Abstract

Heterogeneously integrated lasers in the O-band are a key component in realizing low-power optical interconnects for data centers and high-performance computing. Quantum-dot-based materials have been particularly appealing for light generation due to their ultralow lasing thresholds, small linewidth enhancement factor, and low sensitivity to reflections. Here, we present widely tunable quantum-dot lasers heterogeneously integrated on silicon-on-insulator substrate. The tuning mechanism is based on Vernier dual-ring geometry, and a 47 nm tuning range with 52 dB side-mode suppression ratio is observed. These parameters show an increase to 52 nm and 58 dB, respectively, when an additional wavelength filter in the form of a Mach–Zehnder interferometer is added to the cavity. The Lorentzian linewidth of the lasers is measured as low as 5.3 kHz.

© 2020 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Integrated dispersion compensated mode-locked quantum dot laser

Zeyu Zhang, Justin C. Norman, Songtao Liu, Aditya Malik, and John E. Bowers
Photon. Res. 8(9) 1428-1434 (2020)

Unidirectional, widely-tunable and narrow-linewidth heterogeneously integrated III-V-on-silicon laser

Jing Zhang, Yanlu Li, Sören Dhoore, Geert Morthier, and Gunther Roelkens
Opt. Express 25(6) 7092-7100 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
    [Crossref]
  2. M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.
  3. D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
    [Crossref]
  4. J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
    [Crossref]
  5. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  6. A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
    [Crossref]
  7. B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
    [Crossref]
  8. J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
    [Crossref]
  9. D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
    [Crossref]
  10. Y. Han, Z. Yan, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Bufferless 1.5  μm III–V lasers grown on Si-photonics 220  nm silicon-on-insulator platforms,” Optica 7, 148–153 (2020).
    [Crossref]
  11. J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.
  12. D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
    [Crossref]
  13. Y. Fan, A. van Rees, P. J. M. van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. H. Roeloffzen, and K.-J. Boller, “Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth,” Opt. Express 28, 21713–21728 (2020).
    [Crossref]
  14. C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration,” Optica 7, 20–21 (2020).
    [Crossref]
  15. T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
    [Crossref]
  16. Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
    [Crossref]
  17. Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
    [Crossref]
  18. Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
    [Crossref]
  19. S. Uvin, S. Kumari, A. D. Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. V. Campenhout, G. Morthier, D. V. Thourhout, and G. Roelkens, “1.3  μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
    [Crossref]
  20. G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.
  21. H. Duprez, C. Jany, C. Seassal, and B. B. Bakir, “Highly tunable heterogeneously integrated III–V on silicon sampled-grating distributed Bragg reflector lasers operating in the O-band,” Opt. Express 24, 20895–20903 (2016).
    [Crossref]
  22. Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
    [Crossref]
  23. M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
    [Crossref]
  24. R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0  μm widely tunable external cavity lasers,” Opt. Express 24, 28977–28986 (2016).
    [Crossref]
  25. B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, Z. Huang, A. Beling, J. C. Campbell, D. Liang, and R. G. Beausoleil, “Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon,” Optica 6, 1277–1281 (2019).
    [Crossref]
  26. M. L. Davenport, M. A. Tran, T. Komljenovic, and J. E. Bowers, “Chapter six–Heterogeneous integration of III–V lasers on Si by bonding,” in Silicon Photonics, S. Lourdudoss, R. T. Chen, and C. Jagadish, eds., vol. 99 of Semiconductors and Semimetals (Elsevier, 2018), pp. 139–188.
  27. G. Kurczveil, D. Liang, M. Fiorentino, and R. G. Beausoleil, “Robust hybrid quantum dot laser for integrated silicon photonics,” Opt. Express 24, 16167–16174 (2016).
    [Crossref]
  28. B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
    [Crossref]
  29. E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
    [Crossref]
  30. M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
    [Crossref]
  31. M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration,” APL Photon. 4, 111101 (2019).
    [Crossref]
  32. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
    [Crossref]
  33. W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
    [Crossref]
  34. B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, and F. Grillot, “Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection,” Opt. Lett. 44, 5755–5758 (2019).
    [Crossref]
  35. D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
    [Crossref]
  36. M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
    [Crossref]

2020 (6)

Y. Han, Z. Yan, W. K. Ng, Y. Xue, K. S. Wong, and K. M. Lau, “Bufferless 1.5  μm III–V lasers grown on Si-photonics 220  nm silicon-on-insulator platforms,” Optica 7, 148–153 (2020).
[Crossref]

