Abstract

Controlled obtaining of orbital angular momentum (OAM) modes of light at high power over arbitrary orders has important implications for future classical and quantum systems. Appreciable optical amplification has recently been observed for low-order or specific-order OAM modes. However, large amplification of high-order OAM modes still remains challenging. Here we report on flat-gain amplification of arbitrary OAM modes via Brillouin interactions and demonstrate that the OAM modes with various orders can be efficiently and relatively uniformly amplified by imaging the wave source of OAM mode propagation in a nonlinear medium. Meanwhile, the propagation properties of beams carrying OAM with arbitrary modes are high-fidelity maintained. This work provides a practicable way to flatten the mode gain and represents a crucial necessity to realize OAM mode filters with controllable mode gain bandwidth.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Orbital-angular-momentum mode-group multiplexed transmission over a graded-index ring-core fiber based on receive diversity and maximal ratio combining

Junwei Zhang, Guoxuan Zhu, Jie Liu, Xiong Wu, Jiangbo Zhu, Cheng Du, Wenyong Luo, Yujie Chen, and Siyuan Yu
Opt. Express 26(4) 4243-4257 (2018)

Controlled switching of orbital angular momentum in an optical parametric oscillator

A. Aadhi, G. K. Samanta, S. Chaitanya Kumar, and M. Ebrahim-Zadeh
Optica 4(3) 349-355 (2017)

Orbital angular momentum vertical-cavity surface-emitting lasers

Huanlu Li, David B. Phillips, Xuyang Wang, Ying-Lung Daniel Ho, Lifeng Chen, Xiaoqi Zhou, Jiangbo Zhu, Siyuan Yu, and Xinlun Cai
Optica 2(6) 547-552 (2015)

