Abstract

A theoretical and experimental study on curvature sensing using a Brillouin optical time-domain analyzer based on the ring-core fiber (RCF) is reported. The Brillouin gain spectrum of the RCF is investigated, and the Brillouin frequency shift (BFS) dependence on temperature and strain is calibrated. We theoretically analyze the fiber bending-induced BFS and peak Brillouin gain variation for the RCF through a numerical simulation method, and the RCF is revealed to have a high curvature sensitivity. Distributed curvature sensing is successfully demonstrated, with the bending radius ranging from 0.5 to 1.5 cm, corresponding to a BFS variation from 32.90 to 7.81 MHz. The RCF takes advantage of great bending loss resistance, and the maximum macrobending loss at the extreme bending radius of 0.5 cm is less than 0.01 dB/turn. Besides, the peak Brillouin gain of the RCF is discovered to vary significantly in response to fiber bending, which is expected to be another parameter for distributed curvature determination. The results imply that the RCF is a promising candidate for highly sensitive distributed curvature measurement, especially in sharp bending circumstances.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Few-mode optical fiber based simultaneously distributed curvature and temperature sensing

Hao Wu, Ming Tang, Meng Wang, Can Zhao, Zhiyong Zhao, Ruoxu Wang, Ruolin Liao, Songnian Fu, Chen Yang, Weijun Tong, Perry Ping Shum, and Deming Liu
Opt. Express 25(11) 12722-12732 (2017)

Bend-insensitive distributed sensing in singlemode-multimode-singlemode optical fiber structure by using Brillouin optical time-domain analysis

Pengbai Xu, Yongkang Dong, Juwang Zhang, Dengwang Zhou, Taofei Jiang, Jinlong Xu, Hongying Zhang, Tao Zhu, Zhiwei Lu, Liang Chen, and Xiaoyi Bao
Opt. Express 23(17) 22714-22722 (2015)

Distributed shape sensing using Brillouin scattering in multi-core fibers

Zhiyong Zhao, Marcelo A. Soto, Ming Tang, and Luc Thévenaz
Opt. Express 24(22) 25211-25223 (2016)