Y. Fan, A. van Rees, P. J. M. van der Slot, J. Mak, R. M. Oldenbeuving, M. Hoekman, D. Geskus, C. G. H. Roeloffzen, and K.-J. Boller, “Hybrid integrated InP-Si3N4 diode laser with a 40-Hz intrinsic linewidth,” Opt. Express 28, 21713–21728 (2020).
[Crossref]

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration,” Optica 7, 20–21 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
[Crossref]

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

2019 (9)

B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, and F. Grillot, “Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection,” Opt. Lett. 44, 5755–5758 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration,” APL Photon. 4, 111101 (2019).
[Crossref]

B. Tossoun, G. Kurczveil, C. Zhang, A. Descos, Z. Huang, A. Beling, J. C. Campbell, D. Liang, and R. G. Beausoleil, “Indium arsenide quantum dot waveguide photodiodes heterogeneously integrated on silicon,” Optica 6, 1277–1281 (2019).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

2018 (5)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Uvin, S. Kumari, A. D. Groote, S. Verstuyft, G. Lepage, P. Verheyen, J. V. Campenhout, G. Morthier, D. V. Thourhout, and G. Roelkens, “1.3  μm InAs/GaAs quantum dot DFB laser integrated on a Si waveguide circuit by means of adhesive die-to-wafer bonding,” Opt. Express 26, 18302–18309 (2018).
[Crossref]

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

2017 (2)

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

2016 (4)

2015 (1)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

2011 (1)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

2009 (1)

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

2006 (2)

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

1987 (1)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

Absil, P.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Akulova, Y.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

Baier, M.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Bakir, B. B.

Beausoleil, R. G.

Beling, A.

Bimberg, D.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Blumenthal, D. J.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Boller, K.-J.

Bowers, J.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Bowers, J. E.

C. Xiang, W. Jin, J. Guo, J. D. Peters, M. J. Kennedy, J. Selvidge, P. A. Morton, and J. E. Bowers, “Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration,” Optica 7, 20–21 (2020).
[Crossref]

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration,” APL Photon. 4, 111101 (2019).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

M. L. Davenport, M. A. Tran, T. Komljenovic, and J. E. Bowers, “Chapter six–Heterogeneous integration of III–V lasers on Si by bonding,” in Silicon Photonics, S. Lourdudoss, R. T. Chen, and C. Jagadish, eds., vol. 99 of Semiconductors and Semimetals (Elsevier, 2018), pp. 139–188.

Buus, J.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

Campbell, J. C.

Campenhout, J. V.

Cataluna, M. A.

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

Chang, L.

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

Chen, S.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Childs, D. T. D.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Chow, W. W.

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Davenport, M.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Davenport, M. L.

M. L. Davenport, M. A. Tran, T. Komljenovic, and J. E. Bowers, “Chapter six–Heterogeneous integration of III–V lasers on Si by bonding,” in Silicon Photonics, S. Lourdudoss, R. T. Chen, and C. Jagadish, eds., vol. 99 of Semiconductors and Semimetals (Elsevier, 2018), pp. 139–188.

Descos, A.

Dong, B.

B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, and F. Grillot, “Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection,” Opt. Lett. 44, 5755–5758 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Doussiere, P.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

Driscoll, J. B.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

Duan, J.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, and F. Grillot, “Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection,” Opt. Lett. 44, 5755–5758 (2019).
[Crossref]

Duprez, H.

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Fahrenkopf, N. M.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Fan, Y.

Fiorentino, M.

Fish, G.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Geskus, D.

Geuzebroek, D.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Gladhill, R.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Gossard, A. C.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Grillot, F.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, and F. Grillot, “Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection,” Opt. Lett. 44, 5755–5758 (2019).
[Crossref]

Groote, A. D.

Guo, J.

Han, Y.

He, J.-J.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

He, W.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

Heck, J.

G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.

Heideman, R.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Herrick, R.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Herrick, R. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Hoefler, G.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Hoekman, M.

Hogg, R. A.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Huang, D.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration,” APL Photon. 4, 111101 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

Huang, H.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

B. Dong, H. Huang, J. Duan, G. Kurczveil, D. Liang, R. G. Beausoleil, and F. Grillot, “Frequency comb dynamics of a 1.3 μm hybrid-silicon quantum dot semiconductor laser with optical injection,” Opt. Lett. 44, 5755–5758 (2019).
[Crossref]

Huang, X.