References

  • View by:
  • |
  • |
  • |

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  2. M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25, 11265–11274 (2017).
    [Crossref]
  3. M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
    [Crossref]
  4. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  5. P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
    [Crossref]
  6. P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
    [Crossref]
  7. G. Foo, D. M. Palacios, and G. A. Swartzlander, “Optical vortex coronagraph,” Opt. Lett. 30, 3308–3310 (2005).
    [Crossref]
  8. M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc. A 375, 20150437 (2017).
    [Crossref]
  9. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref]
  10. D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
    [Crossref]
  11. M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
    [Crossref]
  12. A. Aadhi, G. K. Samanta, S. C. Kumar, and M. E. Zadeh, “Controlled switching of orbital angular momentum in an optical parametric oscillator,” Optica 4, 349–355 (2017).
    [Crossref]
  13. D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
    [Crossref]
  14. Z. Zhu, C. Mu, H. Li, and W. Gao, “Reversible orbital angular momentum photon–phonon conversion,” Optica 3, 212–217 (2016).
    [Crossref]
  15. F. Bouchard, J. Harris, H. Mand, R. W. Boyd, and E. Karimi, “Observation of subluminal twisted light in vacuum,” Optica 3, 351–354 (2016).
    [Crossref]
  16. S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, and J. Zhao, “Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude,” Photon. Res. 6, 228–233 (2018).
    [Crossref]
  17. R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
    [Crossref]
  18. Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, and B. S. Shi, “Frequency doubling of twisted light independent of integer topological charge,” OSA Continuum 2, 470–477 (2019).
    [Crossref]
  19. J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
    [Crossref]
  20. Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
    [Crossref]
  21. J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
    [Crossref]
  22. D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117, 459–464 (2014).
    [Crossref]
  23. Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, “High power picosecond vortex laser based on a large-mode-area fiber amplifier,” Opt. Express 17, 14362–14366 (2009).
    [Crossref]
  24. K. Mio, H. Tetsuya, O. Masahito, M. Katsuhiko, and O. Takashige, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express 19, 14420–14425 (2011).
    [Crossref]
  25. G. C. Borba, S. Barreiro, L. Pruvost, D. Felinto, and J. W. Tabosa, “Narrow band amplification of light carrying orbital angular momentum,” Opt. Express 24, 10078–10086 (2016).
    [Crossref]
  26. S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber,” Opt. Express 26, 23295–23304 (2018).
    [Crossref]
  27. E. G. Johnson, K. Miller, R. Shori, W. Li, Y. Li, and Z. Zhang, “Concentric vortex beam amplification: experiment and simulation,” Opt. Express 24, 1658–1667 (2016).
    [Crossref]
  28. X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
    [Crossref]
  29. W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
    [Crossref]
  30. Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
    [Crossref]
  31. C. Guodong, Z. Ruiwen, S. Junqiang, X. Heng, G. Ya, F. Danqi, and X. Huang, “Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide,” Opt. Express 22, 32060–32070 (2014).
    [Crossref]
  32. B. Lutherdavies, B. J. Eggleton, B. Morrison, D. Marpaung, D. Y. Choi, M. Pagani, R. Pant, and S. J. Madden, “Low-power, chip-based stimulated Brillouin scattering microwave photonic filter with ultrahigh selectivity,” Optica 2, 76–83 (2015).
    [Crossref]
  33. H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3, 30–34 (2016).
    [Crossref]
  34. E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
    [Crossref]
  35. E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
    [Crossref]
  36. S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
    [Crossref]
  37. C. Cui, Y. Wang, Z. Lu, H. Yuan, Y. Wang, Y. Chen, Q. Wang, Z. Bai, and R. P. Mildren, “Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification,” Opt. Express 26, 32717–32727 (2018).
    [Crossref]
  38. Y. P. Xu, M. Q. Ren, Y. Lu, P. Lu, P. Lu, X. Y. Bao, L. X. Wang, Y. Messaddeq, and S. Larochelle, “Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber,” Opt. Lett. 41, 1138–1141 (2016).
    [Crossref]
  39. G. Yang, X. Fan, B. Wang, and Z. He, “Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape,” Opt. Express 26, 32599–32607 (2018).
    [Crossref]
  40. W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump,” Opt. Lett. 42, 4083–4086 (2017).
    [Crossref]
  41. O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18, 16102–16111 (2010).
    [Crossref]
  42. Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
    [Crossref]
  43. C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
    [Crossref]
  44. G. Prabhakar, X. Liu, J. Demas, P. Gregg, and S. Ramachandran, “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.
  45. Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
    [Crossref]
  46. R. W. Boyd, Nonlinear Optics (Academic, 2008), pp. 440–452.
  47. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
    [Crossref]
  48. B. D. Lv, Laser Optics (Higher Education, 2003), pp. 11–14.

2019 (3)

Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, and B. S. Shi, “Frequency doubling of twisted light independent of integer topological charge,” OSA Continuum 2, 470–477 (2019).
[Crossref]

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

2018 (8)

C. Cui, Y. Wang, Z. Lu, H. Yuan, Y. Wang, Y. Chen, Q. Wang, Z. Bai, and R. P. Mildren, “Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification,” Opt. Express 26, 32717–32727 (2018).
[Crossref]

G. Yang, X. Fan, B. Wang, and Z. He, “Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape,” Opt. Express 26, 32599–32607 (2018).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber,” Opt. Express 26, 23295–23304 (2018).
[Crossref]

S. Liu, S. Qi, Y. Zhang, P. Li, D. Wu, L. Han, and J. Zhao, “Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude,” Photon. Res. 6, 228–233 (2018).
[Crossref]

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

2017 (9)

M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc. A 375, 20150437 (2017).
[Crossref]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25, 11265–11274 (2017).
[Crossref]

A. Aadhi, G. K. Samanta, S. C. Kumar, and M. E. Zadeh, “Controlled switching of orbital angular momentum in an optical parametric oscillator,” Optica 4, 349–355 (2017).
[Crossref]

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

C. W. Ballmann, Z. Meng, A. J. Traverso, M. O. Scully, and V. V. Yakovlev, “Impulsive Brillouin microscopy,” Optica 4, 124–128 (2017).
[Crossref]

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump,” Opt. Lett. 42, 4083–4086 (2017).
[Crossref]

2016 (10)

