Abstract

Light is a precious resource that nature has given to human beings. Converting green, recyclable light energy into the mechanical energy of a micromotor is undoubtedly an exciting challenge. However, the performance of current light-induced micromotor devices is unsatisfactory, as the light-to-work conversion efficiency is only 10151012. In this paper, we propose and demonstrate a laser-induced rotary micromotor operated by Δα-type photopheresis in pure liquid glycerol, whose energy conversion ratio reaches as high as 109, which is 3–6 orders of magnitude higher than that of previous light-induced micromotor devices. In addition, we operate the micromotor neither with a light field carrying angular momentum nor with a rotor with a special rotating symmetrical shape. We just employ an annular-core fiber to configure a conical-shaped light field and select a piece of graphite sheet (with an irregular shape) as the micro-rotor. The Δα-type photophoretic force introduced by the conical-shaped light field drives the rotation of the graphite sheet. We achieve a rotation rate up to 818.2 r/min, which can be controlled by tuning the incident laser power. This optical rotary micromotor is available for twisting macromolecules or generating vortex and shear force in a medium at the nanoscale.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-efficiency and high-power single-frequency fiber laser at 1.6  μm based on cascaded energy-transfer pumping

Xianchao Guan, Qilai Zhao, Wei Lin, Tianyi Tan, Changsheng Yang, Pengfei Ma, Zhongmin Yang, and Shanhui Xu
Photon. Res. 8(3) 414-420 (2020)

Femtosecond mid-IR optical vortex laser based on optical parametric chirped pulse amplification

Junyu Qian, Yujie Peng, Yanyan Li, Pengfei Wang, Beijie Shao, Zhe Liu, Yuxin Leng, and Ruxin Li
Photon. Res. 8(3) 421-425 (2020)

High-energy all-fiber gain-switched thulium-doped fiber laser for volumetric photoacoustic imaging of lipids

Can Li, Jiawei Shi, Xiatian Wang, Boquan Wang, Xiaojing Gong, Liang Song, and Kenneth K. Y. Wong
Photon. Res. 8(2) 160-164 (2020)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
    [Crossref]
  3. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
    [Crossref]
  4. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [Crossref]
  5. T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
    [Crossref]
  6. S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
    [Crossref]
  7. Z. P. Luo, Y. L. Sun, and K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
    [Crossref]
  8. A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
    [Crossref]
  9. R. Dasgupta, S. Ahlawat, R. S. Verma, and P. K. Gupta, “Optical orientation and rotation of trapped red blood cells with Laguerre-Gaussian mode,” Opt. Express 19, 7680–7688 (2011).
    [Crossref]
  10. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
    [Crossref]
  11. H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
    [Crossref]
  12. N. B. Simpson, K. Dholakia, L. Allen, and M. J. Padgett, “Mechanical equivalence of spin and orbital angular momentum of light: an optical spanner,” Opt. Lett. 22, 52–54 (1997).
    [Crossref]
  13. N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
    [Crossref]
  14. H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
    [Crossref]
  15. S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
    [Crossref]
  16. P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
    [Crossref]
  17. S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Adv. Opt. Mater. 7, 1900370 (2019).
    [Crossref]
  18. C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
    [Crossref]
  19. J. Lin and Y.-Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
    [Crossref]
  20. Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
    [Crossref]
  21. Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
    [Crossref]
  22. V. G. Shvedov, A. S. Desyatnikov, A. V. Rode, W. Krolikowski, and Y. S. Kivshar, “Optical guiding of absorbing nanoclusters in air,” Opt. Express 17, 5743–5757 (2009).
    [Crossref]
  23. X. L. Zhu, L. B. Yuan, Z. H. Liu, J. Yang, and C. Y. Guan, “Coupling theoretical model between single-core fiber and twin-core fiber,” J. Lightwave Technol. 27, 5235–5239 (2009).
    [Crossref]
  24. Y. Zhang, X. Y. Tang, Y. X. Zhang, W. J. Su, Z. H. Liu, X. H. Yang, J. Z. Zhang, J. Yang, K. Oh, and L. B. Yuan, “3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam,” Opt. Lett. 43, 2784–2786 (2018).
    [Crossref]
  25. C. W. Twombly, J. S. Evans, and I. I. Smalyukh, “Optical manipulation of self-aligned graphene flakes in liquid crystals,” Opt. Express 21, 1324–1334 (2013).
    [Crossref]
  26. Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
    [Crossref]

2019 (5)

A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
[Crossref]

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Adv. Opt. Mater. 7, 1900370 (2019).
[Crossref]

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

2018 (3)

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Y. Zhang, X. Y. Tang, Y. X. Zhang, W. J. Su, Z. H. Liu, X. H. Yang, J. Z. Zhang, J. Yang, K. Oh, and L. B. Yuan, “3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam,” Opt. Lett. 43, 2784–2786 (2018).
[Crossref]

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

2016 (1)

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

2015 (1)

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

2014 (1)

J. Lin and Y.-Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

2013 (1)

2012 (1)

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

2011 (2)

2009 (2)

2001 (1)

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

2000 (1)

Z. P. Luo, Y. L. Sun, and K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[Crossref]

1999 (1)

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

1998 (1)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

1997 (1)

1996 (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

1995 (1)

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

1971 (1)

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Ahlawat, S.

