Abstract

We demonstrate a squeezing experiment exploiting the association of integrated optics and telecom technology as key features for compact, stable, and practical continuous variable quantum optics. In our setup, squeezed light is generated by single-pass spontaneous parametric down conversion on a lithium niobate photonic circuit and detected by a homodyne detector whose interferometric part is directly integrated on the same platform. The remaining parts of the experiment are implemented using commercial plug-and-play devices based on guided-wave technologies. We measure, for a CW pump power of 40 mW, a squeezing level of 2.00±0.05  dB(anti-squeezing 2.80±0.05  dB), thus confirming the validity of our approach and opening the way toward miniaturized and easy-to-handle continuous variable-based quantum systems.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
A fully guided-wave squeezing experiment for fiber quantum networks

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli
Optica 3(4) 362-365 (2016)

Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup

Carmen Porto, Davide Rusca, Simone Cialdi, Andrea Crespi, Roberto Osellame, Dario Tamascelli, Stefano Olivares, and Matteo G. A. Paris
J. Opt. Soc. Am. B 35(7) 1596-1602 (2018)

Creation and measurement of broadband squeezed vacuum from a ring optical parametric oscillator

Takahiro Serikawa, Jun-ichi Yoshikawa, Kenzo Makino, and Akira Frusawa
Opt. Express 24(25) 28383-28391 (2016)

References

  • View by:
  • |
  • |
  • |

  1. A. I. Lvovsky, Squeezed Light, Photonics Volume 1: Fundamentals of Photonics and Physics, D. Andrews, ed. (Wiley, 2015), pp. 121–163.
  2. U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337–354 (2010).
    [Crossref]
  3. N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
    [Crossref]
  4. T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
    [Crossref]
  5. C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
    [Crossref]
  6. M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
    [Crossref]
  7. R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
    [Crossref]
  8. U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
    [Crossref]
  9. A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).
    [Crossref]
  10. A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
    [Crossref]
  11. D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
    [Crossref]
  12. A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
    [Crossref]
  13. O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
    [Crossref]
  14. M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550  nm with a quantum noise reduction of 12.3  dB,” Opt. Express 19, 25763–25772 (2011).
    [Crossref]
  15. J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
    [Crossref]
  16. G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
    [Crossref]
  17. K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
    [Crossref]
  18. Y. Eto, T. Tajima, Y. Zhang, and T. Hirano, “Observation of quadrature squeezing in a χ(2) nonlinear waveguide using a temporally shaped local oscillator pulse,” Opt. Express 16, 10650–10657 (2008).
    [Crossref]
  19. A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
    [Crossref]
  20. M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
    [Crossref]
  21. C. Porto, D. Rusca, S. Cialdi, A. Crespi, R. Osellame, D. Tamascelli, S. Olivares, and M. G. A. Paris, “Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup,” J. Opt. Soc. Am. B 35, 1596–1602 (2018).
    [Crossref]
  22. F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
    [Crossref]
  23. F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
    [Crossref]
  24. O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
    [Crossref]
  25. F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
    [Crossref]
  26. F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
    [Crossref]
  27. T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
    [Crossref]
  28. D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
    [Crossref]
  29. L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
    [Crossref]
  30. A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
    [Crossref]
  31. A. Hellwig, “Nonlinear optical and photorefractive properties of periodically poled channel waveguides in lithium niobate,” Ph.D. thesis (Universitat Paderborn, 2011).
  32. L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
    [Crossref]
  33. M. Pysher, R. Bloomer, C. M. Kaleva, T. D. Roberts, P. Battle, and O. Pfister, “Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide,” Opt. Lett. 34, 256–258 (2009).
    [Crossref]
  34. D. Barral, M. G. Thompson, and J. Linares, “Detection of two-mode spatial quantum states of light by electro-optic integrated directional couplers,” J. Opt. Soc. Am. B 32, 1165–1173 (2015).
    [Crossref]
  35. D. E. Zelmon, D. L. Small, and D. Jundt, “Infrared corrected Sellmeier coefficients for congruently grown lithium niobate and 5  mol.% magnesium oxide-doped lithium niobate,” J. Opt. Soc. Am. B 14, 3319–3322 (1997).
    [Crossref]
  36. J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
    [Crossref]