Y. P. Xu, M. Q. Ren, Y. Lu, P. Lu, P. Lu, X. Y. Bao, L. X. Wang, Y. Messaddeq, and S. Larochelle, “Multi-parameter sensor based on stimulated Brillouin scattering in inverse-parabolic graded-index fiber,” Opt. Lett. 41, 1138–1141 (2016).
[Crossref]

Z. Meng, A. J. Traverso, C. W. Ballmann, M. A. Troyanova-Wood, and V. V. Yakovlev, “Seeing cells in a new light: a renaissance of Brillouin spectroscopy,” Adv. Opt. Photon. 8, 300–327 (2016).
[Crossref]

G. C. Borba, S. Barreiro, L. Pruvost, D. Felinto, and J. W. Tabosa, “Narrow band amplification of light carrying orbital angular momentum,” Opt. Express 24, 10078–10086 (2016).
[Crossref]

H. Jiang, D. Marpaung, M. Pagani, K. Vu, D. Y. Choi, S. J. Madden, L. Yan, and B. J. Eggleton, “Wide-range, high-precision multiple microwave frequency measurement using a chip-based photonic Brillouin filter,” Optica 3, 30–34 (2016).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

E. G. Johnson, K. Miller, R. Shori, W. Li, Y. Li, and Z. Zhang, “Concentric vortex beam amplification: experiment and simulation,” Opt. Express 24, 1658–1667 (2016).
[Crossref]

Z. Zhu, C. Mu, H. Li, and W. Gao, “Reversible orbital angular momentum photon–phonon conversion,” Optica 3, 212–217 (2016).
[Crossref]

F. Bouchard, J. Harris, H. Mand, R. W. Boyd, and E. Karimi, “Observation of subluminal twisted light in vacuum,” Optica 3, 351–354 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

2015 (3)

2014 (3)

C. Guodong, Z. Ruiwen, S. Junqiang, X. Heng, G. Ya, F. Danqi, and X. Huang, “Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide,” Opt. Express 22, 32060–32070 (2014).
[Crossref]

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117, 459–464 (2014).
[Crossref]

2012 (1)

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

2011 (2)

2010 (1)

2009 (1)

2005 (1)

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

1970 (1)

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[Crossref]

Aadhi, A.

Adhikary, G.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Allen, L.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Alves, E. P.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

Bai, Z.

Ballmann, C. W.

Bao, X. Y.

Barreiro, S.

Behunin, R.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Beijersbergen, M. W.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Bingham, R.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

Blumenthal, D. J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Borba, G. C.

Bose, D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Bouchard, F.

Bowman, R.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

Boyd, R. W.

Brodnik, G. M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Camper, A.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Chappuis, C.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Chauhan, N.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Chen, J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Chen, L. X.

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Chen, P.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

Chen, Y.

Choi, D. Y.

Clarkson, W. A.

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117, 459–464 (2014).
[Crossref]

Collins, S. A.

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[Crossref]

Cucini, R.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Cui, C.

Danqi, F.

Demas, J.

S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber,” Opt. Express 26, 23295–23304 (2018).
[Crossref]

G. Prabhakar, X. Liu, J. Demas, P. Gregg, and S. Ramachandran, “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.

Dimauro, L. F.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Ding, D. S.

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Dovillaire, G.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Duan, W.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Eggleton, B. J.

Erhard, M.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

Fan, X.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Felinto, D.

Feng, Y.

Fickler, R.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

Fonseca, R. A.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

Foo, G.

Frassetto, F.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Gan, J.

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

Gao, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

Z. Zhu, C. Mu, H. Li, and W. Gao, “Reversible orbital angular momentum photon–phonon conversion,” Optica 3, 212–217 (2016).
[Crossref]

W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
[Crossref]

Gauthier, D.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Ge, S. J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Ge, S.-J.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Géneaux, R.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Gertler, S.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Gregg, P.

P. Gregg, P. Kristensen, and S. Ramachandran, “Conservation of orbital angular momentum in air-core optical fibers,” Optica 2, 267–270 (2015).
[Crossref]

G. Prabhakar, X. Liu, J. Demas, P. Gregg, and S. Ramachandran, “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.

Grosche, G.

Gundavarapu, S.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Guo, G. C.

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

Guodong, C.

