Abstract

Raman and Brillouin lasers based on a high-quality (high-Q) whispering gallery mode microresonator (WGMR) are usually achieved by employing a tunable single-frequency laser as a pump source. Here, we experimentally demonstrate visible Raman and Brillouin lasers using a compact microresonator/ZrF4BaF2LaF3AlF3NaF (ZBLAN)-fiber hybrid system by incorporating a WGMR with a fiber-compatible distributed Bragg reflector/fiber Bragg grating to form a Fabry–Perot (F-P) fiber cavity and using a piece of Pr:ZBLAN fiber as gain medium. The high-Q silica-microsphere not only offers a Rayleigh-scattering-induced backreflection to form the 635  nm red laser oscillation in the F-P fiber cavity, but also provides a nonlinear gain in the WGMR itself to generate either stimulated Raman scattering or stimulated Brillouin scattering. Up to six-order cascaded Raman lasers at 0.65 μm, 0.67 μm, 0.69 μm, 0.71 μm, 0.73 μm, and 0.76 μm are achieved, respectively. Moreover, a Brillouin laser at 635.54 nm is clearly observed. This is, to the best of our knowledge, the first demonstration of visible microresonator-based lasers created by combining a Pr:ZBLAN fiber. This structure can effectively extend the laser wavelength in the WGMR to the visible waveband and may find potential applications in underwater communication, biomedical diagnosis, microwave generation, and spectroscopy.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
S-band multiwavelength Brillouin/Raman distributed Bragg reflector fiber lasers

Mohd. Zamani Zulkifli, Harith Ahmad, Jaffar Mohamed Taib, Farah Diana Muhammad, Kaharudin Dimyati, and Sulaiman Wadi Harun
Appl. Opt. 52(16) 3753-3756 (2013)

High-power continuous-wave upconversion fiber laser at room temperature

T. Sandrock, H. Scheife, E. Heumann, and G. Huber
Opt. Lett. 22(11) 808-810 (1997)

Single-frequency Ho3+-doped ZBLAN fiber laser at 1200 nm

Xiushan Zhu, Jie Zong, Andy Miller, Kort Wiersma, R. A. Norwood, Narasimha S. Prasad, Arturo Chavez-Pirson, and N. Peyghambarian
Opt. Lett. 37(20) 4185-4187 (2012)

References

  • View by:
  • |
  • |
  • |

  1. K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
    [Crossref]
  2. L. He, S. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
    [Crossref]
  3. J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
    [Crossref]
  4. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  5. Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
    [Crossref]
  6. G. Lin, A. Coillet, and Y. K. Chembo, “Nonlinear photonics with high-Q whispering-gallery-mode resonators,” Adv. Opt. Photon. 9, 828–890 (2017).
    [Crossref]
  7. J. Snow, S. Qian, and R. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
    [Crossref]
  8. S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using aspherical dielectric microcavity,” Nature 415, 621–623 (2002).
    [Crossref]
  9. B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28, 1507–1509 (2003).
    [Crossref]
  10. F. Vanier, M. Rochette, N. Godbout, and Y. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38, 4966–4969 (2013).
    [Crossref]
  11. F. Vanier, Y. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
    [Crossref]
  12. B. Li, Y. Xiao, M. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
    [Crossref]
  13. T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
    [Crossref]
  14. G. Lin, S. Diallo, J. M. Dudley, and Y. K. Chembo, “Universal nonlinear scattering in ultra-high Q whispering gallery-mode resonators,” Opt. Express 24, 14880–14894 (2016).
    [Crossref]
  15. T. J. Kippenberg, S. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
    [Crossref]
  16. Y. Ooka, Y. Yang, J. Ward, and S. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8, 092001 (2015).
    [Crossref]
  17. I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
    [Crossref]
  18. M. Asano, Y. Takeuchi, S. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
    [Crossref]
  19. C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40, 4971–4974 (2015).
    [Crossref]
  20. P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
    [Crossref]
  21. Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. Ward, L. Yang, and S. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2013).
    [Crossref]
  22. S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
    [Crossref]
  23. J. Ma, X. Jiang, and M. Xiao, “Kerr frequency combs in large-size, ultra-high-Q toroid microcavities with low repetition rates,” Photon. Res. 5, B54–B58 (2017).
    [Crossref]
  24. G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).
  25. B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
    [Crossref]
  26. B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
    [Crossref]
  27. S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
    [Crossref]
  28. J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
    [Crossref]
  29. J. Li, H. Lee, and K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
    [Crossref]
  30. J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
    [Crossref]
  31. C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
    [Crossref]
  32. J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
    [Crossref]
  33. K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
    [Crossref]
  34. S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
    [Crossref]
  35. C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
    [Crossref]
  36. W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
    [Crossref]
  37. H. Okamoto, K. Kasuga, I. Hara, and Y. Kubota, “Visible-NIR tunable Pr3+-doped fiber laser pumped by a GaN laser diode,” Opt. Express 17, 20227–20232 (2009).
    [Crossref]
  38. Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
    [Crossref]
  39. Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
    [Crossref]
  40. D. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
    [Crossref]
  41. M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
    [Crossref]
  42. T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
    [Crossref]
  43. C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
    [Crossref]
  44. S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
    [Crossref]
  45. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).
  46. R. H. Stolen, C. Lee, and R. K. Jain, “Development of the stimulated Raman spectrum in single-mode silica fibers,” J. Opt. Soc. Am. B 1, 652–657 (1984).
    [Crossref]
  47. E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
    [Crossref]
  48. B. Sprenger, H. Schwefel, and L. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
    [Crossref]