References

  • View by:
  • |
  • |
  • |

  1. Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
    [Crossref]
  2. X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
    [Crossref]
  3. Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
    [Crossref]
  4. M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
    [Crossref]
  5. W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
    [Crossref]
  6. D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
    [Crossref]
  7. C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, and P. P. Shum, “BOTDA using channel estimation with direct-detection optical OFDM technique,” Opt. Express 25, 12698–12709 (2017).
    [Crossref]
  8. Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
    [Crossref]
  9. T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
    [Crossref]
  10. T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
    [Crossref]
  11. M. Nikles, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
    [Crossref]
  12. L. Zou, X. Bao, S. Afshar, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29, 1485–1487 (2004).
    [Crossref]
  13. J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
    [Crossref]
  14. R. I. Woodward, E. J. Kelleher, S. V. Popov, and J. R. Taylor, “Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers,” Opt. Lett. 39, 2330–2333 (2014).
    [Crossref]
  15. Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22, 26510–26516 (2014).
    [Crossref]
  16. A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40, 1488–1491 (2015).
    [Crossref]
  17. H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41, 1514–1517 (2016).
    [Crossref]
  18. H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25, 12722–12732 (2017).
    [Crossref]
  19. J. Fang, G. Milione, J. Stone, G. Peng, M. J. Li, E. Ip, Y. Li, P. N. Ji, Y. K. Huang, M. F. Huang, S. Murakami, W. Shieh, and T. Wang, “Multi-parameter distributed fiber sensing with higher-order optical and acoustic modes,” Opt. Lett. 44, 1096–1099 (2019).
    [Crossref]
  20. Y. H. Kim and K. Y. Song, “Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber,” IEEE Sens. J. 19, 2155–2161 (2019).
    [Crossref]
  21. Z. Zhao, M. A. Soto, M. Tang, and L. Thevenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24, 25211–25223 (2016).
    [Crossref]
  22. Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42, 171–174 (2017).
    [Crossref]
  23. F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8, 2210–2221 (2017).
    [Crossref]
  24. A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.
  25. J. M. Lopez-Higuera, L. Rodriguez Cobo, A. Q. Incera, and A. Cobo, “Fiber optic sensors in structural health monitoring,” J. Lightwave Technol. 29, 587–608 (2011).
    [Crossref]
  26. A. Minardo, R. Bernini, and L. Zeni, “Bend-induced Brillouin frequency shift variation in a single-mode fiber,” IEEE Photon. Technol. Lett. 25, 2362–2364 (2013).
    [Crossref]
  27. T. Yoshino, K. Inoue, and Y. Kobayashi, “Spiral fibre microbend sensors,” IEE Proc. Optoelectron. 144, 145–150 (1997).
    [Crossref]
  28. Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S.-U. Alam, and D. J. Richardson, “Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission,” J. Lightwave Technol. 35, 1363–1368 (2017).
    [Crossref]
  29. J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
    [Crossref]
  30. H. Yan, S. Li, Z. Xie, X. Zheng, H. Zhang, and B. Zhou, “Design of PANDA ring-core fiber with 10 polarization-maintaining modes,” Photon. Res. 5, 1–5 (2016).
    [Crossref]
  31. J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. Liu, “Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core,” Photon. Res. 5, 261–266 (2017).
    [Crossref]
  32. P. Dragic and J. Ballato, “A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors,” Appl. Sci. 8, 1996 (2018).
    [Crossref]
  33. S. Chen, Y. Tong, and H. Tian, “Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications,” Proc. SPIE 11048, 110484E (2019).
    [Crossref]
  34. M. A. Soto and L. Thevenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
    [Crossref]
  35. A. Roberts, K. Thorn, M. Michna, N. Dragomir, P. Farrell, and G. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27, 86–88 (2002).
    [Crossref]
  36. W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
    [Crossref]
  37. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
    [Crossref]
  38. A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23, 10341–10352 (2015).
    [Crossref]
  39. D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7, 32 (2018).
    [Crossref]
  40. Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20, 8584–8591 (2012).
    [Crossref]
  41. C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 204121 (2012).
    [Crossref]
  42. H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).
  43. J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
    [Crossref]
  44. K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38, 1805–1807 (2013).
    [Crossref]

2019 (3)

J. Fang, G. Milione, J. Stone, G. Peng, M. J. Li, E. Ip, Y. Li, P. N. Ji, Y. K. Huang, M. F. Huang, S. Murakami, W. Shieh, and T. Wang, “Multi-parameter distributed fiber sensing with higher-order optical and acoustic modes,” Opt. Lett. 44, 1096–1099 (2019).
[Crossref]

Y. H. Kim and K. Y. Song, “Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber,” IEEE Sens. J. 19, 2155–2161 (2019).
[Crossref]

S. Chen, Y. Tong, and H. Tian, “Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications,” Proc. SPIE 11048, 110484E (2019).
[Crossref]

2018 (5)

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

P. Dragic and J. Ballato, “A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors,” Appl. Sci. 8, 1996 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7, 32 (2018).
[Crossref]

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

2017 (6)

C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, and P. P. Shum, “BOTDA using channel estimation with direct-detection optical OFDM technique,” Opt. Express 25, 12698–12709 (2017).
[Crossref]

J. Zhao, M. Tang, K. Oh, Z. Feng, C. Zhao, R. Liao, S. Fu, P. P. Shum, and D. Liu, “Polarization-maintaining few mode fiber composed of a central circular-hole and an elliptical-ring core,” Photon. Res. 5, 261–266 (2017).
[Crossref]

Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42, 171–174 (2017).
[Crossref]

F. Parent, S. Loranger, K. K. Mandal, V. L. Iezzi, J. Lapointe, J. S. Boisvert, M. D. Baiad, S. Kadoury, and R. Kashyap, “Enhancement of accuracy in shape sensing of surgical needles using optical frequency domain reflectometry in optical fibers,” Biomed. Opt. Express 8, 2210–2221 (2017).
[Crossref]

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25, 12722–12732 (2017).
[Crossref]

Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S.-U. Alam, and D. J. Richardson, “Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission,” J. Lightwave Technol. 35, 1363–1368 (2017).
[Crossref]

2016 (4)

2015 (3)

2014 (3)

2013 (4)