Han, L.

Harris, J.

He, W. M.

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

He, Z.

Heng, X.

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

C. Guodong, Z. Ruiwen, S. Junqiang, X. Heng, G. Ya, F. Danqi, and X. Huang, “Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide,” Opt. Express 22, 32060–32070 (2014).
[Crossref]

Hong, S.

Hu, W.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

W. Wei, L. Yi, Y. Jaouën, and W. Hu, “Arbitrary-shaped Brillouin microwave photonic filter by manipulating a directly modulated pump,” Opt. Lett. 42, 4083–4086 (2017).
[Crossref]

Huang, H.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Huang, X.

Huffman, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Jaouën, Y.

Jiang, H.

Johnson, E. G.

Junqiang, S.

Karimi, E.

Katsuhiko, M.

Kharel, P.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Kim, D. J.

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117, 459–464 (2014).
[Crossref]

Kim, J. W.

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117, 459–464 (2014).
[Crossref]

Kittlaus, E. A.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Krenn, M.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

Kristensen, P.

Kumar, S. C.

Larochelle, S.

Li, H.

Li, H. W.

W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
[Crossref]

Li, P.

Li, T.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Li, W.

Li, Y.

Li, Y. H.

Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, and B. S. Shi, “Frequency doubling of twisted light independent of integer topological charge,” OSA Continuum 2, 470–477 (2019).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Liu, S.

Liu, S. K.

Liu, S. L.

Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, and B. S. Shi, “Frequency doubling of twisted light independent of integer topological charge,” OSA Continuum 2, 470–477 (2019).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Liu, X.

G. Prabhakar, X. Liu, J. Demas, P. Gregg, and S. Ramachandran, “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.

Lu, P.

Lu, Y.

Lu, Y. Q.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

Lu, Y.-Q.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Lu, Z.

Lutherdavies, B.

Lv, B. D.

B. D. Lv, Laser Optics (Higher Education, 2003), pp. 11–14.

Lv, Z. W.

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

Ma, L. L.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Ma, L.-L.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Madden, S. J.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Mand, H.

Marpaung, D.

Masahito, O.

Mendonca, J. T.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

Mendonça, J. T.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

Meng, Z.

Messaddeq, Y.

Mildren, R. P.

Miller, K.

Mio, K.

Miyamoto, K.

Morrison, B.

Mu, C.

Mu, C. Y.

W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
[Crossref]

Nelson, K. D.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Nilsson, J.

Nohava, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Norreys, P.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

Okida, M.

Omatsu, T.

Otterstrom, N. T.

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

Padgett, M.

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

Padgett, M. J.

Pagani, M.

Palacios, D. M.

Pant, R.

Pidishety, S.

Pinho, C.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Prabhakar, G.

G. Prabhakar, X. Liu, J. Demas, P. Gregg, and S. Ramachandran, “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.

Pruvost, L.

Puckett, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Qi, S.

Qian, Q.

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

Qiu, T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Rakich, P. T.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Ramachandran, S.

Ren, M. Q.

Ren, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Ribic, P. R.

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

Ritschmarte, M.

M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc. A 375, 20150437 (2017).
[Crossref]

Ruiwen, Z.

Salit, M.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Samanta, G. K.

Schnatz, H.

Scully, M. O.

Sheng, L. W.

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

Shi, B. S.

Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, and B. S. Shi, “Frequency doubling of twisted light independent of integer topological charge,” OSA Continuum 2, 470–477 (2019).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

Shi, S.

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

Shin, H.

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

Shori, R.

Sidharthan, R.

Silva, L. O.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

Spreeuw, R. J. C.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Srinivasan, B.

Swartzlander, G. A.

Tabosa, J. W.

Takashige, O.

Tanaka, Y.

Tang, J.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Tang, M. J.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Terra, O.

Tetsuya, H.

Traverso, A. J.

Trines, R. M. G. M.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

Troyanova-Wood, M. A.

Tur, M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Vieira, J.

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

Vu, K.

Wang, B.

Wang, J.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Wang, L. X.

Wang, Q.

Wang, Y.

Wang, Y. L.

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

Wei, W.