2018 (2)

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

2017 (3)

2016 (4)

2015 (7)

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Y. Ooka, Y. Yang, J. Ward, and S. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8, 092001 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40, 4971–4974 (2015).
[Crossref]

C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
[Crossref]

2014 (4)

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

F. Vanier, Y. Peter, and M. Rochette, “Cascaded Raman lasing in packaged high quality As2S3 microspheres,” Opt. Express 22, 28731–28739 (2014).
[Crossref]

2013 (6)

2012 (1)

2010 (1)

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

2009 (3)

2008 (1)

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

2007 (2)

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
[Crossref]

2004 (2)

T. J. Kippenberg, S. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

2003 (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref]

2002 (2)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using aspherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

2000 (2)

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

M. L. Gorodetsky, A. D. Pryamikov, and V. S. Ilchenko, “Rayleigh scattering in high-Q microspheres,” J. Opt. Soc. Am. B 17, 1051–1057 (2000).
[Crossref]

1995 (1)

1985 (1)

1984 (1)

Agrawal, G. P.

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

Arcizet, O.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Armani, A. M.

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

Armani, D. K.

Asano, M.

Bahl, G.

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Bender, C.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Cai, Z.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
[Crossref]

C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40, 4971–4974 (2015).
[Crossref]

C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
[Crossref]

Chang, R.

Che, K.

Chembo, Y. K.

Chen, D.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Chen, T.

Chormaic, S.

Chu, C.

Clements, W.

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Clements, W. R.

Coillet, A.

Del’Haye, P.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Diallo, S.

Dianov, E. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

Diep, V. M.

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

Dong, C.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

Dudley, J. M.

Eliyahu, D.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

Fu, H.

Fu, W.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Fujimoto, Y.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Godbout, N.

Gong, Q.

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B. Li, Y. Xiao, M. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

Gorodetsky, M. L.

Grudinin, I.

I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Gu, G.

Guo, C.

Guo, G.

Han, K.

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Hara, I.

Hare, J.

Haroche, S.

He, L.

L. He, S. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Holzwarth, R.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Huang, Y.

Ikuta, R.

Ilchenko, V.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

Ilchenko, V. S.

Imoto, N.

Ishii, O.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Jain, R. K.

Jiang, S.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

Jiang, X.

Kasuga, K.

Kasumie, S.

Kieu, K.

Kim, J.

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Kippenberg, T. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. J. Kippenberg, S. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref]

S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using aspherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Kubota, Y.

Kuzyk, M.

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Lai, Y.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lee, C.

Lee, H.

Lee, S.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Lefèvre-Seguin, V.

Li, B.

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B. Li, Y. Xiao, M. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

Li, J.

Li, L.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Li, X.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Liang, W.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

Liertzer, M.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Lin, G.

Liu, S.

Luo, Z.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
[Crossref]

C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40, 4971–4974 (2015).
[Crossref]

Ma, J.

Maleki, L.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Mansuripur, M.

Matsko, A.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

Min, B.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref]

Monifi, F.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Nakanishi, J.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Nori, F.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Oh, D.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Okamoto, H.

Ooka, Y.

Y. Ooka, Y. Yang, J. Ward, and S. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8, 092001 (2015).
[Crossref]

Ozdemir, S.