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

M. A. Soto and L. Thevenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
[Crossref]

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced Brillouin frequency shift variation in a single-mode fiber,” IEEE Photon. Technol. Lett. 25, 2362–2364 (2013).
[Crossref]

K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38, 1805–1807 (2013).
[Crossref]

2012 (2)

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20, 8584–8591 (2012).
[Crossref]

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 204121 (2012).
[Crossref]

2011 (1)

2010 (1)

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

2008 (2)

2007 (2)

2004 (1)

2002 (1)

1997 (1)

T. Yoshino, K. Inoue, and Y. Kobayashi, “Spiral fibre microbend sensors,” IEE Proc. Optoelectron. 144, 145–150 (1997).
[Crossref]

1996 (1)

1990 (2)

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

1978 (1)

W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[Crossref]

Abbott, D.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Afshar, S.

Alam, S.-U.

Alasadi, H.

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

Alasia, D.

Al-Mansoori, M.

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

Angulo-Vinuesa, X.

Ansari, F.

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

Arya, R.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Ba, D.

Baiad, M. D.

Ballato, J.

P. Dragic and J. Ballato, “A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors,” Appl. Sci. 8, 1996 (2018).
[Crossref]

Bao, X.

Baxter, G.

Bernini, R.

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced Brillouin frequency shift variation in a single-mode fiber,” IEEE Photon. Technol. Lett. 25, 2362–2364 (2013).
[Crossref]

Berthet-Rayne, P.

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Beugnot, J.-C.

Boisvert, J. S.

Cai, X.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Chen, L.

Chen, S.

S. Chen, Y. Tong, and H. Tian, “Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications,” Proc. SPIE 11048, 110484E (2019).
[Crossref]

Y. Jung, Q. Kang, H. Zhou, R. Zhang, S. Chen, H. Wang, Y. Yang, X. Jin, F. P. Payne, S.-U. Alam, and D. J. Richardson, “Low-loss 25.3 km few-mode ring-core fiber for mode-division multiplexed transmission,” J. Lightwave Technol. 35, 1363–1368 (2017).
[Crossref]

Chen, Y.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Cobo, A.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Dang, Y.

Dominguez-Lopez, A.

Dong, Y.

Dragic, P.

P. Dragic and J. Ballato, “A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors,” Appl. Sci. 8, 1996 (2018).
[Crossref]

Dragomir, N.

Ebendorff-Heidepriem, H.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Faisal, M.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Fan, M. Q.

Fan, Z.

Fang, J.

Farrell, P.

Feng, X.

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

Feng, Z.

Fu, S.

Galindez-Jamioy, C. A.

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 204121 (2012).
[Crossref]

Gambling, W.

W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[Crossref]

Gan, L.

Gonzalez-Herraez, M.

Hitam, S.

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

Horiguchi, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref]

Hu, Z.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Huang, M. F.

Huang, Y. K.

Iezzi, V. L.

Incera, A. Q.

Inoue, K.

T. Yoshino, K. Inoue, and Y. Kobayashi, “Spiral fibre microbend sensors,” IEE Proc. Optoelectron. 144, 145–150 (1997).
[Crossref]

Ip, E.

Islam, M. R.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Islam, M. S.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Ji, P. N.

Jin, X.

Jung, Y.

Kadoury, S.

Kang, Q.

Kashyap, R.

Kelleher, E. J.

Kher, S.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Kim, B. Y.

Kim, Y. H.

Y. H. Kim and K. Y. Song, “Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber,” IEEE Sens. J. 19, 2155–2161 (2019).
[Crossref]

K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38, 1805–1807 (2013).
[Crossref]

Kobayashi, Y.

T. Yoshino, K. Inoue, and Y. Kobayashi, “Spiral fibre microbend sensors,” IEE Proc. Optoelectron. 144, 145–150 (1997).
[Crossref]

Kurashima, T.

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref]

Lapointe, J.

Laude, V.

Li, A.

Li, B.

Li, H.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7, 32 (2018).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Li, J.

Li, M. J.

Li, S.

Li, W.

Li, Y.

Li, Z.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Liao, R.

Liu, D.

Liu, J.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Lopez-Gil, A.