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Wu, D.

Wu, J.

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

Wu, R.-X.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Xu, R.

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Xu, Y. P.

Xu, Z. H.

Ya, G.

Yakovlev, V. V.

Yan, L.

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, C.

Yang, G.

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, Y. Q.

W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
[Crossref]

Yang, Z.

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

Yi, L.

Yoo, S.

Yuan, H.

Yue, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Zadeh, M. E.

Zeilinger, A.

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Zhang, W.

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

Zhang, Y.

Zhang, Z.

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

E. G. Johnson, K. Miller, R. Shori, W. Li, Y. Li, and Z. Zhang, “Concentric vortex beam amplification: experiment and simulation,” Opt. Express 24, 1658–1667 (2016).
[Crossref]

Zhao, J.

Zhou, Z. Y.

Y. Li, Z. Y. Zhou, S. L. Liu, S. K. Liu, C. Yang, Z. H. Xu, Y. H. Li, and B. S. Shi, “Frequency doubling of twisted light independent of integer topological charge,” OSA Continuum 2, 470–477 (2019).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

Zhu, S.

Zhu, Z.

Zhu, Z. H.

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
[Crossref]

Adv. Mater. (1)

P. Chen, L. L. Ma, W. Duan, J. Chen, S. J. Ge, Z. H. Zhu, M. J. Tang, R. Xu, W. Gao, T. Li, W. Hu, and Y. Q. Lu, “Digitalizing self-assembled chiral superstructures for optical vortex processing,” Adv. Mater. 30, 1705865 (2018).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. B (1)

D. J. Kim, J. W. Kim, and W. A. Clarkson, “High-power master-oscillator power-amplifier with optical vortex output,” Appl. Phys. B 117, 459–464 (2014).
[Crossref]

Appl. Phys. Lett. (2)

W. Gao, C. Y. Mu, H. W. Li, Y. Q. Yang, and Z. H. Zhu, “Parametric amplification of orbital angular momentum beams based on light-acoustic interaction,” Appl. Phys. Lett. 107, 299–313 (2015).
[Crossref]

Z. H. Zhu, P. Chen, L. W. Sheng, Y. L. Wang, W. Hu, Y. Q. Lu, and W. Gao, “Generation of strong cylindrical vector pulses via stimulated Brillouin amplification,” Appl. Phys. Lett. 110, 141104 (2017).
[Crossref]

J. Opt. Soc. Am. A (1)

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[Crossref]

Light Sci. Appl. (2)

D. S. Ding, W. Zhang, S. Shi, Z. Y. Zhou, Y. Li, B. S. Shi, and G. C. Guo, “High-dimensional entanglement between distant atomic ensemble memories,” Light Sci. Appl. 5, e16157 (2014).
[Crossref]

M. Erhard, R. Fickler, M. Krenn, and A. Zeilinger, “Twisted photons: new quantum perspectives in high dimensions,” Light Sci. Appl. 7, 17146 (2018).
[Crossref]

Nat. Commun. (2)

D. Gauthier, P. R. Ribič, G. Adhikary, A. Camper, C. Chappuis, R. Cucini, L. F. Dimauro, G. Dovillaire, F. Frassetto, and R. Géneaux, “Tunable orbital angular momentum in high-harmonic generation,” Nat. Commun. 8, 14971 (2017).
[Crossref]

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonça, R. Bingham, P. Norreys, and L. O. Silva, “Amplification and generation of ultra-intense twisted laser pulses via stimulated Raman scattering,” Nat. Commun. 7, 10371 (2016).
[Crossref]

Nat. Photonics (5)

E. A. Kittlaus, H. Shin, and P. T. Rakich, “Large Brillouin amplification in silicon,” Nat. Photonics 10, 463–467 (2016).
[Crossref]

E. A. Kittlaus, N. T. Otterstrom, P. Kharel, S. Gertler, and P. T. Rakich, “Non-reciprocal interband Brillouin modulation,” Nat. Photonics 12, 613–619 (2018).
[Crossref]

