Abstract

Tip-enhanced Raman scattering (TERS) spectroscopy is a nondestructive and label-free molecular detection approach that provides high sensitivity and nanoscale spatial resolution. Therefore, it has been used in a wide array of applications. We demonstrate a gap-plasmon hybridization facilitated by a bottom-illuminated TERS configuration. The gap-plasmon hybridization effect is first performed with the finite-difference time-domain method to optimize the parameters, and experiments are then conducted to calibrate the performance. The results demonstrate an enhancement factor of 1157 and a spatial resolution of 13.5 nm. The proposed configuration shows great potential in related surface imaging applications in various fields of research.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection

Mingqian Zhang, Jia Wang, and Qian Tian
Opt. Express 21(8) 9414-9421 (2013)

Tip-enhanced Raman spectroscopy with silver-coated optical fiber probe in reflection mode for investigating multiwall carbon nanotubes

Rui Wang, Jia Wang, Fenghuan Hao, Mingqian Zhang, and Qian Tian
Appl. Opt. 49(10) 1845-1848 (2010)

Plasmonic near-field probes: a comparison of the campanile geometry with other sharp tips

Wei Bao, Matteo Staffaroni, Jeffrey Bokor, Miquel B. Salmeron, Eli Yablonovitch, Stefano Cabrini, Alexander Weber-Bargioni, and P. James Schuck
Opt. Express 21(7) 8166-8176 (2013)

References

  • View by:
  • |
  • |
  • |

  1. A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
    [Crossref]
  2. A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
    [Crossref]
  3. A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
    [Crossref]
  4. A. Bhattarai and P. Z. El-Khoury, “Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering,” Chem. Commun. 53, 7310–7313 (2017).
    [Crossref]
  5. M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
    [Crossref]
  6. L. Meng and M. Sun, “Tip-enhanced photoluminescence spectroscopy of monolayer MoS2,” Photon. Res. 5, 745–749 (2017).
    [Crossref]
  7. W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
    [Crossref]
  8. L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
    [Crossref]
  9. D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol. A 28, 472–475 (2010).
    [Crossref]
  10. Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
    [Crossref]
  11. M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
    [Crossref]
  12. R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
    [Crossref]
  13. J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
    [Crossref]
  14. S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
    [Crossref]
  15. X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).
  16. M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
    [Crossref]
  17. J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
    [Crossref]
  18. H. Sebastian, C. Nick, and V. Aravind, “Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes,” Nanotechnology 29, 465710 (2018).
    [Crossref]
  19. E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
    [Crossref]
  20. L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
    [Crossref]
  21. J. L. Toca-Herrera, “Atomic force microscopy meets biophysics, bioengineering, chemistry and materials science,” ChemSusChem 12, 603–611 (2018).
    [Crossref]
  22. X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
    [Crossref]
  23. L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23, 13804–13813 (2015).
    [Crossref]
  24. N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21, 25271–25276 (2013).
    [Crossref]
  25. M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
    [Crossref]
  26. M. Zhang, J. Wang, and Q. Tian, “Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection,” Opt. Express 21, 9414–9421 (2013).
    [Crossref]
  27. H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
    [Crossref]
  28. C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref]
  29. I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
    [Crossref]
  30. Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
    [Crossref]
  31. M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
    [Crossref]
  32. C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced Raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
    [Crossref]
  33. P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
    [Crossref]
  34. Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
    [Crossref]
  35. X. Wang, Y. Zhang, Y. Dai, C. Min, and X. Yuan, “Enhancing plasmonic trapping with a perfect radially polarized beam,” Photon. Res. 6, 847–852 (2018).
    [Crossref]
  36. C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
    [Crossref]

2019 (8)

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
[Crossref]

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
[Crossref]

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

2018 (7)

X. Wang, Y. Zhang, Y. Dai, C. Min, and X. Yuan, “Enhancing plasmonic trapping with a perfect radially polarized beam,” Photon. Res. 6, 847–852 (2018).
[Crossref]

H. Sebastian, C. Nick, and V. Aravind, “Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes,” Nanotechnology 29, 465710 (2018).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

J. L. Toca-Herrera, “Atomic force microscopy meets biophysics, bioengineering, chemistry and materials science,” ChemSusChem 12, 603–611 (2018).
[Crossref]

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

2017 (7)

A. Bhattarai and P. Z. El-Khoury, “Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering,” Chem. Commun. 53, 7310–7313 (2017).
[Crossref]

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
[Crossref]

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
[Crossref]

L. Meng and M. Sun, “Tip-enhanced photoluminescence spectroscopy of monolayer MoS2,” Photon. Res. 5, 745–749 (2017).
[Crossref]

