Abstract

Solar-blind photodetectors are of great interest to a wide range of industrial, civil, environmental, and biological applications. As one of the emerging ultrawide-bandgap semiconductors, gallium oxide (Ga2O3) exhibits unique advantages over other wide-bandgap semiconductors, especially in developing high-performance solar-blind photodetectors. This paper comprehensively reviews the latest progresses of solar-blind photodetectors based on Ga2O3 materials in various forms of bulk single crystal, epitaxial films, nanostructures, and their ternary alloys. The basic working principles of photodetectors and the fundamental properties and synthesis of Ga2O3, as well as device processing developments, have been briefly summarized. A special focus is to address the physical mechanism for commonly observed huge photoconductive gains. Benefitting from the rapid development in material epitaxy and device processes, Ga2O3-based solar-blind detectors represent to date one of the most prospective solutions for UV detection technology towards versatile applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Tin gallium oxide solar-blind photodetectors on sapphire grown by molecular beam epitaxy

Partha Mukhopadhyay and Winston V. Schoenfeld
Appl. Opt. 58(13) D22-D27 (2019)

Pulsed laser deposition of gallium oxide films for high performance solar-blind photodetectors

Fei-Peng Yu, Sin-Liang Ou, and Dong-Sing Wuu
Opt. Mater. Express 5(5) 1240-1249 (2015)

High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process

G. C. Hu, C. X. Shan, Nan Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen
Opt. Express 23(10) 13554-13561 (2015)

References

  • View by:
  • |
  • |
  • |

  1. International Standard, Space Environment (Natural and Artificial)—Process for Determining Solar Irradiances, (International Standard, 2007).
  2. K. Osamura, K. Nakajima, Y. Murakami, P. H. Shingu, and A. Ohtsuki, “Fundamental absorption edge in GaN, InN and their alloys,” Solid State Commun. 11, 617–621 (1972).
    [Crossref]
  3. J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, and Y. D. Ye, “Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition,” J. Cryst. Growth 283, 279–285 (2005).
    [Crossref]
  4. C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, and M. Edoff, “Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys,” Phys. Rev. Lett. 97, 146403 (2006).
    [Crossref]
  5. F. Vigue, E. Tournie, and J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection,” IEEE J. Quantum Electron. 37, 1146–1152 (2001).
    [Crossref]
  6. H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
    [Crossref]
  7. X. Chen, H. Zhu, J. Cai, and Z. Wu, “High-performance 4H-SiC-based ultraviolet p-i-n photodetector,” J. Appl. Phys. 102, 024505 (2007).
    [Crossref]
  8. W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44, 292–296 (1973).
    [Crossref]
  9. S. Salvatori, M. C. Rossi, F. Galluzzi, and E. Pace, “Solar-blind UV-photodetector based on polycrystalline diamond films: basic design principle and comparison with experimental results,” Mater. Sci. Eng. B 46, 105–111 (1997).
    [Crossref]
  10. Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
    [Crossref]
  11. W. Zheng, R. Lin, Z. Zhang, and F. Huang, “Vacuum-ultraviolet photodetection in few-layered h-BN,” ACS Appl. Mater. Interfaces 10, 27116–27123 (2018).
    [Crossref]
  12. T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54, 112601 (2015).
    [Crossref]
  13. K. Akaiwa and S. Fujita, “Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 070203 (2012).
    [Crossref]
  14. S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 (2016).
    [Crossref]
  15. D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN photonics: recent advances in materials and ultraviolet devices,” Adv. Opt. Photon. 10, 43–110 (2018).
    [Crossref]
  16. M. Kim, J.-H. Seo, U. Singisetti, and Z. Ma, “Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond,” J. Mater. Chem. C 5, 8338–8354 (2017).
    [Crossref]
  17. J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
    [Crossref]
  18. Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
    [Crossref]
  19. J. Yu, C. X. Shan, J. S. Liu, X. W. Zhang, B. H. Li, and D. Z. Shen, “MgZnO avalanche photodetectors realized in Schottky structures,” Phys. Status Solidi RRL 7, 425–428 (2013).
    [Crossref]
  20. K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
    [Crossref]
  21. M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
    [Crossref]
  22. W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1−x O on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett. 82, 3424–3426 (2003).
    [Crossref]
  23. A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005).
    [Crossref]
  24. A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202a2 (2016).
    [Crossref]
  25. K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, “Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy,” Appl. Phys. Express 5, 035502 (2012).