2018 (4)

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

C. Porto, D. Rusca, S. Cialdi, A. Crespi, R. Osellame, D. Tamascelli, S. Olivares, and M. G. A. Paris, “Detection of squeezed light with glass-integrated technology embedded into a homodyne detector setup,” J. Opt. Soc. Am. B 35, 1596–1602 (2018).
[Crossref]

2017 (4)

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
[Crossref]

2016 (3)

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
[Crossref]

2015 (4)

D. Barral, M. G. Thompson, and J. Linares, “Detection of two-mode spatial quantum states of light by electro-optic integrated directional couplers,” J. Opt. Soc. Am. B 32, 1165–1173 (2015).
[Crossref]

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

2014 (1)

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

2013 (2)

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

2012 (1)

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

2011 (2)

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550  nm with a quantum noise reduction of 12.3  dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

2010 (2)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337–354 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (4)

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
[Crossref]

2006 (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref]

2000 (1)

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

1997 (1)

1975 (1)

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
[Crossref]

Alibart, O.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

Andersen, U. L.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337–354 (2010).
[Crossref]

Aoki, T.

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Appel, J.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Aschieri, P.

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Asobe, M.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

Ast, S.

Auston, D. H.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
[Crossref]

Baldi, P.

D. Castaldini, P. Bassi, S. Tascu, P. Aschieri, M. P. De Micheli, and P. Baldi, “Soft-proton-exchange tapers for low insertion-loss LiNbO3 devices,” J. Lightwave Technol. 25, 1588–1593 (2007).
[Crossref]

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Bamford, D. J.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Barral, D.

Bassi, P.

Battle, P.

Bloomer, R.

Bonneau, D.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Castaldini, D.

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Chanvillard, L.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Cheng, J.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Cialdi, S.

Crespi, A.

Cui, L.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

D’Auria, V.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

de Araujo, R. M.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

de Micheli, M.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

De Micheli, M. P.

Doutre, F.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Duhme, J.

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

Dutt, A.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Eberle, T.

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550  nm with a quantum noise reduction of 12.3  dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

Eigner, C.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Eto, Y.

Fabre, C.

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

Fedorov, I. A.

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

Fedrici, B.

Ferranti, G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Figueroa, E.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Flammia, S. T.

N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
[Crossref]

Franz, T.

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

Furrer, F.

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

Furusawa, A.

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Gaeta, A. L.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Garcia-Patron, R.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Gehring, T.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Glass, A. M.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
[Crossref]

Grangier, P.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref]

Handchen, V.

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

Hashimoto, T.

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

Haylock, B.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Hellwig, A.

A. Hellwig, “Nonlinear optical and photorefractive properties of periodically poled channel waveguides in lithium niobate,” Ph.D. thesis (Universitat Paderborn, 2011).

Herrmann, H.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Hirano, T.

Hoffman, D.

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Hou, F. Y.

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

Huang, K.

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

Huang, L.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Huntington, E. H.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Huo, M.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Janousek, J.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Jia, X.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Jiaa, X. J.

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

Jiang, S.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

Jundt, D.

Kaiser, F.

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
[Crossref]

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Kaleva, C. M.

Kasture, S.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Kennard, J. E.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Labonté, L.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

Lam, P. K.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Laurat, J.

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref]

Le Jeannic, H.

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

Lenzini, F.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Leuchs, G.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337–354 (2010).
[Crossref]

Linares, J.

Lipson, M.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Liu, J.

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Lobino, M.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Luke, K.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Lunghi, T.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Lvovsky, A. I.

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

A. I. Lvovsky, Squeezed Light, Photonics Volume 1: Fundamentals of Photonics and Physics, D. Andrews, ed. (Wiley, 2015), pp. 121–163.

Mahler, D. H.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Manipatruni, S.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

Marquardt, C.

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Masada, G.