Lopez-Higuera, J. M.

López-Higuera, J. M.

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 204121 (2012).
[Crossref]

Loranger, S.

Lu, Z.

Mafang, S. F.

Mahdi, M.

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

Maillotte, H.

Mandal, K. K.

Martin-Lopez, S.

Matsumura, H.

W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[Crossref]

Michna, M.

Milione, G.

Minardo, A.

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced Brillouin frequency shift variation in a single-mode fiber,” IEEE Photon. Technol. Lett. 25, 2362–2364 (2013).
[Crossref]

Monteville, A.

Motil, A.

Murakami, S.

Ng, B. W.-H.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Nikles, M.

Oak, S. M.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Oh, K.

Pachori, R. B.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Pang, C.

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7, 32 (2018).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

Parent, F.

Payne, F. P.

Peled, Y.

Peng, F.

Peng, G.

Popov, S. V.

Provino, L.

Ragdale, C.

W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[Crossref]

Raju, S. D. V. S. J.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Rao, Y. J.

Ravindranath, S. V. G.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Richardson, D. J.

Robert, P. A.

Roberts, A.

Rodriguez Cobo, L.

Saripan, M.

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

Saxena, M. K.

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

Schmitz, A.

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Seneci, C. A.

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Shieh, W.

Shum, P.

Shum, P. P.

Song, K. Y.

Y. H. Kim and K. Y. Song, “Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber,” IEEE Sens. J. 19, 2155–2161 (2019).
[Crossref]

K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38, 1805–1807 (2013).
[Crossref]

Soto, M. A.

Stone, J.

Sultana, J.

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Sun, C.

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

Sylvestre, T.

Tang, M.

Tateda, M.

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

Taylor, J. R.

Thevenaz, L.

Thévenaz, L.

Thompson, A. J.

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Thorn, K.

Tian, H.

S. Chen, Y. Tong, and H. Tian, “Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications,” Proc. SPIE 11048, 110484E (2019).
[Crossref]

Tong, W.

Tong, Y.

S. Chen, Y. Tong, and H. Tian, “Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications,” Proc. SPIE 11048, 110484E (2019).
[Crossref]

Traynor, N.

Tur, M.

Wang, B.

Wang, H.

Wang, L.

Wang, M.

Wang, R.

Wang, T.

Wang, Y.

Wang, Z. N.

Wei, H.

Wen, Y.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Wisanuvej, P.

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Woodward, R. I.

Wu, H.

Wu, J.

Wu, X.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Xie, Z.

Xu, P.

Yan, H.

Yang, C.

Yang, G.-Z.

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Yang, Y.

Yin, M.

Yoshino, T.

T. Yoshino, K. Inoue, and Y. Kobayashi, “Spiral fibre microbend sensors,” IEE Proc. Optoelectron. 144, 145–150 (1997).
[Crossref]

Yu, S.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Zeng, J. J.

Zeni, L.

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced Brillouin frequency shift variation in a single-mode fiber,” IEEE Photon. Technol. Lett. 25, 2362–2364 (2013).
[Crossref]

Zhang, H.

Zhang, J.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Zhang, L.

Zhang, R.

Zhang, X.

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

Zhang, Y.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Zhang, Z.

Zhao, C.

Zhao, J.

Zhao, Z.

Zheng, X.

Zhou, B.

Zhou, D.

Zhou, H.

Zhou, J.

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

Zhou, Y.

Zhu, G.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Zhu, J.

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

Zou, L.

Appl. Sci. (1)

P. Dragic and J. Ballato, “A brief review of specialty optical fibers for Brillouin-scattering-based distributed sensors,” Appl. Sci. 8, 1996 (2018).
[Crossref]

Biomed. Opt. Express (1)

Electron. Lett. (1)

W. Gambling, H. Matsumura, and C. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14, 130–132 (1978).
[Crossref]

IEE Proc. Optoelectron. (1)