M. Asano, Y. Takeuchi, S. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
[Crossref]

L. He, S. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Özdemir, S.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Painter, O.

S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

Peng, B.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Peter, Y.

Prokhorov, A. M.

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

Pryamikov, A. D.

Qian, S.

Raimond, J.

Ren, C.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
[Crossref]

Rochette, M.

Rotter, S.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Sandoghdar, V.

Savchenkov, A.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

Schliesser, A.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Schwefel, H.

Seidel, D.

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

Shen, B.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Shen, Z.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

Shi, K.

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Snow, J.

Soltani, S.

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

Spillane, S.

T. J. Kippenberg, S. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using aspherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Spillane, S. M.

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

Sprenger, B.

Stolen, R. H.

Sun, F.

Sun, Z.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Takeuchi, Y.

Tang, D.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
[Crossref]

Vahala, K. J.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

J. Li, H. Lee, T. Chen, and K. J. Vahala, “Characterization of a high coherence, Brillouin microcavity laser on silicon,” Opt. Express 20, 20170–20180 (2012).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

T. J. Kippenberg, S. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref]

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using aspherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

Vanier, F.

Wang, F.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Wang, H.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Wang, L.

Ward, J.

Weiss, D.

Wilken, T.

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Wu, D.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Wu, J.

Xiao, C.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

Xiao, M.

Xiao, Y.

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

B. Li, Y. Xiao, M. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Xu, B.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Xu, H.

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
[Crossref]

C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40, 4971–4974 (2015).
[Crossref]

C. Guo, K. Che, P. Zhang, J. Wu, Y. Huang, H. Xu, and Z. Cai, “Low-threshold stimulated Brillouin scattering in high-Q whispering gallery mode tellurite microspheres,” Opt. Express 23, 32261–32266 (2015).
[Crossref]

Xu, L.

Yamada, T.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Yamamoto, T.

Yamazaki, M.

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Yan, M.

Yang, K.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yang, L.

M. Asano, Y. Takeuchi, S. Ozdemir, R. Ikuta, L. Yang, N. Imoto, and T. Yamamoto, “Stimulated Brillouin scattering and Brillouin-coupled four-wave-mixing in a silica microbottle resonator,” Opt. Express 24, 12082–12092 (2016).
[Crossref]

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

L. He, S. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. Ward, L. Yang, and S. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2013).
[Crossref]

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Yang, Q.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yang, Y.

Yariv, A.

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

Yi, X.

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Yilmaz, H.

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

Yu, X.

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Zeto, R.

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

Zhang, H.

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Zhang, P.

Zhang, Y.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Zhao, G.

Zhou, Z.

Zhu, J.

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Zou, C.

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

Z. Shen, Z. Zhou, C. Zou, F. Sun, G. Guo, C. Dong, and G. Guo, “Observation of high-Q optomechanical modes in the mounted silica microspheres,” Photon. Res. 3, 243–247 (2015).
[Crossref]

ACS Photon. (1)

S. Soltani, V. M. Diep, R. Zeto, and A. M. Armani, “Stimulated anti-Stokes Raman emission generated by gold nanorod coated optical resonators,” ACS Photon. 5, 3550–3556 (2018).
[Crossref]

Adv. Opt. Photon. (1)

Appl. Phys. Express (1)

Y. Ooka, Y. Yang, J. Ward, and S. Chormaic, “Raman lasing in a hollow, bottle-like microresonator,” Appl. Phys. Express 8, 092001 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (2)

T. J. Kippenberg, S. M. Spillane, B. Min, and K. J. Vahala, “Theoretical and experimental study of stimulated and cascaded Raman scattering in ultrahigh-Q optical microcavities,” IEEE J. Sel. Top. Quantum Electron. 10, 1219–1228 (2004).
[Crossref]

E. M. Dianov and A. M. Prokhorov, “Medium-power CW Raman fiber lasers,” IEEE J. Sel. Top. Quantum Electron. 6, 1022–1028 (2000).
[Crossref]

IEEE Photon. J. (1)

S. Jiang, C. Guo, Z. Luo, D. Tang, C. Xiao, C. Ren, K. Che, H. Xu, and Z. Cai, “Cascaded Brillouin, Raman and four-wave-mixing generation in a 1.06  μm microsphere-feedback Yb-fiber laser,” IEEE Photon. J. 10, 1502008 (2018).
[Crossref]

J. Opt. Soc. Am. B (2)

Laser Photon. Rev. (1)