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

Matthews, J. C. F.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Mehmet, M.

Menicucci, N. C.

N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
[Crossref]

Micheli, M. D.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Miyata, K.

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

Morin, O.

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

Negran, T. J.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
[Crossref]

Ngah, L. A.

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

Nussenzveig, P.

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

O’Brien, J. L.

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

Olivares, S.

Osellame, R.

Ostrowsky, D. B.

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Ourjoumtsev, A.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref]

Paris, M. G. A.

Peng, K.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Peng, K. C.

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

Pfister, O.

M. Pysher, R. Bloomer, C. M. Kaleva, T. D. Roberts, P. Battle, and O. Pfister, “Broadband amplitude squeezing in a periodically poled KTiOPO4 waveguide,” Opt. Lett. 34, 256–258 (2009).
[Crossref]

N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
[Crossref]

Phan, H.-P.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Picholle, E.

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Politi, A.

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

Porto, C.

Pushkina, A. A.

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

Pysher, M.

Qin, J.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Qin, Z.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Quiring, V.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Raffaelli, F.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Raymer, M. G.

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).
[Crossref]

Richards, M. W.

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

Ricken, R.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Roberts, T. D.

Roslund, J.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

Rusca, D.

Santamato, A.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Schnabel, R.

R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
[Crossref]

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

M. Mehmet, S. Ast, T. Eberle, S. Steinlechner, H. Vahlbruch, and R. Schnabel, “Squeezed light at 1550  nm with a quantum noise reduction of 12.3  dB,” Opt. Express 19, 25763–25772 (2011).
[Crossref]

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Sibson, P.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Silberhorn, C.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337–354 (2010).
[Crossref]

Sinclair, G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Small, D. L.

Stefszky, M.

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Steinlechner, S.

Su, X.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Sychev, D.

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

Sychev, D. V.

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

Tadanaga, O.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

Tajima, T.

Tamascelli, D.

Tanzilli, S.

F. Kaiser, B. Fedrici, A. Zavatta, V. D’Auria, and S. Tanzilli, “A fully guided-wave squeezing experiment for fiber quantum networks,” Optica 3, 362–365 (2016).
[Crossref]

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

Tascu, S.

Thearle, O.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Thompson, M. G.

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

D. Barral, M. G. Thompson, and J. Linares, “Detection of two-mode spatial quantum states of light by electro-optic integrated directional couplers,” J. Opt. Soc. Am. B 32, 1165–1173 (2015).
[Crossref]

Treps, N.

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

Tualle-Brouri, R.

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref]

Ulanov, A. E.

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

Umeki, T.

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

Vahlbruch, H.

Viet Dao, D.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Villa, M.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

von der Linde, D.

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
[Crossref]

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Werner, R. F.

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

Xie, C.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Xie, C. D.

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

Yan, Z.

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

Yonezawa, H.

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Yoshino, K.

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Yu, L.

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

Zaidi, H.

N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
[Crossref]

Zavatta, A.

Zelmon, D. E.

Zhang, Y.

Zheng, Y. H.

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

App. Phys. Lett. (1)

L. Chanvillard, P. Aschieri, P. Baldi, D. B. Ostrowsky, M. de Micheli, L. Huang, and D. J. Bamford, “Soft proton exchange on periodically poled LiNbO3: a simple waveguide fabrication process for highly efficient nonlinear interactions,” App. Phys. Lett. 76, 1089–1091 (2000).
[Crossref]

Appl. Phys. Lett. (1)

K. Yoshino, T. Aoki, and A. Furusawa, “Generation of continuous-wave broadband entangled beams using periodically poled lithium niobate waveguides,” Appl. Phys. Lett. 90, 041111 (2007).
[Crossref]

Eur. Phys. J. D (1)

F. Y. Hou, L. Yu, X. J. Jiaa, Y. H. Zheng, C. D. Xie, and K. C. Peng, “Experimental generation of optical non-classical states of light with 1.34  μm wavelength,” Eur. Phys. J. D 62, 433–437 (2011).
[Crossref]

IEEE J. Quantum Electron. (1)