    [Crossref]
  26. A. Rose, Concepts in Photoconductivity and Allied Problems (Interscience, 1963).
  27. E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33–R51 (2003).
    [Crossref]
  28. X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm,” Science 325, 1665–1667 (2009).
    [Crossref]
  29. R. J. Keyes, Optical and Infrared Detectors, Topics in Applied Physics (Springer-Verlag, 1977).
  30. M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
    [Crossref]
  31. P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi, “Kinetics of photoconductivity in n-type GaN photodetector,” Appl. Phys. Lett. 67, 3792–3794 (1995).
    [Crossref]
  32. S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, 2012).
  33. M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
    [Crossref]
  34. S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, F.-L. Schein, H. Frenzel, and M. Grundmann, “Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals,” Appl. Phys. Express 8, 121102 (2015).
    [Crossref]
  35. R. Hackam and P. Harrop, “Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes,” IEEE Trans. Electron Devices 19, 1231–1238 (1972).
    [Crossref]
  36. W. Schottky and E. Spenke, “Quantitative treatment of the space charge and boundary-layer theory of the crystal rectifier,” Wiss. Veroff. Siemens-Werken 18, 225–291 (1939).
  37. H. A. Bethe, Theory of the Boundary Layer of Crystal Rectifiers (Radiation Laboratory, Massachusetts Institute of Technology, 1942).
  38. A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys. 36, 3212–3220 (1965).
    [Crossref]
  39. C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9, 1035–1048 (1966).
    [Crossref]
  40. C. Y. Wu, “Interfacial layer-thermionic-diffusion theory for the Schottky barrier diode,” J. Appl. Phys. 53, 5947–5950 (1982).
    [Crossref]
  41. T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett. 84, 4884–4886 (2004).
    [Crossref]
  42. E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84, 535–537 (2004).
    [Crossref]
  43. O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001).
    [Crossref]
  44. O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
    [Crossref]
  45. T. Bruno, W. Haynes, and D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2016).
  46. S. N. Mohammad, “Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN,” J. Appl. Phys. 95, 7940–7953 (2004).
    [Crossref]
  47. A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
    [Crossref]
  48. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Appl. Phys. Express 6, 086502 (2013).
    [Crossref]
  49. M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Lett. 37, 212–215 (2016).
    [Crossref]
  50. Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV,” IEEE Electron Device Lett. 39, 869–872 (2018).
    [Crossref]
  51. M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEEE International Electron Devices Meeting (2013).
  52. M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10, 041101 (2017).
    [Crossref]
  53. K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, “Ga2O3 MOSFETs using spin-on-glass source/drain doping technology,” IEEE Electron Device Lett. 38, 513–516 (2017).
    [Crossref]
  54. Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, “Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors,” Appl. Phys. Lett. 112, 233503 (2018).
    [Crossref]
  55. S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, “Delta-doped β-gallium oxide field-effect transistor,” Appl. Phys. Express 10, 051102 (2017).
    [Crossref]
  56. K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.
  57. A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
    [Crossref]
  58. N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
    [Crossref]
  59. P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
    [Crossref]
  60. Y. Yao, R. F. Davis, and L. M. Porter, “Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties,” J. Electron. Mater. 46, 2053–2060 (2016).
    [Crossref]
  61. P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, and I. I. Kravchenko, “Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers,” J. Vac. Sci. Technol. B 35, 061201 (2017).
    [Crossref]
  62. T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
    [Crossref]
  63. H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P. D. Ye, “High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450  mA/mm,” IEEE Electron Device Lett. 38, 103–106 (2017).
    [Crossref]
  64. H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, and Y. Zhao, “A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates,” IEEE Trans. Electron Devices 65, 3507–3513 (2018).
    [Crossref]
  65. T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100, 181602 (2012).
    [Crossref]
  66. S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
    [Crossref]
  67. R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98, 131114 (2011).
    [Crossref]
  68. T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8, 031101 (2015).
    [Crossref]
  69. A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
    [Crossref]
  70. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates,” IEEE Electron Device Lett. 34, 493–495 (2013).
    [Crossref]
  71. E. Ahmadi, Y. Oshima, F. Wu, and J. S. Speck, “Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 32, 035004 (2017).
    [Crossref]
  72. Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, “Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals,” J. Vac. Sci. Technol. B 35, 03d113 (2017).