L. He, S. Ozdemir, and L. Yang, “Whispering gallery microcavity lasers,” Laser Photon. Rev. 7, 60–82 (2013).
[Crossref]

Nanoscale (1)

Z. Luo, D. Wu, B. Xu, H. Xu, Z. Cai, F. Wang, Z. Sun, and H. Zhang, “Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers,” Nanoscale 8, 1066–1072 (2016).
[Crossref]

Nat. Commun. (4)

W. Liang, V. Ilchenko, D. Eliyahu, A. Savchenkov, A. Matsko, D. Seidel, and L. Maleki, “Ultralow noise miniature external cavity semiconductor laser,” Nat. Commun. 6, 7371 (2015).
[Crossref]

C. Dong, Z. Shen, C. Zou, Y. Zhang, W. Fu, and G. Guo, “Brillouin-scattering-induced transparency and non-reciprocal light storage,” Nat. Commun. 6, 6193 (2015).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Microwave synthesizer using an on-chip Brillouin oscillator,” Nat. Commun. 4, 2097 (2013).
[Crossref]

S. Lee, D. Oh, Q. Yang, B. Shen, H. Wang, K. Yang, Y. Lai, X. Yi, X. Li, and K. J. Vahala, “Towards visible soliton microcomb generation,” Nat. Commun. 8, 1295 (2017).
[Crossref]

Nat. Photonics (1)

J. Zhu, S. Ozdemir, Y. Xiao, L. Li, L. He, D. Chen, and L. Yang, “On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator,” Nat. Photonics 4, 46–49 (2010).
[Crossref]

Nat. Phys. (1)

J. Kim, M. Kuzyk, K. Han, H. Wang, and G. Bahl, “Non-reciprocal Brillouin scattering induced transparency,” Nat. Phys. 11, 275–280 (2015).
[Crossref]

Nature (3)

K. J. Vahala, “Optical microcavities,” Nature 424, 839–846 (2003).
[Crossref]

S. Spillane, T. J. Kippenberg, and K. J. Vahala, “Ultralow-threshold Raman laser using aspherical dielectric microcavity,” Nature 415, 621–623 (2002).
[Crossref]

P. Del’Haye, A. Schliesser, O. Arcizet, T. Wilken, R. Holzwarth, and T. J. Kippenberg, “Optical frequency comb generation from a monolithic microresonator,” Nature 450, 1214–1217 (2007).
[Crossref]

Opt. Express (6)

Opt. Lett. (13)

T. J. Kippenberg, S. M. Spillane, and K. J. Vahala, “Modal coupling in traveling-wave resonators,” Opt. Lett. 27, 1669–1671 (2002).
[Crossref]

B. Sprenger, H. Schwefel, and L. Wang, “Whispering-gallery-mode-resonator-stabilized narrow-linewidth fiber loop laser,” Opt. Lett. 34, 3370–3372 (2009).
[Crossref]

C. Guo, K. Che, Z. Cai, S. Liu, G. Gu, C. Chu, H. Fu, Z. Luo, and H. Xu, “Ultralow-threshold cascaded Brillouin microlaser for tunable microwave generation,” Opt. Lett. 40, 4971–4974 (2015).
[Crossref]

B. Li, Y. Xiao, M. Yan, W. R. Clements, and Q. Gong, “Low-threshold Raman laser from an on-chip, high-Q, polymer-coated microcavity,” Opt. Lett. 38, 1802–1804 (2013).
[Crossref]

T. J. Kippenberg, S. Spillane, D. K. Armani, and K. J. Vahala, “Ultralow-threshold microcavity Raman laser on a microelectronic chip,” Opt. Lett. 29, 1224–1226 (2004).
[Crossref]

B. Min, T. J. Kippenberg, and K. J. Vahala, “Compact, fiber-compatible, cascaded Raman laser,” Opt. Lett. 28, 1507–1509 (2003).
[Crossref]

F. Vanier, M. Rochette, N. Godbout, and Y. Peter, “Raman lasing in As2S3 high-Q whispering gallery mode resonators,” Opt. Lett. 38, 4966–4969 (2013).
[Crossref]

J. Snow, S. Qian, and R. Chang, “Stimulated Raman scattering from individual water and ethanol droplets at morphology-dependent resonances,” Opt. Lett. 10, 37–39 (1985).
[Crossref]