Huang, Z.

Jan, C.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Jany, C.

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jin, W.

Jones, R.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

Jung, D.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Kennedy, M.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Kennedy, M. J.

Kish, F.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Komljenovic, T.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

M. L. Davenport, M. A. Tran, T. Komljenovic, and J. E. Bowers, “Chapter six–Heterogeneous integration of III–V lasers on Si by bonding,” in Silicon Photonics, S. Lourdudoss, R. T. Chen, and C. Jagadish, eds., vol. 99 of Semiconductors and Semimetals (Elsevier, 2018), pp. 139–188.

Kovsh, A. R.

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

Kumari, S.

Kurczveil, G.

Lau, K. M.

Lee, M. L.

Leinse, A.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Lepage, G.

Li, W.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liang, D.

Liao, M.

Liehr, M.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Lin, W.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

Liu, A. Y.

Liu, H.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liu, L.

Liu, S.

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Liu, Z.

Livshits, D. A.

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

Mak, J.

Malik, A.

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

R. Wang, A. Malik, I. Šimonytė, A. Vizbaras, K. Vizbaras, and G. Roelkens, “Compact GaSb/silicon-on-insulator 2.0  μm widely tunable external cavity lasers,” Opt. Express 24, 28977–28986 (2016).
[Crossref]

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

McRobbie, A. D.

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

Merckling, C.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Morthier, G.

Morton, P. A.

Netherton, A.

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

Ng, W. K.

Norberg, E.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Norman, J.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

A. Y. Liu, J. Peters, X. Huang, D. Jung, J. Norman, M. L. Lee, A. C. Gossard, and J. E. Bowers, “Electrically pumped continuous-wave 1.3  μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si,” Opt. Lett. 42, 338–341 (2017).
[Crossref]

Norman, J. C.

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

O’Brien, P.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

O’Faolain, L.

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

Oldenbeuving, R. M.

Osinski, M.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

Pantouvaki, M.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Patel, P.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Peters, J.

Peters, J. D.

Pohl, U. W.

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Rafailov, E. U.

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

Roelkens, G.

Roeloffzen, C.

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Roeloffzen, C. G. H.

Rong, H.

G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.

Ross, I.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sakib, M. N.

G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.

Seassal, C.

Seeds, A. J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Selvidge, J.

Shahid, H.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Shang, C.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Shutts, S.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sibbett, W.

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

Šimonyte, I.

Smowton, P. M.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Srinivasan, S.

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Stevens, B. J.

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

Su, G.-L.

G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.

Su, Z.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Tang, M.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Thourhout, D. V.

Tian, B.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Timurdogan, E.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

Tong, Y.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Tossoun, B.

Tran, M.

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

Tran, M. A.

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
[Crossref]

D. Huang, M. A. Tran, J. Guo, J. Peters, T. Komljenovic, A. Malik, P. A. Morton, and J. E. Bowers, “High-power sub-kHz linewidth lasers fully integrated on silicon,” Optica 6, 745–752 (2019).
[Crossref]

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration,” APL Photon. 4, 111101 (2019).
[Crossref]

M. L. Davenport, M. A. Tran, T. Komljenovic, and J. E. Bowers, “Chapter six–Heterogeneous integration of III–V lasers on Si by bonding,” in Silicon Photonics, S. Lourdudoss, R. T. Chen, and C. Jagadish, eds., vol. 99 of Semiconductors and Semimetals (Elsevier, 2018), pp. 139–188.

Tsang, H. K.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Turnlund, K.

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Uvin, S.

Van Campenhout, J.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

van der Slot, P. J. M.

van Rees, A.

Van Thourhout, D.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Verheyen, P.

Verstuyft, S.

Vizbaras, A.

Vizbaras, K.

Wan, Y.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Wang, R.

Wang, Y.

Wang, Z.

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Weimert, J.

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

Wong, K. S.

Wu, J.

Y. Wang, S. Chen, Y. Yu, L. Zhou, L. Liu, C. Yang, M. Liao, M. Tang, Z. Liu, J. Wu, W. Li, I. Ross, A. J. Seeds, H. Liu, and S. Yu, “Monolithic quantum-dot distributed feedback laser array on silicon,” Optica 5, 528–533 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Wu, M. C.

G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.

Xiang, C.

Xie, W.

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

Xue, Y.

Yan, Z.

Yang, C.