    [Crossref]
  73. M. J. Tadjer, V. D. Wheeler, D. I. Shahin, C. R. Eddy, and F. J. Kub, “Thermionic emission analysis of TiN and Pt Schottky contacts to β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P165–P168 (2017).
    [Crossref]
  74. M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
    [Crossref]
  75. S. Oh, G. Yang, and J. Kim, “Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures,” ECS J. Solid State Sci. Technol. 6, Q3022–Q3025 (2016).
    [Crossref]
  76. S. Ahn, F. Ren, L. Yuan, S. J. Pearton, and A. Kuramata, “Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P68–P72 (2017).
    [Crossref]
  77. E. Farzana, Z. Zhang, P. K. Paul, A. R. Arehart, and S. A. Ringel, “Influence of metal choice on (010) β-Ga2O3 Schottky diode properties,” Appl. Phys. Lett. 110, 202102 (2017).
    [Crossref]
  78. M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
    [Crossref]
  79. J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
    [Crossref]
  80. T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu, “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects,” Jpn. J. Appl. Phys. 56, 086501 (2017).
    [Crossref]
  81. Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
    [Crossref]
  82. M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
    [Crossref]
  83. Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
    [Crossref]
  84. K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
    [Crossref]
  85. R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, “Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing,” Appl. Phys. Lett. 94, 222102 (2009).
    [Crossref]
  86. D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J. J. van Rensburg, W. E. Meyer, and M. Grundmann, “Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition,” Phys. Status Solidi A 211, 40–47 (2014).
    [Crossref]
  87. K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, and S. Yamakoshi, “First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes,” IEEE Electron Device Lett. 38, 783–785 (2017).
    [Crossref]
  88. H. H. Tippins, “Optical absorption and photoconductivity in the band edge of β-Ga2O3,” Phys. Rev. 140, A316–A319 (1965).
    [Crossref]
  89. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Anisotropy of electrical and optical properties in β-Ga2O3 single crystals,” Appl. Phys. Lett. 71, 933–935 (1997).
    [Crossref]
  90. M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77, 4166–4168 (2000).
    [Crossref]
  91. D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47, 7311–7313 (2008).
    [Crossref]
  92. K. A. Mengle, G. Shi, D. Bayerl, and E. Kioupakis, “First-principles calculations of the near-edge optical properties of β-Ga2O3,” Appl. Phys. Lett. 109, 212104 (2016).
    [Crossref]
  93. R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74, 719–722 (1952).
    [Crossref]
  94. S. Geller, “Crystal structure of β-Ga2O3,” J. Chem. Phys. 33, 676–684 (1960).
    [Crossref]
  95. H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74, 195123 (2006).
    [Crossref]
  96. H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, “Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction,” Chemistry 19, 2803–2813 (2013).
    [Crossref]
  97. M. Marezio and J. P. Remeika, “Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2–xFexO3,” J. Chem. Phys. 46, 1862–1865 (1967).
    [Crossref]
  98. S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, “Structures and energetics of Ga2O3 polymorphs,” J. Phys. Condens. Matter 19, 346211 (2007).
    [Crossref]
  99. R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, “Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer,” Phys. Status Solidi B 255, 1700326 (2018).
    [Crossref]
  100. Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
    [Crossref]
  101. C. O. Areán, A. L. Bellan, M. P. Mentruit, M. R. G. Delgado, and G. T. Palomino, “Preparation and characterization of mesoporous γ-Ga2O3,” Microporous Mesoporous Mater. 40, 35–42 (2000).
    [Crossref]
  102. T. Oshima, T. Nakazono, A. Mukai, and A. Ohtomo, “Epitaxial growth of γ-Ga2O3 films by mist chemical vapor deposition,” J. Cryst. Growth 359, 60–63 (2012).
    [Crossref]
  103. H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, “Characterization of structural disorder in γ-Ga2O3,” J. Phys. Chem. C 118, 16188–16198 (2014).
    [Crossref]
  104. F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
    [Crossref]
  105. D. Tahara, H. Nishinaka, M. Noda, and M. Yoshimoto, “Use of mist chemical vapor deposition to impart ferroelectric properties to ε-Ga2O3 thin films on SnO2/c-sapphire substrates,” Mater. Lett. 232, 47–50 (2018).
    [Crossref]
  106. Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, “Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy,” J. Appl. Phys. 118, 085301 (2015).