T. Yoshino, K. Inoue, and Y. Kobayashi, “Spiral fibre microbend sensors,” IEE Proc. Optoelectron. 144, 145–150 (1997).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Liu, G. Zhu, J. Zhang, Y. Wen, X. Wu, Y. Zhang, Y. Chen, X. Cai, Z. Li, Z. Hu, J. Zhu, S. Yu, and S. Yu, “Mode division multiplexing based on ring core optical fibres,” IEEE J. Quantum Electron. 54, 6300413 (2018).
[Crossref]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899–909 (2007).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. Minardo, R. Bernini, and L. Zeni, “Bend-induced Brillouin frequency shift variation in a single-mode fiber,” IEEE Photon. Technol. Lett. 25, 2362–2364 (2013).
[Crossref]

T. Horiguchi, T. Kurashima, and M. Tateda, “A technique to measure distributed strain in optical fibers,” IEEE Photon. Technol. Lett. 2, 352–354 (1990).
[Crossref]

IEEE Sens. J. (1)

Y. H. Kim and K. Y. Song, “Characterization of distributed Brillouin sensors based on elliptical-core two-mode fiber,” IEEE Sens. J. 19, 2155–2161 (2019).
[Crossref]

Int. J. Electron. Comput. Commun. Technol. (1)

H. Alasadi, M. Al-Mansoori, S. Hitam, M. Saripan, and M. Mahdi, “Brillouin linewidth characterization in single mode large effective area fiber through the co-pumped technique,” Int. J. Electron. Comput. Commun. Technol. 1, 16–20 (2010).

J. Eng. Mech. (1)

X. Feng, J. Zhou, C. Sun, X. Zhang, and F. Ansari, “Theoretical and experimental investigations into crack detection with BOTDR-distributed fiber optic sensors,” J. Eng. Mech. 139, 1797–1807 (2013).
[Crossref]

J. Lightwave Technol. (2)

J. Sens. (1)

C. A. Galindez-Jamioy and J. M. López-Higuera, “Brillouin distributed fiber sensors: an overview and applications,” J. Sens. 2012, 204121 (2012).
[Crossref]

Light Sci. Appl. (1)

D. Zhou, Y. Dong, B. Wang, C. Pang, D. Ba, H. Zhang, Z. Lu, H. Li, and X. Bao, “Single-shot BOTDA based on an optical chirp chain probe wave for distributed ultrafast measurement,” Light Sci. Appl. 7, 32 (2018).
[Crossref]

Opt. Commun. (1)

J. Sultana, M. S. Islam, M. Faisal, M. R. Islam, B. W.-H. Ng, H. Ebendorff-Heidepriem, and D. Abbott, “Highly birefringent elliptical core photonic crystal fiber for terahertz application,” Opt. Commun. 407, 92–96 (2018).
[Crossref]

Opt. Express (11)

Y. Peled, A. Motil, and M. Tur, “Fast Brillouin optical time domain analysis for dynamic sensing,” Opt. Express 20, 8584–8591 (2012).
[Crossref]

J.-C. Beugnot, T. Sylvestre, D. Alasia, H. Maillotte, V. Laude, A. Monteville, L. Provino, N. Traynor, S. F. Mafang, and L. Thévenaz, “Complete experimental characterization of stimulated Brillouin scattering in photonic crystal fiber,” Opt. Express 15, 15517–15522 (2007).
[Crossref]

Z. Zhang and X. Bao, “Distributed optical fiber vibration sensor based on spectrum analysis of polarization-OTDR system,” Opt. Express 16, 10240–10247 (2008).
[Crossref]

W. Li, X. Bao, Y. Li, and L. Chen, “Differential pulse-width pair BOTDA for high spatial resolution sensing,” Opt. Express 16, 21616–21625 (2008).
[Crossref]

M. A. Soto and L. Thevenaz, “Modeling and evaluating the performance of Brillouin distributed optical fiber sensors,” Opt. Express 21, 31347–31366 (2013).
[Crossref]

Y. Dong, P. Xu, H. Zhang, Z. Lu, L. Chen, and X. Bao, “Characterization of evolution of mode coupling in a graded-index polymer optical fiber by using Brillouin optical time-domain analysis,” Opt. Express 22, 26510–26516 (2014).
[Crossref]

C. Zhao, M. Tang, L. Wang, H. Wu, Z. Zhao, Y. Dang, J. Wu, S. Fu, D. Liu, and P. P. Shum, “BOTDA using channel estimation with direct-detection optical OFDM technique,” Opt. Express 25, 12698–12709 (2017).
[Crossref]