S. Gundavarapu, G. M. Brodnik, M. Puckett, T. Huffman, D. Bose, R. Behunin, J. Wu, T. Qiu, C. Pinho, N. Chauhan, J. Nohava, P. T. Rakich, K. D. Nelson, M. Salit, and D. J. Blumenthal, “Sub-hertz fundamental linewidth photonic integrated Brillouin laser,” Nat. Photonics 13, 60–67 (2019).
[Crossref]

M. Padgett and R. Bowman, “Tweezers with a twist,” Nat. Photonics 5, 343–348 (2011).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Opt. Commun. (1)

X. Heng, J. Gan, Z. Zhang, Q. Qian, and Z. Yang, “Amplification of orbital angular momentum modes in an erbium-doped solid-core photonic bandgap fiber,” Opt. Commun. 433, 132–136 (2019).
[Crossref]

Opt. Express (10)

O. Terra, G. Grosche, and H. Schnatz, “Brillouin amplification in phase coherent transfer of optical frequencies over 480 km fiber,” Opt. Express 18, 16102–16111 (2010).
[Crossref]

G. Yang, X. Fan, B. Wang, and Z. He, “Enhancing strain dynamic range of slope-assisted BOTDA by manipulating Brillouin gain spectrum shape,” Opt. Express 26, 32599–32607 (2018).
[Crossref]

C. Cui, Y. Wang, Z. Lu, H. Yuan, Y. Wang, Y. Chen, Q. Wang, Z. Bai, and R. P. Mildren, “Demonstration of 2.5 J, 10 Hz, nanosecond laser beam combination system based on non-collinear Brillouin amplification,” Opt. Express 26, 32717–32727 (2018).
[Crossref]

C. Guodong, Z. Ruiwen, S. Junqiang, X. Heng, G. Ya, F. Danqi, and X. Huang, “Mode conversion based on forward stimulated Brillouin scattering in a hybrid phononic-photonic waveguide,” Opt. Express 22, 32060–32070 (2014).
[Crossref]

Y. Tanaka, M. Okida, K. Miyamoto, and T. Omatsu, “High power picosecond vortex laser based on a large-mode-area fiber amplifier,” Opt. Express 17, 14362–14366 (2009).
[Crossref]

K. Mio, H. Tetsuya, O. Masahito, M. Katsuhiko, and O. Takashige, “Nanosecond vortex laser pulses with millijoule pulse energies from a Yb-doped double-clad fiber power amplifier,” Opt. Express 19, 14420–14425 (2011).
[Crossref]

G. C. Borba, S. Barreiro, L. Pruvost, D. Felinto, and J. W. Tabosa, “Narrow band amplification of light carrying orbital angular momentum,” Opt. Express 24, 10078–10086 (2016).
[Crossref]

S. Zhu, S. Pidishety, Y. Feng, S. Hong, J. Demas, R. Sidharthan, S. Yoo, S. Ramachandran, B. Srinivasan, and J. Nilsson, “Multimode-pumped Raman amplification of a higher order mode in a large mode area fiber,” Opt. Express 26, 23295–23304 (2018).
[Crossref]

E. G. Johnson, K. Miller, R. Shori, W. Li, Y. Li, and Z. Zhang, “Concentric vortex beam amplification: experiment and simulation,” Opt. Express 24, 1658–1667 (2016).
[Crossref]

M. J. Padgett, “Orbital angular momentum 25 years on,” Opt. Express 25, 11265–11274 (2017).
[Crossref]

Opt. Lett. (3)

Optica (7)

OSA Continuum (1)

Philos. Trans. R. Soc. A (1)

M. Ritschmarte, “Orbital angular momentum light in microscopy,” Philos. Trans. R. Soc. A 375, 20150437 (2017).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (1)

L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Phys. Rev. Appl. (1)

R. Xu, P. Chen, J. Tang, W. Duan, S.-J. Ge, L.-L. Ma, R.-X. Wu, W. Hu, and Y.-Q. Lu, “Perfect higher-order Poincaré sphere beams from digitalized geometric phases,” Phys. Rev. Appl. 10, 034061 (2018).
[Crossref]

Phys. Rev. Lett. (1)