    [Crossref]
  107. M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
    [Crossref]
  108. I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
    [Crossref]
  109. S. B. Cho and R. Mishra, “Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface,” Appl. Phys. Lett. 112, 162101 (2018).
    [Crossref]
  110. H. Nishinaka, D. Tahara, and M. Yoshimoto, “Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202bc (2016).
    [Crossref]
  111. F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
    [Crossref]
  112. X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du, “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett. 108, 202103 (2016).
    [Crossref]
  113. S.-D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi C 10, 1592–1595 (2013).
    [Crossref]
  114. Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
    [Crossref]
  115. A. O. Chase, “Growth of β-Ga2O3 by the Verneuil technique,” J. Am. Ceram. Soc. 47, 470 (1964).
    [Crossref]
  116. M. Fleischer and H. Meixner, “Electron mobility in single- and polycrystalline Ga2O3,” J. Appl. Phys. 74, 300–305 (1993).
    [Crossref]
  117. K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, “Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air,” J. Cryst. Growth 447, 36–41 (2016).
    [Crossref]
  118. E. Ohba, T. Kobayashi, M. Kado, and K. Hoshikawa, “Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method,” Jpn. J. Appl. Phys. 55, 1202bf (2016).
    [Crossref]
  119. M. Saurat and A. Revcolevschi, “Preparation by floating zone method, of refractory oxide monocrystals, in particular of gallium oxide, and study of some of their properties,” Rev. Int. Hautes Temp. Refract. 8, 291 (1971).
  120. N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett. 70, 3561–3563 (1997).
    [Crossref]
  121. Y. Tomm, J. M. Ko, A. Yoshikawa, and T. Fukuda, “Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications,” Sol. Energy Mater. Sol. Cells 66, 369–374 (2001).
    [Crossref]
  122. E. G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study on β-Ga2O3,” Jpn. J. Appl. Phys. 41, L622–L625 (2002).
    [Crossref]
  123. E. G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, and T. Fukuda, “Infrared reflectance and electrical conductivity of β-Ga2O3,” Phys. Status Solidi A 193, 187–195 (2002).
    [Crossref]
  124. E. G. Víllora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura, and T. Fukuda, “Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses,” Solid State Commun. 127, 385–388 (2003).
    [Crossref]
  125. E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
    [Crossref]
  126. J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, and J. Xu, “Growth and spectral characterization of β-Ga2O3 single crystals,” J. Phys. Chem. Solids 67, 2448–2451 (2006).
    [Crossref]
  127. J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu, “Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn,” J. Phys. Chem. Solids 67, 1656–1659 (2006).
    [Crossref]
  128. N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal,” Phys. Status Solidi C 4, 2310–2313 (2007).
    [Crossref]
  129. S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing,” Thin Solid Films 516, 5763–5767 (2008).
    [Crossref]
  130. E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
    [Crossref]
  131. Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
    [Crossref]
  132. Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
    [Crossref]
  133. Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
    [Crossref]
  134. H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method,” Jpn. J. Appl. Phys. 47, 8506–8509 (2008).
    [Crossref]
  135. W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, “High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method,” J. Alloys Compd. 714, 453–458 (2017).
    [Crossref]
  136. W. Mu, Z. Jia, Y. Yin, Q. Hu, J. Zhang, Q. Feng, Y. Hao, and X. Tao, “One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,” CrystEngComm 19, 5122–5127 (2017).
    [Crossref]
  137. G. Katz and R. Roy, “Flux growth and characterization of β-Ga2O3 single crystals,” J. Am. Ceram. Soc. 49, 168–169 (1966).
    [Crossref]
  138. G. Garton, S. H. Smith, and B. M. Wanklyn, “Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5,” J. Cryst. Growth 13-14, 588–592 (1972).
    [Crossref]
  139. V. I. Chani, K. Inoue, K. Shimamura, K. Sugiyama, and T. Fukuda, “Segregation coefficients in β-Ga2O3: Cr crystals grown from a B2O3 based flux,” J. Cryst. Growth 132, 335–336 (1993).
    [Crossref]
  140. T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, “Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3,” Jpn. J. Appl. Phys. 13, 1578–1582 (1974).
    [Crossref]
  141. H. Juskowiak and A. Pajaczkowska, “Chemical transport of β-Ga2O3 using chlorine as a transporting agent,” J. Mater. Sci. 21, 3430–3434 (1986).
    [Crossref]
  142. A. Pajączkowska and H. Juskowiak, “On the chemical transport of gallium oxide in the Ga2O3/N-H-Cl system,” J. Cryst. Growth 79, 421–426 (1986).