H. Wu, M. Tang, M. Wang, C. Zhao, Z. Zhao, R. Wang, R. Liao, S. Fu, C. Yang, W. Tong, P. P. Shum, and D. Liu, “Few-mode optical fiber based simultaneously distributed curvature and temperature sensing,” Opt. Express 25, 12722–12732 (2017).
[Crossref]

A. Dominguez-Lopez, X. Angulo-Vinuesa, A. Lopez-Gil, S. Martin-Lopez, and M. Gonzalez-Herraez, “Non-local effects in dual-probe-sideband Brillouin optical time domain analysis,” Opt. Express 23, 10341–10352 (2015).
[Crossref]

D. Ba, B. Wang, D. Zhou, M. Yin, Y. Dong, H. Li, Z. Lu, and Z. Fan, “Distributed measurement of dynamic strain based on multi-slope assisted fast BOTDA,” Opt. Express 24, 9781–9793 (2016).
[Crossref]

Z. Zhao, M. A. Soto, M. Tang, and L. Thevenaz, “Distributed shape sensing using Brillouin scattering in multi-core fibers,” Opt. Express 24, 25211–25223 (2016).
[Crossref]

Opt. Laser Technol. (1)

M. K. Saxena, S. D. V. S. J. Raju, R. Arya, R. B. Pachori, S. V. G. Ravindranath, S. Kher, and S. M. Oak, “Raman optical fiber distributed temperature sensor using wavelet transform based simplified signal processing of Raman backscattered signals,” Opt. Laser Technol. 65, 14–24 (2015).
[Crossref]

Opt. Lett. (12)

T. Kurashima, T. Horiguchi, and M. Tateda, “Distributed-temperature sensing using stimulated Brillouin scattering in optical silica fibers,” Opt. Lett. 15, 1038–1040 (1990).
[Crossref]

M. Nikles, L. Thévenaz, and P. A. Robert, “Simple distributed fiber sensor based on Brillouin gain spectrum analysis,” Opt. Lett. 21, 758–760 (1996).
[Crossref]

A. Roberts, K. Thorn, M. Michna, N. Dragomir, P. Farrell, and G. Baxter, “Determination of bending-induced strain in optical fibers by use of quantitative phase imaging,” Opt. Lett. 27, 86–88 (2002).
[Crossref]

L. Zou, X. Bao, S. Afshar, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29, 1485–1487 (2004).
[Crossref]

H. Wu, R. Wang, D. Liu, S. Fu, C. Zhao, H. Wei, W. Tong, P. P. Shum, and M. Tang, “Few-mode fiber based distributed curvature sensor through quasi-single-mode Brillouin frequency shift,” Opt. Lett. 41, 1514–1517 (2016).
[Crossref]

A. Li, Y. Wang, J. Fang, M. J. Li, B. Y. Kim, and W. Shieh, “Few-mode fiber multi-parameter sensor with distributed temperature and strain discrimination,” Opt. Lett. 40, 1488–1491 (2015).
[Crossref]

R. I. Woodward, E. J. Kelleher, S. V. Popov, and J. R. Taylor, “Stimulated Brillouin scattering of visible light in small-core photonic crystal fibers,” Opt. Lett. 39, 2330–2333 (2014).
[Crossref]

Z. N. Wang, J. J. Zeng, J. Li, M. Q. Fan, H. Wu, F. Peng, L. Zhang, Y. Zhou, and Y. J. Rao, “Ultra-long phase-sensitive OTDR with hybrid distributed amplification,” Opt. Lett. 39, 5866–5869 (2014).
[Crossref]

K. Y. Song, Y. H. Kim, and B. Y. Kim, “Intermodal stimulated Brillouin scattering in two-mode fibers,” Opt. Lett. 38, 1805–1807 (2013).
[Crossref]

Y. Dong, B. Wang, C. Pang, D. Zhou, D. Ba, H. Zhang, and X. Bao, “150 km fast BOTDA based on the optical chirp chain probe wave and Brillouin loss scheme,” Opt. Lett. 43, 4679–4682 (2018).
[Crossref]