Yu, H.

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

Yu, S.

Yu, Y.

Zhang, C.

Zhang, S.

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Y. Wan, S. Zhang, J. C. Norman, M. J. Kennedy, W. He, S. Liu, C. Xiang, C. Shang, J.-J. He, A. C. Gossard, and J. E. Bowers, “Tunable quantum dot lasers grown directly on silicon,” Optica 6, 1394–1400 (2019).
[Crossref]

Zhang, Z.

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

Zhou, L.

ACS Photon. (1)

D. Jung, Z. Zhang, J. Norman, R. Herrick, M. J. Kennedy, P. Patel, K. Turnlund, C. Jan, Y. Wan, A. C. Gossard, and J. E. Bowers, “Highly reliable low-threshold InAs quantum dot lasers on on-axis (001) Si with 87% injection efficiency,” ACS Photon. 5, 1094–1100 (2018).
[Crossref]

APL Photon. (2)

M. A. Tran, D. Huang, and J. E. Bowers, “Tutorial on narrow linewidth tunable semiconductor lasers using Si/III–V heterogeneous integration,” APL Photon. 4, 111101 (2019).
[Crossref]

W. W. Chow, Z. Zhang, J. C. Norman, S. Liu, and J. E. Bowers, “On quantum-dot lasing at gain peak with linewidth enhancement factor αH = 0,” APL Photon. 5, 026101 (2020).
[Crossref]

Appl. Phys. Lett. (3)

B. J. Stevens, D. T. D. Childs, H. Shahid, and R. A. Hogg, “Direct modulation of excited state quantum dot lasers,” Appl. Phys. Lett. 95, 061101 (2009).
[Crossref]

E. U. Rafailov, A. D. McRobbie, M. A. Cataluna, L. O’Faolain, W. Sibbett, and D. A. Livshits, “Investigation of transition dynamics in a quantum-dot laser optically pumped by femtosecond pulses,” Appl. Phys. Lett. 88, 041101 (2006).
[Crossref]

M. A. Cataluna, W. Sibbett, D. A. Livshits, J. Weimert, A. R. Kovsh, and E. U. Rafailov, “Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser,” Appl. Phys. Lett. 89, 081124 (2006).
[Crossref]

Appl. Sci. (1)

M. Tran, D. Huang, T. Komljenovic, J. Peters, A. Malik, and J. Bowers, “Ultra-low-loss silicon waveguides for heterogeneously integrated silicon/III-V photonics,” Appl. Sci. 8, 1139 (2018).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers-an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (3)

T. Komljenovic, S. Srinivasan, E. Norberg, M. Davenport, G. Fish, and J. E. Bowers, “Widely tunable narrow-linewidth monolithically integrated external-cavity semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 21, 214–222 (2015).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, W. W. Chow, and J. E. Bowers, “Linewidth enhancement factor in InAs/GaAs quantum dot lasers and its implication in isolator-free and narrow linewidth applications,” IEEE J. Sel. Top. Quantum Electron. 25, 1900509 (2019).
[Crossref]

M. A. Tran, D. Huang, J. Guo, T. Komljenovic, P. A. Morton, and J. E. Bowers, “Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers,” IEEE J. Sel. Top. Quantum Electron. 26, 1500514 (2020).
[Crossref]

IEEE Nanotechnol. Mag. (1)

R. Jones, P. Doussiere, J. B. Driscoll, W. Lin, H. Yu, Y. Akulova, T. Komljenovic, and J. E. Bowers, “Heterogeneously integrated InP/silicon photonics: fabricating fully functional transceivers,” IEEE Nanotechnol. Mag. 13, 17–26 (2019).
[Crossref]

IEEE Photon. Technol. Lett. (1)

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3  μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Laser Photon. Rev. (1)

Y. Wan, S. Zhang, J. C. Norman, M. Kennedy, W. He, Y. Tong, C. Shang, J.-J. He, H. K. Tsang, A. C. Gossard, and J. E. Bowers, “Directly modulated single-mode tunable quantum dot lasers at 1.3  μm,” Laser Photon. Rev. 14, 1900348 (2020).
[Crossref]

Mater. Today (1)

D. Bimberg and U. W. Pohl, “Quantum dots: promises and accomplishments,” Mater. Today 14, 388–397 (2011).
[Crossref]

Nano Lett. (1)