2016 (2)

C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
[Crossref]

Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
[Crossref]

2015 (2)

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced Raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

L. Meng, T. Huang, X. Wang, S. Chen, Z. Yang, and B. Ren, “Gold-coated AFM tips for tip-enhanced Raman spectroscopy: theoretical calculation and experimental demonstration,” Opt. Express 23, 13804–13813 (2015).
[Crossref]

2013 (5)

M. Zhang, J. Wang, and Q. Tian, “Tip-enhanced Raman spectroscopy based on plasmonic lens excitation and experimental detection,” Opt. Express 21, 9414–9421 (2013).
[Crossref]

N. Kazemi-Zanjani, S. Vedraine, and F. Lagugné-Labarthet, “Localized enhancement of electric field in tip-enhanced Raman spectroscopy using radially and linearly polarized light,” Opt. Express 21, 25271–25276 (2013).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

2010 (1)

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol. A 28, 472–475 (2010).
[Crossref]

2004 (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

1998 (1)

1985 (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Aizpurua, J.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Akinwande, D.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Apkarian, V. A.

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
[Crossref]

Apontti, L.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Aravind, V.

H. Sebastian, C. Nick, and V. Aravind, “Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes,” Nanotechnology 29, 465710 (2018).
[Crossref]

Bailey, K. A.

L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
[Crossref]

Bhattarai, A.

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
[Crossref]

A. Bhattarai and P. Z. El-Khoury, “Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering,” Chem. Commun. 53, 7310–7313 (2017).
[Crossref]

Cao, L.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

Chaigneau, M.

W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Chen, B.-Q.

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced Raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

Chen, H.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

Chen, L. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Chen, S.

Chen, T.

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Chen, X.

P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
[Crossref]

Crampton, K. T.

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
[Crossref]

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

Dadgar, A.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Dai, L.

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Dai, Y.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

X. Wang, Y. Zhang, Y. Dai, C. Min, and X. Yuan, “Enhancing plasmonic trapping with a perfect radially polarized beam,” Photon. Res. 6, 847–852 (2018).
[Crossref]

De Feyter, S.

Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
[Crossref]

Deckert, V.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Deckertgaudig, T.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Dong, Z. C.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Dong, Z.-C.

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

Du, L.

C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Duffy, L. B.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Dzhagan, V. M.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

El-Khoury, P. Z.

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

A. Bhattarai and P. Z. El-Khoury, “Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering,” Chem. Commun. 53, 7310–7313 (2017).
[Crossref]

A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
[Crossref]

Fang, H.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Fritze, S.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Fujita, Y.

Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
[Crossref]

Gannott, F.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Gao, F.

Gräfe, S.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Gryczynski, I.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

Gryczynski, Z.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

Herziger, F.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Hesjedal, T.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Hess, W. P.

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
[Crossref]

Hoffmann, A.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Hou, J. G.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Huang, L.

Huang, T.

Huang, Y.

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Ichimura, T.

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

Jenczyk, J.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Jensen, L.

P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
[Crossref]

Jiang, N.

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Jiang, S.

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Joly, A. G.

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
[Crossref]

Jurga, S.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Kano, H.

Kawata, S.

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

H. Kano, S. Mizuguchi, and S. Kawata, “Excitation of surface-plasmon polaritons by a focused laser beam,” J. Opt. Soc. Am. B 15, 1381–1386 (1998).
[Crossref]

Kazemi-Zanjani, N.

Kim, S.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Korn, T.

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Kovarik, L.

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

Krayev, A.

W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Krost, A.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Kumar, N.

W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Kupfer, S.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Lagugné-Labarthet, F.

Lakowicz, J. R.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

Latyshev, A. V.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

Lee, J.

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
[Crossref]

Lei, T.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Li, G.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

Li, L.

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Li, X.

Li, Z.-Y.

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced Raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

Liao, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Lin, J.-F.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Lin, X. M.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Liu, M.

M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Liu, P.

P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
[Crossref]

Liu, Q.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Lu, F.

Lu, X.

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Luo, Y.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Ma, X.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Mahapatra, S.

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Malicka, J.

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

Man, Z.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

Mao, D.

Maultzsch, J.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Mei, T.

Meng, L.

Milekhin, A. G.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

Min, C.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

X. Wang, Y. Zhang, Y. Dai, C. Min, and X. Yuan, “Enhancing plasmonic trapping with a perfect radially polarized beam,” Photon. Res. 6, 847–852 (2018).
[Crossref]

C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Mizuguchi, S.

Moras, S.