    [Crossref]
  143. K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method,” J. Appl. Phys. 110, 063720 (2011).
    [Crossref]
  144. S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
    [Crossref]
  145. M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, “Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates,” ECS J. Solid State Sci. Technol. 6, Q3040–Q3044 (2016).
    [Crossref]
  146. S.-D. Lee, K. Kaneko, and S. Fujita, “Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202B8 (2016).
    [Crossref]
  147. E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 10, 041102 (2017).
    [Crossref]
  148. K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
    [Crossref]
  149. K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
    [Crossref]
  150. S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, “n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 33, 045001 (2018).
    [Crossref]
  151. J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle, “Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides,” Phys. Rev. B 85, 081109 (2012).
    [Crossref]
  152. P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
    [Crossref]
  153. A. Kyrtsos, M. Matsubara, and E. Bellotti, “On the feasibility of p-type Ga2O3,” Appl. Phys. Lett. 112, 032108 (2018).
    [Crossref]
  154. A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, and G. H. Jessen, “Donors and deep acceptors in β-Ga2O3,” Appl. Phys. Lett. 113, 062101 (2018).
    [Crossref]
  155. T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Appl. Phys. Lett. 103, 041910 (2013).
    [Crossref]
  156. M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Anomalous Fe diffusion in Si-ion-implanted β-Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers,” Appl. Phys. Lett. 106, 032105 (2015).
    [Crossref]
  157. C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, and X. Zhao, “Electronic structure and optical property of metal-doped Ga2O3: a first principles study,” RSC Adv. 6, 78322–78334 (2016).
    [Crossref]
  158. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett. 100, 013504 (2012).
    [Crossref]
  159. N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett. 109, 212101 (2016).
    [Crossref]
  160. T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516, 5768–5771 (2008).
    [Crossref]
  161. W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
    [Crossref]
  162. S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Lett. 109, 062102 (2016).
    [Crossref]
  163. J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor,” ACS Appl. Mater. Interfaces 9, 21322–21327 (2017).
    [Crossref]
  164. M. Si, L. Yang, H. Zhou, and P. D. Ye, “β-Ga2O3 nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications,” ACS Omega 2, 7136–7140 (2017).
    [Crossref]
  165. H. Zhou, K. Maize, G. Qiu, A. Shakouri, and P. D. Ye, “β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect,” Appl. Phys. Lett. 111, 092102 (2017).
    [Crossref]
  166. J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics,” ACS Appl. Mater. Interfaces 10, 29724–29729 (2018).
    [Crossref]
  167. Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton, and F. Ren, “Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching,” Appl. Phys. Lett. 110, 131901 (2017).
    [Crossref]
  168. S. Oh, C.-K. Kim, and J. Kim, “High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes,” ACS Photon. 5, 1123–1128 (2017).
    [Crossref]
  169. S. Oh, J. Kim, F. Ren, S. J. Pearton, and J. Kim, “Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity,” J. Mater. Chem. C 4, 9245–9250 (2016).
    [Crossref]
  170. S. Oh, M. A. Mastro, M. J. Tadjer, and J. Kim, “Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake,” ECS J. Solid State Sci. Technol. 6, Q79–Q83 (2017).
    [Crossref]
  171. E. G. Víllora, K. Shimamura, K. Kitamura, and K. Aoki, “Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3,” Appl. Phys. Lett. 88, 031105 (2006).
    [Crossref]
  172. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy,” J. Cryst. Growth 392, 30–33 (2014).
    [Crossref]
  173. D. Gogova, M. Schmidbauer, and A. Kwasniewski, “Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE,” CrystEngComm 17, 6744–6752 (2015).
    [Crossref]
  174. K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, “Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy,” J. Cryst. Growth 405, 19–22 (2014).
    [Crossref]
  175. H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
    [Crossref]
  176. S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109, 132103 (2016).
    [Crossref]
  177. S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108, 182105 (2016).
    [Crossref]
  178. T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
    [Crossref]
  179. S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
    [Crossref]
  180. R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
    [Crossref]
  181. X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures,” ACS Appl. Mater. Interfaces 9, 36997–37005 (2017).
    [Crossref]
  182. M. Oda, K. Kaneko, S. Fujita, and T. Hitora, “Crack-free thick (∼5  μm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers,” Jpn. J. Appl. Phys. 55, 070304 (2016).