T. Umeki, O. Tadanaga, and M. Asobe, “Highly efficient wavelength converter using direct-bonded PPZnLN ridge waveguide,” IEEE J. Quantum Electron. 46, 1206–1213 (2010).
[Crossref]

J. Electron. Mater. (1)

A. M. Glass, D. von der Linde, D. H. Auston, and T. J. Negran, “Excited state polarization, bulk photovoltaic effect and the photorefractive effect in electrically polarized media,” J. Electron. Mater. 4, 915–943 (1975).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

O. Alibart, V. D’Auria, M. D. Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, E. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

J. Opt. Soc. Am. B (3)

Laser Photon. Rev. (2)

L. A. Ngah, O. Alibart, L. Labonté, V. D’Auria, and S. Tanzilli, “Ultra-fast heralded single photon source based on telecom technology,” Laser Photon. Rev. 9, L1–L5 (2015).
[Crossref]

U. L. Andersen, G. Leuchs, and C. Silberhorn, “Continuous-variable quantum information processing,” Laser Photon. Rev. 4, 337–354 (2010).
[Crossref]

Nat. Photonics (4)

D. V. Sychev, A. E. Ulanov, A. A. Pushkina, M. W. Richards, I. A. Fedorov, and A. I. Lvovsky, “Enlargement of optical Schrödinger’s cat states,” Nat. Photonics 11, 379–382 (2017).
[Crossref]

O. Morin, K. Huang, J. Liu, H. Le Jeannic, C. Fabre, and J. Laurat, “Remote creation of hybrid entanglement between particle-like and wave-like optical qubits,” Nat. Photonics 8, 570–574 (2014).
[Crossref]

J. Roslund, R. M. de Araujo, S. Jiang, C. Fabre, and N. Treps, “Wavelength-multiplexed quantum networks with ultrafast frequency combs,” Nat. Photonics 8, 109–112 (2013).
[Crossref]

G. Masada, K. Miyata, A. Politi, T. Hashimoto, J. L. O’Brien, and A. Furusawa, “Continuous-variable entanglement on a chip,” Nat. Photonics 9, 316–319 (2015).
[Crossref]

New J. Phys. (1)

T. Eberle, V. Handchen, J. Duhme, T. Franz, F. Furrer, R. Schnabel, and R. F. Werner, “Gaussian entanglement for quantum key distribution from a single-mode squeezing source,” New J. Phys. 15, 053049 (2013).
[Crossref]

Opt. Express (2)

Opt. Lett. (1)

Optica (1)

Phys. Rep. (1)

R. Schnabel, “Squeezed states of light and their applications in laser interferometers,” Phys. Rep. 684, 1–51 (2017).
[Crossref]

Phys. Rev. A (2)

N. C. Menicucci, S. T. Flammia, H. Zaidi, and O. Pfister, “Ultracompact generation of continuous-variable cluster states,” Phys. Rev. A 76, 010302(R) (2007).
[Crossref]

J. Appel, D. Hoffman, E. Figueroa, and A. I. Lvovsky, “Electronic noise in optical homodyne tomography,” Phys. Rev. A 75, 035802 (2007).
[Crossref]

Phys. Rev. Appl. (2)

A. Dutt, K. Luke, S. Manipatruni, A. L. Gaeta, P. Nussenzveig, and M. Lipson, “On-chip optical squeezing,” Phys. Rev. Appl. 3, 044005 (2015).
[Crossref]

M. Stefszky, R. Ricken, C. Eigner, V. Quiring, H. Herrmann, and C. Silberhorn, “Waveguide cavity resonator as a source of optical squeezing,” Phys. Rev. Appl. 7, 044026 (2017).
[Crossref]

Phys. Rev. Lett. (1)

A. E. Ulanov, D. Sychev, A. A. Pushkina, I. A. Fedorov, and A. I. Lvovsky, “Quantum teleportation between discrete and continuous encodings of an optical qubit,” Phys. Rev. Lett. 118, 160501 (2017).
[Crossref]

Phys. Scr. (1)

