossref]

Samara, W. A.

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

Sarunic, M. V.

Say, E. A. T.

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

Schmoll, T.

Schuman, J. S.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Schwartz, S. D.

A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
[Crossref]

Shakher, C.

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[Crossref]

Sheehy, C. K.

Shields, C. L.

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

Siddiqui, M.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Sogawa, K.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Spaide, R. F.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref]

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography,” JAMA Ophthalmol. 133, 66–73 (2015).
[Crossref]

Standish, B. A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Steel, D. H. W.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Sticker, M.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Sudkamp, H.

Suehira, N.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Swanson, E.

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

Swanson, E. A.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Takahashi, A.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Talks, J.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Tani, T.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Tansu, N.

Taylor, R.

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Tearney, G. J.

Thurman, S. T.

Tiruveedhula, P.

Tomatsu, N.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Torzicky, T.

Toth, C. A.

Tozburun, S.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Trasischker, W.

Tsukahara, S.

H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
[Crossref]

Vakoc, B. J.

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Vienola, K. V.

Vitkin, I. A.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Voke, J.

J. Voke, “Radiation effects on the eye: Part 3b—Ocular effects of ultraviolet radiation,” Optometry Today (July30, 1999), 37–40.

Waheed, N. K.

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref]

Wartak, A.

Weinroth, A.

Werkmeister, R. M.

Wieser, W.

Wilkins, J. R.

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

Wong, C.

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

Yamada, K.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Yang, C.

Yang, Q.

Yang, V. X. D.

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

Yokota, H.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Yoshida, A.

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

Yoshimura, N.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Yuasa, T.

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

Yun, S. H.

Zawadzki, R.

Zhou, C.

Zotter, S.

Am. J. Ophthalmol. (2)

A. Ishibazawa, T. Nagaoka, A. Takahashi, T. Omae, T. Tani, K. Sogawa, H. Yokota, and A. Yoshida, “Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study,” Am. J. Ophthalmol. 160, 35–44 (2015).
[Crossref]

H. Hirakawa, H. Iijima, T. Gohdo, and S. Tsukahara, “Optical coherence tomography of cystoid macular edema associated with retinitis pigmentosa,” Am. J. Ophthalmol. 128, 185–191 (1999).
[Crossref]

Appl. Phys. Lett. (1)

S. K. Dubey, T. Anna, C. Shakher, and D. S. Mehta, “Fingerprint detection using full-field swept-source optical coherence tomography,” Appl. Phys. Lett. 91, 181106 (2007).
[Crossref]

Biomed. Opt. Express (7)

T. Klein, W. Wieser, L. Reznicek, A. Neubauer, A. Kampik, and R. Huber, “Multi-MHz retinal OCT,” Biomed. Opt. Express 4, 1890–1908 (2013).
[Crossref]

R. Haindl, W. Trasischker, A. Wartak, B. Baumann, M. Pircher, and C. K. Hitzenberger, “Total retinal blood flow measurement by three beam Doppler optical coherence tomography,” Biomed. Opt. Express 7, 287–301 (2016).
[Crossref]

Y. Huang, M. Badar, A. Nitkowski, A. Weinroth, N. Tansu, and C. Zhou, “Wide-field high-speed space-division multiplexing optical coherence tomography using an integrated photonic device,” Biomed. Opt. Express 8, 3856–3867 (2017).
[Crossref]

D. J. Fechtig, B. Grajciar, T. Schmoll, C. Blatter, R. M. Werkmeister, W. Drexler, and R. A. Leitgeb, “Line-field parallel swept source MHz OCT for structural and functional retinal imaging,” Biomed. Opt. Express 6, 716–735 (2015).
[Crossref]

J. P. Kolb, T. Klein, C. L. Kufner, W. Wieser, A. S. Neubauer, and R. Huber, “Ultra-widefield retinal MHz-OCT imaging with up to 100 degrees viewing angle,” Biomed. Opt. Express 6, 1534–1552 (2015).
[Crossref]

K. V. Vienola, B. Braaf, C. K. Sheehy, Q. Yang, P. Tiruveedhula, D. W. Arathorn, J. F. de Boer, and A. Roorda, “Real-time eye motion compensation for OCT imaging with tracking SLO,” Biomed. Opt. Express 3, 2950–2963 (2012).
[Crossref]

I. Grulkowski, J. J. Liu, B. Potsaid, V. Jayaraman, C. D. Lu, J. Jiang, A. E. Cable, J. S. Duker, and J. G. Fujimoto, “Retinal, anterior segment and full eye imaging using ultrahigh speed swept source OCT with vertical-cavity surface emitting lasers,” Biomed. Opt. Express 3, 2733–2751 (2012).
[Crossref]