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Moskovits, M.

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Mroz, B.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Mukherjee, A.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

Nenstiel, C.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Nick, C.

H. Sebastian, C. Nick, and V. Aravind, “Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes,” Nanotechnology 29, 465710 (2018).
[Crossref]

Ning, Y.

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Plechinger, G.

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Poliani, E.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Rahaman, M.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Ren, B.

Roberts, R. H.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Rodriguez, R. D.

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Rodyakina, E. E.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

Roy, D.

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol. A 28, 472–475 (2010).
[Crossref]

Saito, Y.

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

Schüller, C.

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Schultz, J. F.

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Schultz, Z. D.

L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
[Crossref]

Schweiger, M.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Sebastian, H.

H. Sebastian, C. Nick, and V. Aravind, “Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes,” Nanotechnology 29, 465710 (2018).
[Crossref]

Shen, J.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shen, Z.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Siegmann, M.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Singh, P.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Song, L.

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Song, Y.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Su, W.

W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

Sun, M.

Tallarida, N.

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
[Crossref]

Tian, Q.

Toca-Herrera, J. L.

J. L. Toca-Herrera, “Atomic force microscopy meets biophysics, bioengineering, chemistry and materials science,” ChemSusChem 12, 603–611 (2018).
[Crossref]

Uji-i, H.

Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
[Crossref]

Urbach, H. P.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

Vedraine, S.

Verma, P.

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

Vierck, A.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Wagner, M. R.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Walke, P.

Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
[Crossref]

Wang, H.

L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
[Crossref]

Wang, J.

Wang, S.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Wang, X.

Wiesner, M.

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Williams, C.

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol. A 28, 472–475 (2010).
[Crossref]

Xiao, L.

L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
[Crossref]

Xu, D.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Xue, T.

Yan, R.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Yang, J. L.

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Yang, Z.

Ye, H.

P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
[Crossref]

Yu, J.

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

Yu, N.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Yuan, G.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Yuan, X.

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

X. Wang, Y. Zhang, Y. Dai, C. Min, and X. Yuan, “Enhancing plasmonic trapping with a perfect radially polarized beam,” Photon. Res. 6, 847–852 (2018).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Yuan, X.-C.

C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
[Crossref]

Zahn, D. R. T.

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

Zaumseil, J.

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

Zhang, C.

C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
[Crossref]

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced Raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Zhang, J.

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Zhang, J.-L.

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

Zhang, L.

M. Liu, W. Zhang, F. Lu, T. Xue, X. Li, L. Zhang, D. Mao, L. Huang, F. Gao, T. Mei, and J. Zhao, “Plasmonic tip internally excited via an azimuthal vector beam for surface enhanced Raman spectroscopy,” Photon. Res. 7, 526–531 (2019).
[Crossref]

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Zhang, M.

Zhang, R.

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Zhang, W.

Zhang, Y.

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

X. Wang, Y. Zhang, Y. Dai, C. Min, and X. Yuan, “Enhancing plasmonic trapping with a perfect radially polarized beam,” Photon. Res. 6, 847–852 (2018).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

Zhang, Z.

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Zhao, J.

Zhu, S.

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zhu, Y.

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

ACS Nano (1)

P. Liu, X. Chen, H. Ye, and L. Jensen, “Resolving molecular structures with high-resolution tip-enhanced Raman scattering images,” ACS Nano 13, 9342–9351 (2019).
[Crossref]

Anal. Chem. (1)

L. Xiao, K. A. Bailey, H. Wang, and Z. D. Schultz, “Probing membrane receptor–ligand specificity with surface- and tip-enhanced Raman scattering,” Anal. Chem. 89, 9091–9099 (2017).
[Crossref]

Appl. Phys. Lett. (2)

C. Zhang, C. Min, L. Du, and X.-C. Yuan, “Perfect optical vortex enhanced surface plasmon excitation for plasmonic structured illumination microscopy imaging,” Appl. Phys. Lett. 108, 201601 (2016).
[Crossref]

J. Yu, Y. Saito, T. Ichimura, S. Kawata, and P. Verma, “Far-field free tapping-mode tip-enhanced Raman microscopy,” Appl. Phys. Lett. 102, 123110 (2013).
[Crossref]

Chem. Commun. (1)

A. Bhattarai and P. Z. El-Khoury, “Imaging localized electric fields with nanometer precision through tip-enhanced Raman scattering,” Chem. Commun. 53, 7310–7313 (2017).
[Crossref]

Chem. Phys. Chem. (1)