D. Weiss, V. Sandoghdar, J. Hare, V. Lefèvre-Seguin, J. Raimond, and S. Haroche, “Splitting of high-Q Mie modes induced by light backscattering in silica microspheres,” Opt. Lett. 20, 1835–1837 (1995).
[Crossref]

K. Kieu and M. Mansuripur, “Fiber laser using a microsphere resonator as a feedback element,” Opt. Lett. 32, 244–246 (2007).
[Crossref]

C. Guo, K. Che, H. Xu, P. Zhang, D. Tang, C. Ren, Z. Luo, and Z. Cai, “Generation of optical frequency combs in a fiber-ring/microresonator laser system,” Opt. Lett. 41, 2576–2579 (2016).
[Crossref]

Y. Yang, X. Jiang, S. Kasumie, G. Zhao, L. Xu, J. Ward, L. Yang, and S. Chormaic, “Four-wave mixing parametric oscillation and frequency comb generation at visible wavelengths in a silica microbubble resonator,” Opt. Lett. 41, 5266–5269 (2013).
[Crossref]

J. Li, H. Lee, and K. J. Vahala, “Low-noise Brillouin laser on a chip at 1064 nm,” Opt. Lett. 39, 287–290 (2014).
[Crossref]

Photon. Res. (2)

Phys. Rev. Lett. (2)

I. Grudinin, A. Matsko, and L. Maleki, “Brillouin lasing with a CaF2 whispering gallery mode resonator,” Phys. Rev. Lett. 102, 043902 (2009).
[Crossref]

S. Spillane, T. J. Kippenberg, O. Painter, and K. J. Vahala, “Ideality in a fiber-taper-coupled microresonator system for application to cavity quantum electrodynamics,” Phys. Rev. Lett. 91, 043902 (2003).
[Crossref]

Proc. Natl. Acad. Sci. USA (1)

B. Li, W. Clements, X. Yu, K. Shi, Q. Gong, and Y. Xiao, “Single nanoparticle detection using split-mode microcavity Raman lasers,” Proc. Natl. Acad. Sci. USA 111, 14657–14662 (2014).
[Crossref]

Prog. Quantum Electron. (1)

Y. Fujimoto, J. Nakanishi, T. Yamada, O. Ishii, and M. Yamazaki, “Visible fiber lasers excited by GaN laser diodes,” Prog. Quantum Electron. 37, 185–214 (2013).
[Crossref]

Science (2)

B. Peng, Ş. Özdemir, S. Rotter, H. Yilmaz, M. Liertzer, F. Monifi, C. Bender, F. Nori, and L. Yang, “Loss-induced suppression and revival of lasing,” Science 346, 328–332 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Other (2)

G. P. Agrawal, Nonlinear Fiber Optics, 5th ed. (Academic, 2013).

A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1989).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Experimental setup for the microresonator/ZBLAN-fiber hybrid system. Inset: photograph of the output light spot in our experiment. (b) Optical transmission spectrum of the fiber end-facet mirror M1. Insets: photograph (left) and microscopic image (right) of M1. (c) A microscopic image of the silica microsphere used in the experiment.
Fig. 2.
Fig. 2. Semi-quantitative relationship between Pthreshold[K(W)] and R2 using DBR M1 (R1=95.7%, blue solid line) or the FBG (R1=99%, red dashed line) as the input mirror.
Fig. 3.
Fig. 3. (a) Laser output spectrum under a pump power of 263  mW. Inset: detailed optical spectrum at 635  nm. (b) Fluorescence spectrum from the output port without a microsphere as the feedback element. Inset: a partial energy level diagram of Pr3+ ions in the ZBLAN fiber.
Fig. 4.
Fig. 4. (a)–(f) One- to six-order Raman Stokes laser spectra in the visible band under pump powers of 347, 359, 385, 446, 558, and 603 mW, respectively.
Fig. 5.
Fig. 5. Threshold power dependence on the Raman Stokes order. Blue dots: experimental data. Red dashed line: cubic fitting.
Fig. 6.
Fig. 6. (a) First-order Raman Stokes laser power versus pump power. Blue dots: experimental data. Red dashed line: square root fitting. (b) Second-order Raman Stokes laser power versus pump power. Blue dots: experimental data. Red dashed line: linear fitting.
Fig. 7.
Fig. 7. (a) Spectrum of a single-wavelength laser at 635.5 nm under a pump power of 280  mW, (b) the output power of the single-wavelength laser at 635.5  nm versus pump power, (c) Brillouin spectra under different pump powers.

Metrics