Clin. Exp. Ophthalmol. (1)

L. M. Sakata, J. DeLeon-Ortega, V. Sakata, and C. A. Girkin, “Optical coherence tomography of the retina and optic nerve—a review,” Clin. Exp. Ophthalmol. 37, 90–99 (2009).
[Crossref]

Eye (1)

V. Manjunath, V. Papastavrou, D. H. W. Steel, G. Menon, R. Taylor, T. Peto, and J. Talks, “Wide-field imaging and OCT vs clinical evaluation of patients referred from diabetic retinopathy screening,” Eye 29, 416 (2015).
[Crossref]

Invest. Ophthalmol. Vis. Sci. (1)

J. Fujimoto and E. Swanson, “The development, commercialization, and impact of optical coherence tomography,” Invest. Ophthalmol. Vis. Sci. 57, OCT1–OCT13 (2016).
[Crossref]

J. Biomed. Opt. (1)

N. Suehira, S. Ooto, M. Hangai, K. Matsumoto, N. Tomatsu, T. Yuasa, K. Yamada, and N. Yoshimura, “Three-beam spectral-domain optical coherence tomography for retinal imaging,” J. Biomed. Opt. 17, 106001 (2012).
[Crossref]

JAMA Ophthalmol. (2)

M. R. Hee, C. A. Puliafito, C. Wong, J. S. Duker, E. Reichel, B. Rutledge, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Quantitative assessment of macular edema with optical coherence tomography,” JAMA Ophthalmol. 113, 1019–1029 (1995).
[Crossref]

R. F. Spaide, J. M. Klancnik, and M. J. Cooney, “Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography,” JAMA Ophthalmol. 133, 66–73 (2015).
[Crossref]

Laser Phys. (1)

R. K. Manapuram, V. G. R. Manne, and K. V. Larin, “Development of phase-stabilized swept-source OCT for the ultrasensitive quantification of microbubbles,” Laser Phys. 18, 1080–1086 (2008).
[Crossref]

Nat. Photonics (1)

M. Siddiqui, A. S. Nam, S. Tozburun, N. Lippok, C. Blatter, and B. J. Vakoc, “High-speed optical coherence tomography by circular interferometric ranging,” Nat. Photonics 12, 111–116 (2018).
[Crossref]

Ophthalmology (1)

M. R. Hee, C. R. Baumal, C. A. Puliafito, J. S. Duker, E. Reichel, J. R. Wilkins, J. G. Coker, J. S. Schuman, E. A. Swanson, and J. G. Fujimoto, “Optical coherence tomography of age-related macular degeneration and choroidal neovascularization,” Ophthalmology 103, 1260–1270 (1996).
[Crossref]

Opt. Express (7)

Opt. Lett. (1)

Phys. Med. Biol. (1)

B. A. Standish, K. K. C. Lee, A. Mariampillai, N. R. Munce, M. K. K. Leung, V. X. D. Yang, and I. A. Vitkin, “In vivo endoscopic multi-beam optical coherence tomography,” Phys. Med. Biol. 55, 615–622 (2010).
[Crossref]

PLoS ONE (1)

J. P. Kolb, W. Draxinger, J. Klee, T. Pfeiffer, M. Eibl, T. Klein, W. Wieser, and R. Huber, “Live video rate volumetric OCT imaging of the retina with multi-MHz A-scan rates,” PLoS ONE 14, e0213144 (2019).
[Crossref]

Proc. SPIE (1)

B. Potsaid, V. Jayaraman, J. G. Fujimoto, J. Jiang, P. J. S. Heim, and A. E. Cable, “MEMS tunable VCSEL light source for ultrahigh speed 60kHz–1MHz axial scan rate and long range centimeter class OCT imaging,” Proc. SPIE 8213, 82130M (2012).
[Crossref]

Retina (3)

E. A. T. Say, S. Ferenczy, G. N. Magrath, W. A. Samara, C. T. L. Khoo, and C. L. Shields, “Image quality and artifacts on optical coherence tomography angiography: comparison of pathologic and paired fellow eyes in 65 patients with unilateral choroidal melanoma treated with plaque radiotherapy,” Retina 37, 1660–1673 (2017).
[Crossref]

R. F. Spaide, J. G. Fujimoto, and N. K. Waheed, “Image artifacts in optical coherence tomography angiography,” Retina 35, 2163–2180 (2015).
[Crossref]

A. Nagiel, R. A. Lalane, S. R. Sadda, and S. D. Schwartz, “Ultra-widefield fundus imaging: a review of clinical applications and future trends,” Retina 36, 660–678 (2016).
[Crossref]

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, and C. A. Puliafito, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[Crossref]

Other (2)

Laser Institute of America, “American national standard for safe use of lasers in health care,” ANSI Z136.3-2018 (2018).