Allen, L.

An, K. N.

Z. P. Luo, Y. L. Sun, and K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[Crossref]

Angelis, F. D.

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

Arzola, A. V.

A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
[Crossref]

Ashkin, A.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Bartal, G.

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

Berns, M. W.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

Bianchi, S.

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

Chvátal, L.

A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
[Crossref]

Cohen, K.

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

Dasgupta, R.

Desyatnikov, A. S.

Dholakia, K.

Dipalo, M.

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

Dziedzic, J. M.

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Evans, J. S.

Feringa, B. L.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

Ferretti, S.

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

Fischer, P.

S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Adv. Opt. Mater. 7, 1900370 (2019).
[Crossref]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Galajda, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Gjonaj, B.

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

Guan, C. Y.

Gupta, P. K.

Harada, N.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

He, H.

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Heckenberg, N. R.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Jákl, P.

A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
[Crossref]

Kivshar, Y. S.

Koens, L.

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

Koumura, N.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

Krolikowski, W.

Lauga, E.

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

Lei, H. X.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Leonardo, R. D.

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

Li, B. J.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Li, Y. C.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Li, Y. Z.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Li, Y.-Q.

J. Lin and Y.-Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Lin, J.

J. Lin and Y.-Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

Liu, L. L.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Liu, Z.

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Liu, Z. H.

Luo, Z. P.

Z. P. Luo, Y. L. Sun, and K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[Crossref]

Maggi, C.

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

Meyer, R. L.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

Miotke, J.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

Mller, M.

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

Mohanty, S.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

Mourran, A.

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

Nieminen, T. A.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

Oh, K.

Ormos, P.

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

Ostrovsky, E.

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

Padgett, M. J.

Palagi, S.

S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Adv. Opt. Mater. 7, 1900370 (2019).
[Crossref]

Rode, A. V.

Rubinsztein-Dunlop, H.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Saglimbeni, F.

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

Shvedov, V. G.

Simpson, N. B.

Singh, D. P.

S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Adv. Opt. Mater. 7, 1900370 (2019).
[Crossref]

Smalyukh, I. I.

Su, W. J.

Sun, Y. L.

Z. P. Luo, Y. L. Sun, and K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[Crossref]

Tang, X.

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Tang, X. Y.

Tsesses, S.

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

Twombly, C. W.

van Delden, R. A.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

Verma, R. S.

Vizsnyiczai, G.

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

Wu, T.

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

Xin, H. B.

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Yang, J.

Yang, X.

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Yang, X. H.

Yuan, L.

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Yuan, L. B.

Zemánek, P.

A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
[Crossref]

Zhang, H.

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

Zhang, J.

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Zhang, J. Z.

Zhang, Y.

Y. Zhang, X. Tang, Y. X. Zhang, Z. Liu, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Optical attraction of strongly absorbing particles in liquids,” Opt. Express 27, 12414–12423 (2019).
[Crossref]

Y. Zhang, X. Y. Tang, Y. X. Zhang, W. J. Su, Z. H. Liu, X. H. Yang, J. Z. Zhang, J. Yang, K. Oh, and L. B. Yuan, “3-dimensional dark traps for low refractive index bio-cells using a single optical fiber Bessel beam,” Opt. Lett. 43, 2784–2786 (2018).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Zhang, Y. X.

Zhu, X. L.

Zijlstra, R. W. J.

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

Adv. Opt. Mater. (1)

S. Palagi, D. P. Singh, and P. Fischer, “Light-controlled micromotors and soft microrobots,” Adv. Opt. Mater. 7, 1900370 (2019).
[Crossref]

Appl. Phys. Lett. (4)

J. Lin and Y.-Q. Li, “Optical trapping and rotation of airborne absorbing particles with a single focused laser beam,” Appl. Phys. Lett. 104, 101909 (2014).
[Crossref]

A. Ashkin and J. M. Dziedzic, “Optical levitation by radiation pressure,” Appl. Phys. Lett. 19, 283–285 (1971).
[Crossref]

Z. P. Luo, Y. L. Sun, and K. N. An, “An optical spin micromotor,” Appl. Phys. Lett. 76, 1779–1781 (2000).
[Crossref]

P. Galajda and P. Ormos, “Complex micromachines produced and driven by light,” Appl. Phys. Lett. 78, 249–251 (2001).
[Crossref]