U. L. Andersen, T. Gehring, C. Marquardt, and G. Leuchs, “30 years of squeezed light generation,” Phys. Scr. 91, 053001 (2016).
[Crossref]

Quantum Sci. Technol. (1)

F. Raffaelli, G. Ferranti, D. H. Mahler, P. Sibson, J. E. Kennard, A. Santamato, G. Sinclair, D. Bonneau, M. G. Thompson, and J. C. F. Matthews, “A homodyne detector integrated onto a photonic chip for measuring quantum states and generating random numbers,” Quantum Sci. Technol. 3, 025003 (2018).
[Crossref]

Rev. Mod. Phys. (2)

A. I. Lvovsky and M. G. Raymer, “Continuous-variable optical quantum-state tomography,” Rev. Mod. Phys. 81, 299–332 (2009).
[Crossref]

C. Weedbrook, S. Pirandola, R. Garcia-Patron, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Sci. Adv. (2)

M. Huo, J. Qin, J. Cheng, Z. Yan, Z. Qin, X. Su, X. Jia, C. Xie, and K. Peng, “Deterministic quantum teleportation through fiber channels,” Sci. Adv. 4, eaas9401 (2018).
[Crossref]

F. Lenzini, J. Janousek, O. Thearle, M. Villa, B. Haylock, S. Kasture, L. Cui, H.-P. Phan, D. Viet Dao, H. Yonezawa, P. K. Lam, E. H. Huntington, and M. Lobino, “Integrated photonic platform for quantum information with continuous variables,” Sci. Adv. 4, eaat9331 (2018).
[Crossref]

Science (1)

A. Ourjoumtsev, R. Tualle-Brouri, J. Laurat, and P. Grangier, “Generating optical Schrödinger kittens for quantum information processing,” Science 312, 83–86 (2006).
[Crossref]

Other (2)

A. I. Lvovsky, Squeezed Light, Photonics Volume 1: Fundamentals of Photonics and Physics, D. Andrews, ed. (Wiley, 2015), pp. 121–163.

A. Hellwig, “Nonlinear optical and photorefractive properties of periodically poled channel waveguides in lithium niobate,” Ph.D. thesis (Universitat Paderborn, 2011).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Experimental setup. A fiber coupled CW telecom laser at 1560.44 nm is amplified (EDFA) and split into two by means of a 65:35 fiber beam splitter (f-BS). The less intense output (upper arm) serves as local oscillator (LO) while the brighter one (lower arm) is frequency doubled via SHG in a PPLN/RW and used to pump an on-chip squeezing generation stage (SPDC). The power of the beam at 780.22 nm is controlled with an in-line fibered attenuator (Pwr Ctrl) and its polarization is adjusted by means of a fiber polarization controller. At the output of the SPDC stage, squeezed light at 1560.44 nm is optically mixed with the LO beam inside the same chip in an integrated directional coupler realizing the interferometric part of the homodyne detector. At the chip output, after passing through a bulk lens followed by an optical filter suppressing residual pump at 780.22 nm, light is sent to two InGaAs photodiodes (PDs). The LO phase is scanned thanks to a home-made fiber-stretcher (ϕLO).
Fig. 2.
Fig. 2. Schematic of our photonic chip on lithium niobate. The chip includes an SPDC stage, consisting in a periodically poled waveguide (3 cm long with poling period Λ=16.3  μm) for squeezing generation at 1560.44 nm, and an integrated directional coupler realizing the interferometric part of the homodyne squeezing detection. The whole chip length is 5 cm. All waveguides are obtained by soft proton exchange [29] and have a width of 6 μm. The 127 μm spacing between the input (output) waveguides is compatible with of-the-shelf fiber-arrays. The homodyne photodiodes are outside the chip and are bulk commercial components.
Fig. 3.
Fig. 3. Normalized noise variances at 2 MHz obtained for a coupled pump power of 40 mW as a function of the LO phase (proportional to the time) and with a sweep time of 1 s. The electrical spectrum analyzer resolution and the video bandwidths are 100 kHz to 30 Hz, respectively.