J. Voke, “Radiation effects on the eye: Part 3b—Ocular effects of ultraviolet radiation,” Optometry Today (July30, 1999), 37–40.

Supplementary Material (4)

NameDescription
» Visualization 1       Widefield SDM-OCT image of the retina of a healthy volunteer.
» Visualization 2       Widefield SDM-OCT image of a patient's retina who had been diagnosed with retinal telangiectasia.
» Visualization 3       Widefield SDM-OCT image of a patient's retina who had been diagnosed with exudative age related macular degeneration.
» Visualization 4       Widefield SDM-OCT image of a patient's retina who had been diagnosed with non preoperative diabetic retinopathy.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. (a) Schematic for the ophthalmic SDM-OCT system. BOA, booster optical amplifier; FBG, fiber Bragg grating; MZI, Mach–Zehnder interferometer; PD, balanced photodetector. (b) Picture of the ophthalmic SDM-OCT prototype in the clinic.
Fig. 2.
Fig. 2. Geometric considerations for ophthalmic SDM-OCT design. (a) Projection of the curvature of the eye onto the imaging space. (b) Image space separated into four imaging beams with 3 mm optical delay. All four beams fit in the 12 mm image depth. (c) Distance between adjacent beams shows there is no overlapping between adjacent images. (d) Sensitivity roll-off measured over the entire imaging depth range.
Fig. 3.
Fig. 3. (a) Four-beam raw SDM-OCT image. (b) En face projection of the RPE layer; yellow line shows location of vertical cross section and green line shows location of horizontal cross-section. (c) Vertical cross-section. (d) Horizontal cross-section with some selected anatomical features labeled. CHR, choroid; EZ, ellipsoid zone; ILM, internal limiting membrane; IPL, inner plexiform layer; ONH, optic nerve head; OPL, outer plexiform layer; RPE, retinal pigment epithelium. (e) Retinal thickness map. (f) 3D rendering of stitched SDM-OCT images (also see Visualization 1). Scale bars 1 mm.
Fig. 4.
Fig. 4. SDM-OCT and commercial OCT images from a patient diagnosed with retinal telangiectasia. (a) En face projection SDM-OCT. (b) Vertical cross-section SDM-OCT. (c) Horizontal cross-section SDM-OCT. (d) En face SLO image of commercial system imaging range (5  mm×3  mm). (e) Vertical cross-section commercial OCT. (f) Horizontal cross-section commercial OCT. (g) Zoomed-in region of interest (ROI) from SDM-OCT. (h) Zoomed-in ROI from commercial OCT. (i) Retinal thickness map. (j) 3D rendering of stitched SDM-OCT images (also see Visualization 2). Lateral scale bars 1 mm. Axial scale bars 500 μm for (b), (c), (e), and (f) and 200 μm for (g) and (h).
Fig. 5.
Fig. 5. SDM-OCT and commercial OCT images from a patient diagnosed with exudative age-related macular degeneration. (a) En face projection of RPE SDM-OCT. (b) Vertical cross-section SDM-OCT. (c) Horizontal cross-section SDM-OCT. (d) En face SLO image of commercial system imaging range. (e) Vertical cross-section commercial OCT. (f) Horizontal cross-section commercial OCT. (g) Zoomed-in ROI from SDM-OCT. (h) Zoomed-in ROI from commercial OCT. (i) Retinal thickness map. Yellow arrow indicates region with retinal thinning. (j) 3D rendering of stitched SDM-OCT images (also see Visualization 3). Lateral scale bars 1 mm. Axial scale bars 500 μm for (b), (c), (e), and (f) and 200 μm for (g) and (h).
Fig. 6.
Fig. 6. SDM-OCT and commercial OCT images from a patient diagnosed with non-proliferative diabetic retinopathy. (a) En face projection SDM-OCT. (b) Vertical cross-section SDM-OCT. (c) Horizontal cross-section SDM-OCT. (d) En face SLO image of commercial system imaging range. (e) Vertical cross-section commercial OCT. (f) Horizontal cross-section commercial OCT. (g) 3D rendering of SDM-OCT image stack (also see Visualization 4). (h) Retinal thickness map. (i) En face projection of the outer plexiform layer showing microcysts highlighted by the yellow arrows. (j) Fluorescein angiogram showing matching microcysts to Fig. 5(h). Lateral scale bars 1 mm. Axial scale bars 500 μm for (b), (c), (e), and (f).

Tables (1)

Tables Icon

Table 1. Comparison of SDM-OCT Systems

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

SNRssoct=ρSRsΔt2e.
iOPD=n·[(2cosε)r(1cosε)dr2(rd)2sin2ε].

Metrics