J. Fang, G. Milione, J. Stone, G. Peng, M. J. Li, E. Ip, Y. Li, P. N. Ji, Y. K. Huang, M. F. Huang, S. Murakami, W. Shieh, and T. Wang, “Multi-parameter distributed fiber sensing with higher-order optical and acoustic modes,” Opt. Lett. 44, 1096–1099 (2019).
[Crossref]

Z. Zhao, Y. Dang, M. Tang, B. Li, L. Gan, S. Fu, H. Wei, W. Tong, P. Shum, and D. Liu, “Spatial-division multiplexed Brillouin distributed sensing based on a heterogeneous multicore fiber,” Opt. Lett. 42, 171–174 (2017).
[Crossref]

Photon. Res. (2)

Proc. SPIE (1)

S. Chen, Y. Tong, and H. Tian, “Bend property of few-mode ring-core fiber supporting seven spatial modes for mode-division multiplexed applications,” Proc. SPIE 11048, 110484E (2019).
[Crossref]

Other (1)

A. Schmitz, A. J. Thompson, P. Berthet-Rayne, C. A. Seneci, P. Wisanuvej, and G.-Z. Yang, “Shape sensing of miniature snake-like robots using optical fibers,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2017), pp. 947–952.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (15)

Fig. 1.
Fig. 1. (a) Optical microscope image of cross section of the RCF; (b) measured refractive index profile of the RCF; (c) simulated LP01, LP11, LP21, and LP31 mode groups supported by the RCF.
Fig. 2.
Fig. 2. (a) Position-dependent strain induced by fiber bending; (b) strain distribution on the fiber cross section; (c) simulated optical mode field of the bent RCF.
Fig. 3.
Fig. 3. Experimental setup for the BOTDA system based on the RCF. PC, polarization controller; EOM, electro-optic modulator; MS, microwave synthesizer; SOA, semiconductor optical amplifier; AFG, arbitrary function generator; PS, polarization scrambler; EDFA, erbium-doped fiber amplifier; CIR, circulator; FBG, fiber Bragg grating; PD, photodetector; inset, measured far-field profile at the output end of the RCF when excited through an SMF.
Fig. 4.
Fig. 4. (a) Measured BGS distribution along the RCF with a heated segment; (b) experimentally measured BGS and Lorentz fitting curve at the output end of the RCF.
Fig. 5.
Fig. 5. BFS as a function of (a) temperature and (b) strain for the RCF and the linear fitting results.
Fig. 6.
Fig. 6. (a) Schematic diagram of distributed curvature measurement by winding the RCF around plastic cylinders with different diameters; (b) measured BGS distribution along the bent RCF.
Fig. 7.
Fig. 7. Measured fiber bending-induced (a) BFS and (b) peak Brillouin gain variation along the RCF.
Fig. 8.
Fig. 8. Macrobending loss comparison between the RCF and the SMF.
Fig. 9.
Fig. 9. Simulated mode-field distributions of the bent RCF with different curvature radii.
Fig. 10.
Fig. 10. Calculated power center shift and normalized effective area as functions of curvature radius.
Fig. 11.
Fig. 11. (a) Simulated bending-induced BFS change and experimental results; (b) simulated bending-induced peak Brillouin gain variation and experimental results.
Fig. 12.
Fig. 12. (a) Comparison of BFS variation and measurement range for the RCF and FMFs; (b) comparison of measurement sensitivity for the RCF and FMFs.
Fig. 13.
Fig. 13. Bend-induced birefringence versus curvature radius.
Fig. 14.
Fig. 14. (a) BFS change of the heated curved RCF with temperature; (b) Brillouin gain change of the heated curved RCF with temperature.
Fig. 15.
Fig. 15. Estimated curvature radius based on the BFS and Brillouin gain.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

G(z)=ΔPsignal(z)Psignal(z)=exp[g0(z)AeffPpump(z)Δz]1,
G(z)=g0(z)AeffPpump(z)Δz.
ε=xR,
Δd=02π0p(r,θ)r2cosθdrdθ02π0p(r,θ)rdrdθ,
ΔνB=CεΔdR.
B=|nxny|,
vB=Va×(n1λ1+n2λ2),

Metrics