B. Tian, Z. Wang, M. Pantouvaki, P. Absil, J. Van Campenhout, C. Merckling, and D. Van Thourhout, “Room temperature O-band DFB laser array directly grown on (001) silicon,” Nano Lett. 17, 559–564 (2017).
[Crossref]

Nat. Photonics (1)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Opt. Express (5)

Opt. Lett. (2)

Optica (6)

Proc. IEEE (1)

D. J. Blumenthal, R. Heideman, D. Geuzebroek, A. Leinse, and C. Roeloffzen, “Silicon nitride in silicon photonics,” Proc. IEEE 106, 2209–2231 (2018).
[Crossref]

Other (4)

G.-L. Su, M. N. Sakib, J. Heck, H. Rong, and M. C. Wu, “A heterogeneously-integrated III–V/silicon interferometric widely tunable laser,” in OSA Advanced Photonics Congress (AP) 2019 (IPR, Networks, NOMA, SPPCom, PVLED) (Optical Society of America, 2019), paper IW3A.1.

J. E. Bowers, L. Chang, D. Huang, A. Malik, A. Netherton, M. Tran, W. Xie, and C. Xiang, “Terabit transmitters using heterogeneous III–V/Si photonic integrated circuits,” in Optical Fiber Communication Conference (OFC) (Optical Society of America, 2020), paper W3F.1.

M. Liehr, M. Baier, G. Hoefler, N. M. Fahrenkopf, J. Bowers, R. Gladhill, P. O’Brien, E. Timurdogan, Z. Su, and F. Kish, “Chapter 4–Foundry capabilities for photonic integrated circuits,” in Optical Fiber Telecommunications VII, A. E. Willner, ed. (Academic, 2020), pp. 143–193.

M. L. Davenport, M. A. Tran, T. Komljenovic, and J. E. Bowers, “Chapter six–Heterogeneous integration of III–V lasers on Si by bonding,” in Silicon Photonics, S. Lourdudoss, R. T. Chen, and C. Jagadish, eds., vol. 99 of Semiconductors and Semimetals (Elsevier, 2018), pp. 139–188.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic diagram of (a) two-ring Vernier and (b) two-ring Vernier with MZI tunable laser. Electrical contacts are shown in gold.
Fig. 2.
Fig. 2. (a) LIV characteristics of the Vernier ring laser when both rings are unbiased. (b) Spectral characteristics showing ring mode hops and cavity mode hops. (c) OSA trace at 290 mA drive current (curve has been truncated in the middle) showing both ground state and excited state lasing can be observed. (d) LIV characteristics of the Vernier ring laser when ring one is unbiased and ring two has 45.8 mW electrical power applied. (e) Spectral characteristics showing only cavity mode hops. (f) OSA trace at 290 mA drive current showing only ground-state lasing.
Fig. 3.
Fig. 3. (a) LIV characteristics of the Vernier ring MZI laser. (b) Spectral characteristics showing cavity mode hops.
Fig. 4.
Fig. 4. Lasing wavelength as a function of the applied heater power for (a) the first ring and (b) the second ring.
Fig. 5.
Fig. 5. Tuning map of the Vernier ring laser showing (a) peak wavelength and (b) SMSR.
Fig. 6.
Fig. 6. Vernier ring laser: (a) automatically measured spectra over the entire tuning range and (b) manually optimized spectrum at a single point showing 52 dB SMSR.
Fig. 7.
Fig. 7. Vernier ring MZI laser: (a) automatically measured spectra over the entire tuning range and (b) manually optimized spectrum at a single point showing 58 dB SMSR.
Fig. 8.
Fig. 8. (a) Coefficients A, B, F calculated for the Vernier ring laser cavity as functions of detuning from the ring resonance peak with αH=2. (b) Estimated Lorentzian linewidth as a function of linewidth enhancement factor. A waveguide loss of 5 dB/cm and an output power of 10 mW were used in the calculation.
Fig. 9.
Fig. 9. Measured Lorentzian linewidth as a function of wavelength for (a) Vernier ring laser and (b) Vernier ring MZI laser.
Fig. 10.
Fig. 10. Measured frequency noise of the Vernier ring MZI laser in logarithmic scale over complete frequency range.

Tables (1)

Tables Icon

Table 1. Comparison of O-Band Single Wavelength Lasers on Silicon

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Δν=ΔνST(1+αH2),
Δν=ΔνST1+αH2F2,
F=1+A+B.
A=1τ0dϕeff(ω)dω,B=αHτ0dln|reff(ω)|dω,