Y. Zhang, R. Zhang, S. Jiang, Y. Zhang, and Z.-C. Dong, “Probing the adsorption configurations of small molecules on surfaces by single-molecule tip-enhanced Raman spectroscopy,” Chem. Phys. Chem. 20, 37–41 (2019).
[Crossref]

ChemSusChem (1)

J. L. Toca-Herrera, “Atomic force microscopy meets biophysics, bioengineering, chemistry and materials science,” ChemSusChem 12, 603–611 (2018).
[Crossref]

Faraday Discuss. (1)

M. Rahaman, A. G. Milekhin, A. Mukherjee, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “The role of a plasmonic substrate on the enhancement and spatial resolution of tip-enhanced Raman scattering,” Faraday Discuss. 214, 309–323 (2019).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. B (1)

I. Gryczynski, J. Malicka, Z. Gryczynski, and J. R. Lakowicz, “Surface plasmon-coupled emission with gold films,” J. Phys. Chem. B 108, 12568–12574 (2004).
[Crossref]

J. Phys. Chem. C (1)

C. Zhang, B.-Q. Chen, and Z.-Y. Li, “Optical origin of subnanometer resolution in tip-enhanced Raman mapping,” J. Phys. Chem. C 119, 11858–11871 (2015).
[Crossref]

J. Phys. Chem. Lett. (2)

E. Poliani, M. R. Wagner, A. Vierck, F. Herziger, C. Nenstiel, F. Gannott, M. Schweiger, S. Fritze, A. Dadgar, J. Zaumseil, A. Krost, A. Hoffmann, and J. Maultzsch, “Breakdown of far-field Raman selection rules by light-plasmon coupling demonstrated by tip-enhanced Raman scattering,” J. Phys. Chem. Lett. 8, 5462–5471 (2017).
[Crossref]

A. Bhattarai, K. T. Crampton, A. G. Joly, L. Kovarik, W. P. Hess, and P. Z. El-Khoury, “Imaging the optical fields of functionalized silver nanowires through molecular TERS,” J. Phys. Chem. Lett. 9, 7105–7109 (2018).
[Crossref]

J. Vac. Sci. Technol. A (1)

D. Roy and C. Williams, “High resolution Raman imaging of single wall carbon nanotubes using electrochemically etched gold tips and a radially polarized annular beam,” J. Vac. Sci. Technol. A 28, 472–475 (2010).
[Crossref]

Jpn. J. Appl. Phys. (1)

Y. Fujita, P. Walke, S. De Feyter, and H. Uji-i, “Tip-enhanced Raman scattering microscopy: recent advance in tip production,” Jpn. J. Appl. Phys. 55, 08NA02 (2016).
[Crossref]

Langmuir (1)

L. Dai, L. Song, Y. Huang, L. Zhang, X. Lu, J. Zhang, and T. Chen, “Bimetallic Au/Ag core-shell superstructures with tunable surface plasmon resonance in NIR and high performance SERS,” Langmuir 33, 5378–5384 (2017).
[Crossref]

Nano Lett. (4)

M. Rahaman, R. D. Rodriguez, G. Plechinger, S. Moras, C. Schüller, T. Korn, and D. R. T. Zahn, “Highly localized strain in a MoS2/Au heterostructure revealed by tip-enhanced Raman spectroscopy,” Nano Lett. 17, 6027–6033 (2017).
[Crossref]

A. Bhattarai, A. G. Joly, W. P. Hess, and P. Z. El-Khoury, “Visualizing electric fields at Au(111) step edges via tip-enhanced Raman scattering,” Nano Lett. 17, 7131–7137 (2017).
[Crossref]

S. Mahapatra, Y. Ning, J. F. Schultz, L. Li, J.-L. Zhang, and N. Jiang, “Angstrom scale chemical analysis of metal supported trans- and cis-regioisomers by ultrahigh vacuum tip-enhanced Raman mapping,” Nano Lett. 19, 3267–3272 (2019).
[Crossref]

X. Ma, Y. Zhu, N. Yu, S. Kim, Q. Liu, L. Apontti, D. Xu, R. Yan, and M. Liu, “Toward high-contrast AFM-TERS imaging: nano-antenna-mediated remote-excitation on sharp-tip silver nanowire probes,” Nano Lett. 19, 100–107 (2018).
[Crossref]

Nanoscale (1)

A. G. Milekhin, M. Rahaman, E. E. Rodyakina, A. V. Latyshev, V. M. Dzhagan, and D. R. T. Zahn, “Giant gap-plasmon tip-enhanced Raman scattering of MoS2 monolayers on Au nanocluster arrays,” Nanoscale 10, 2755–2763 (2018).
[Crossref]