J. Vieira, R. M. G. M. Trines, E. P. Alves, R. A. Fonseca, J. T. Mendonca, R. Bingham, P. Norreys, and L. O. Silva, “High orbital angular momentum harmonic generation,” Phys. Rev. Lett. 117, 265001 (2016).
[Crossref]

Sci. Bull. (1)

Z. Y. Zhou, Z. H. Zhu, S. L. Liu, Y. H. Li, S. Shi, D. S. Ding, L. X. Chen, W. Gao, G. C. Guo, and B. S. Shi, “Quantum twisted double-slits experiments: confirming wavefunctions’ physical reality,” Sci. Bull. 62, 1185–1192 (2017).
[Crossref]

Sci. Rep. (1)

Z. H. Zhu, L. W. Sheng, Z. W. Lv, W. M. He, and W. Gao, “Orbital angular momentum mode division filtering for photon-phonon coupling,” Sci. Rep. 7, 40526 (2017).
[Crossref]

Other (3)

R. W. Boyd, Nonlinear Optics (Academic, 2008), pp. 440–452.

B. D. Lv, Laser Optics (Higher Education, 2003), pp. 11–14.

G. Prabhakar, X. Liu, J. Demas, P. Gregg, and S. Ramachandran, “Phase conjugation in OAM fiber modes via stimulated Brillouin scattering,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (online) (2018), paper FTh1M.4.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Simulation results. The propagation evolution in free space of the vortex beam with l=1 (a1)–(a5) and l=10 (b1)–(b5), respectively. The intensity distributions of the (c1) Gaussian-shaped pump beam and (c2)–(c5) OAM-carrying Stokes signal beams with different orders at the propagating distance of 40 cm, respectively.
Fig. 2.
Fig. 2. Simulation results for the propagation behavior of Stokes beams with l=2, 6, and 10 near the image plane through (a)–(c) two lenses with f1=f2=10  cm, respectively, and (d1)–(d9) two lenses with f1=10  cm and f2=5  cm, respectively, for l=10.
Fig. 3.
Fig. 3. Experimental setup. HWP, half-wave plate; PBS1 and PBS2, polarized beam splitter; QWP1 and QWP2, quarter-wave plate; BA-cell, Brillouin amplifier cell; L1–L4, lens. (a) The intensity distribution of the wave source of the OAM mode. The intensity distribution of the OAM mode at the center of BA-cell (b) without and (c) with utilizing the 4f imaging system.
Fig. 4.
Fig. 4. Experimental results. (a) Amplified Gaussian-profile beam. (b1)–(b4) The intensity distribution of output OAM beams without the 4f imaging system. Utilizing the 4f imaging system, the intensity profiles of the amplified OAM beam at (c1)–(c4) the secondary image plane and (d1)–(d4) the propagating distance of 40 cm, where the orders are set to 2, 6, 8, and 10, respectively. (e) Simulation curves and experimental results of the mode gain versus its orders.
Fig. 5.
Fig. 5. Gain versus the pump energies for the OAM mode of l=10.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

dISdz=g0ISIP,
PP=IPdxdy,PS=ISdxdy,
dPSdz=g0PPPSση,
η=|EP(x,y,z)ES(x,y,z)dxdy|2|EP(x,y,z)|2dxdy|ES(x,y,z)|2dxdy
PS=PS0exp[g0ηPPσ(Lz)]=PS0exp[geffPPσ(Lz)],
E0(x0,y0,0)=2π1ω0exp(x02+y02ω02)exp(ilφ0),
E(x,y,z)=il+1λzω02π12ε(b2ε)l2exp(ikz)exp[ik2z(x2+y2)]·exp(ilφ)Γ(l2+1)Γ(l+1)F(l2+1,l+1,b2ε),
ε=1ω02+ik2z,b=kx2+y22z.
[ABCD]=[f2f100f1f2],
E(xi,yi,d)=1Aexp(ikd)exp[ikCA(xi2+yi2)]E0(xiA,yiA,0),
I(xi,yi,d)=2πω02A2exp{2[(x0A)2+(y0A)2]/ω02}.
[ABCD]=[1d01],
ε=1ω02ik2d,b=kx02+y022d.