J. Lightwave Technol. (1)

Light Sci. Appl. (1)

Y. C. Li, H. B. Xin, H. X. Lei, L. L. Liu, Y. Z. Li, Y. Zhang, and B. J. Li, “Manipulation and detection of single nanoparticles and biomolecules by a photonic nanojet,” Light Sci. Appl. 5, e16176 (2016).
[Crossref]

Nano Lett. (1)

S. Tsesses, K. Cohen, E. Ostrovsky, B. Gjonaj, and G. Bartal, “Spin-orbit interaction of light in plasmonic lattices,” Nano Lett. 19, 4010–4016 (2019).
[Crossref]

Nat. Commun. (2)

S. Bianchi, G. Vizsnyiczai, S. Ferretti, C. Maggi, and R. D. Leonardo, “An optical reaction micro-turbine,” Nat. Commun. 9, 4476 (2018).
[Crossref]

C. Maggi, F. Saglimbeni, M. Dipalo, F. D. Angelis, and R. D. Leonardo, “Micromotors with asymmetric shape that efficiently convert light into work by thermocapillary effects,” Nat. Commun. 6, 7855 (2015).
[Crossref]

Nat. Photonics (2)

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

T. Wu, T. A. Nieminen, S. Mohanty, J. Miotke, R. L. Meyer, H. Rubinsztein-Dunlop, and M. W. Berns, “A photon-driven micromotor can direct nerve fiber growth,” Nat. Photonics 6, 62–67 (2012).
[Crossref]

Nature (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348–350 (1998).
[Crossref]

N. Koumura, R. W. J. Zijlstra, R. A. van Delden, N. Harada, and B. L. Feringa, “Light-driven monodirection molecular rotor,” Nature 401, 152–155 (1999).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. A (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Phys. Rev. Lett. (3)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

H. He, M. E. J. Friese, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995).
[Crossref]

Y. Zhang, Y. X. Zhang, Z. Liu, X. Tang, X. Yang, J. Zhang, J. Yang, and L. Yuan, “Laser-induced microsphere hammer-hit vibration in liquid,” Phys. Rev. Lett. 121, 133901 (2018).
[Crossref]

Sci. Rep. (1)

A. V. Arzola, L. Chvátal, P. Jákl, and P. Zemánek, “Spin to orbital light momentum conversion visualized by particles trajectory,” Sci. Rep. 9, 4127 (2019).
[Crossref]

Small (1)

H. Zhang, L. Koens, E. Lauga, A. Mourran, and M. Mller, “A light-driven microgel rotor,” Small 15, 1903379 (2019).
[Crossref]

Supplementary Material (2)

NameDescription
» Visualization 1       laser-induced rotation introduced by a fiber probe
» Visualization 2       comparison of laser-induced rotation with different fiber probes

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Profile image of the ACF; (b) image of the ACF probe made of a section of ACF and a GMS; (c) schematic diagram of heating and tapering the SMF and ACF.
Fig. 2.
Fig. 2. (a) Schematic diagram of the CSLF introduced by the ACF probe. (b) Schematic diagram of the thermal field introduced by the CSLF. The z axis is the fiber probe main axis. (c) Schematic diagram of the GS trapped by the light-induced thermal field. The long axis of the GS is along the sidewall of the CSLF. (d) Schematic diagram of the net force exerted on the GS.
Fig. 3.
Fig. 3. (a) Simulated results of the light field distribution near the fiber probe; the diameter of the focus spot is 2.6 μm; (b) simulated results of the thermal field distribution near the fiber probe; (c) the schematic diagram shows the calculation of the photophoretic force along the ε axis; (d) the schematic diagram shows the calculation of the photophoretic force along the ζ axis.
Fig. 4.
Fig. 4. Relationship between the rotation rate of the GS and the incident laser power with the ACF1 and ACF2 probes. Here E.R. means the experimental results and F.R. means the fitting results.
Fig. 5.
Fig. 5. (a) Image of the ACF1 probe; (b) image of the ACF1 probe with some parameters; (c) image of the ACF1 probe performing the rotation of a piece of GS; (d) image of the ACF2 probe; (e) image of the ACF2 probe with some parameters; (f) image of the ACF2 probe performing the rotation of a piece of GS.

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

FΔαε=πη2σI32ρgtkTΔαεα¯εe^ε,FΔη=πη2σI32ρgtkTΔαηα¯ηe^η,
τt=τr+τη=Idωdt+γω,
ω(t)=CeγIt+τtγ.
Pm=τηω.
ζ=PmPin=γω2Pin=1.71×109,

Metrics