Nanotechnology (1)

H. Sebastian, C. Nick, and V. Aravind, “Probing hotspots of plasmon-enhanced Raman scattering by nanomanipulation of carbon nanotubes,” Nanotechnology 29, 465710 (2018).
[Crossref]

Nat. Commun. (2)

W. Su, N. Kumar, A. Krayev, and M. Chaigneau, “In situ topographical chemical and electrical imaging of carboxyl graphene oxide at the nanoscale,” Nat. Commun. 9, 2891 (2018).
[Crossref]

C. Min, Z. Shen, J. Shen, Y. Zhang, H. Fang, G. Yuan, L. Du, S. Zhu, T. Lei, and X. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Nature (2)

R. Zhang, Y. Zhang, Z. C. Dong, S. Jiang, C. Zhang, L. G. Chen, L. Zhang, Y. Liao, J. Aizpurua, Y. Luo, J. L. Yang, and J. G. Hou, “Chemical mapping of a single molecule by plasmon-enhanced Raman scattering,” Nature 498, 82–86 (2013).
[Crossref]

J. Lee, K. T. Crampton, N. Tallarida, and V. A. Apkarian, “Visualizing vibrational normal modes of a single molecule with atomically confined light,” Nature 568, 78–82 (2019).
[Crossref]

Opt. Express (3)

Optik (1)

Y. Zhang, L. Cao, H. Chen, Y. Dai, Z. Man, G. Li, C. Min, H. P. Urbach, and X. Yuan, “Enhancement effect of Au claddings in tip enhanced Raman spectroscopy,” Optik 199, 163326 (2019).
[Crossref]

Photon. Res. (3)

Rev. Mod. Phys. (1)

M. Moskovits, “Surface-enhanced spectroscopy,” Rev. Mod. Phys. 57, 783–826 (1985).
[Crossref]

Sci. Rep. (1)

M. Wiesner, R. H. Roberts, J.-F. Lin, D. Akinwande, T. Hesjedal, L. B. Duffy, S. Wang, Y. Song, J. Jenczyk, S. Jurga, and B. Mroz, “The effect of substrate and surface plasmons on symmetry breaking at the substrate interface of the topological insulator Bi2Te3,” Sci. Rep. 9, 6147 (2019).
[Crossref]

Other (1)

X. M. Lin, T. Deckertgaudig, P. Singh, M. Siegmann, S. Kupfer, Z. Zhang, S. Gräfe, and V. Deckert, “Direct base-to-base transitions in ssDNA revealed by tip-enhanced Raman scattering,” arXiv:1604.06598 (2016).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Schematic of the TERS system. 4-Q PD, 4-quadrant photodiode; WPV, zero-order vortex half-wave retarder plate; BS, beam splitter. (b) Schematic of the virtual SP probe-excited TERS on a gold film. RP beam indicates the radially polarized incident beam.
Fig. 2.
Fig. 2. Numerical calculation of the electric field normalized to the traditional tightly focused electric field. (a) Schematic of the tip on glass. (b) Calculated electric field |E|2 distribution of the gold-coated tip apex on glass substrate excited by a tightly focused radially polarized 632.8 nm laser. (c) Profiles of the electric field |E|2 along the line through the center plane of the gap volume. (d) Schematic of the tip on gold film. (e) Calculated electric field |E|2 distribution of the gold-coated tip apex on gold film. (f) Profiles of the electric field |E|2 with different gold coating thicknesses. The yellow dashed lines denote the surface of the substrate and the tip apex. Axes units in (b) and (e): nm.
Fig. 3.
Fig. 3. (a) SEM image of the gold-coated AFM tip with a thickness of 60 nm; (b) Raman spectra of self-assembled 4-MBA layer measured when the tip was in the engaged mode (red curve) and withdrawn (black curve) mode; (c) spectral measurements on glass substrate with (red curve) and without (black curve) the metallic tip; incident laser, 632.8 nm, 1.8  mW; integration time, 1 s.
Fig. 4.
Fig. 4. (a) AFM image of SWCNT bundles deposited on the gold film; (b) height profile along the white dashed line in (a); (c) TERS signal along the dashed line in (a) at the Raman peak of the G-band at 1590  cm1; (d) Raman spectra at positions A and B denoted in (a); laser power, 1.8  mW; integration time, 1 s.
Fig. 5.
Fig. 5. (a) AFM image of SWCNT bundles deposited on the gold film; (b) TERS imaging at the Raman peak of 1590  cm1 according to the white dashed region in (a); laser power, 1.8  mW; integration time, 1 s.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

EF=(ILSPISPISP)SSPSLSP,