    [Crossref]
  183. K. Kaneko, S. Fujita, and T. Hitora, “A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique,” Jpn. J. Appl. Phys. 57, 02cb18 (2018).
    [Crossref]
  184. S. Fujita, “Evolution of oxide semiconductors for novel functional device applications,” in IEEE 16th International Conference on Nanotechnology (IEEE-Nano) (2016), pp. 714–717.
  185. T. Uchida, K. Kaneko, and S. Fujita, “Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates,” MRS Adv. 3, 171–177 (2018).
    [Crossref]
  186. M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, and T. Hitora, “Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®,” Appl. Phys. Express 9, 021101 (2016).
    [Crossref]
  187. G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, “Mist-CVD grown Sn-doped α-Ga2O3 MESFETs,” IEEE Trans. Electron Devices 62, 3640–3644 (2015).
    [Crossref]
  188. M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,” Thin Solid Films 411, 134–139 (2002).
    [Crossref]
  189. T. Oshima, K. Matsuyama, K. Yoshimatsu, and A. Ohtomo, “Conducting Si-doped γ-Ga2O3 epitaxial films grown by pulsed-laser deposition,” J. Cryst. Growth 421, 23–26 (2015).
    [Crossref]
  190. L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
    [Crossref]
  191. B. Fernandes, M. Hegde, P. C. Stanish, Z. L. Mišković, and P. V. Radovanovic, “Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: the role of exclusion distance at short time scales,” Chem. Phys. Lett. 684, 135–140 (2017).
    [Crossref]
  192. V. Ghodsi, S. Jin, J. C. Byers, Y. Pan, and P. V. Radovanovic, “Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states,” J. Phys. Chem. C 121, 9433–9441 (2017).
    [Crossref]
  193. J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
    [Crossref]
  194. A. H. A. Makinudin, T. M. Bawazeer, N. Alsenany, M. S. Alsoufi, and A. Supangat, “Gallium oxide nanospheres: effect of the post-annealing treatment,” Mater. Lett. 194, 53–57 (2017).
    [Crossref]
  195. A. Singhal and I. Lieberwirth, “Non-aqueous synthesis of blue light emitting γ-Ga2O3 and c-In2O3 nanostructures from their ethylene glycolate precursors,” Mater. Lett. 161, 112–116 (2015).
    [Crossref]
  196. T. Wang, S. S. Farvid, and M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc. 132, 9250–9252 (2010).
    [Crossref]
  197. S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95, 103102 (2009).
    [Crossref]
  198. E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
    [Crossref]
  199. K. F. Cai, S. Shen, C. Yan, and S. Bateman, “Preparation, characterization and formation mechanism of gallium oxide nanowires,” Curr. Appl. Phys. 8, 363–366 (2008).
    [Crossref]
  200. K.-W. Chang and J.-J. Wu, “Low-temperature catalytic growth of β-Ga2O3 nanowires using single organometallic precursor,” J. Phys. Chem. B 108, 1838–1843 (2004).
    [Crossref]
  201. L.-W. Chang, T.-Y. Lu, Y.-L. Chen, J.-W. Yeh, and H. C. Shih, “Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires,” Mater. Lett. 65, 2281–2283 (2011).
    [Crossref]
  202. P.-C. Chang, Z. Fan, W.-Y. Tseng, A. Rajagopal, and J. G. Lu, “β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor,” Appl. Phys. Lett. 87, 222102 (2005).
    [Crossref]
  203. X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, “Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction,” ACS Appl. Mater. Interfaces 8, 4185–4191 (2016).
    [Crossref]
  204. K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
    [Crossref]
  205. Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
    [Crossref]
  206. I. D. Hosein, M. Hegde, P. D. Jones, V. Chirmanov, and P. V. Radovanovic, “Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition,” J. Cryst. Growth 396, 24–32 (2014).
    [Crossref]
  207. C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
    [Crossref]
  208. J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
    [Crossref]
  209. Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, “Preparation and electrical properties of ultrafine Ga2O3 nanowires,” J. Phys. Chem. B 110, 796–800 (2006).
    [Crossref]
  210. J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
    [Crossref]
  211. J. Jie, C. Wu, Y. Yu, L. Wang, and Z. Hu, “Gallium-assisted growth of flute-like MgO nanotubes, Ga2O3-filled MgO nanotubes, and MgO/Ga2O3 co-axial nanotubes,” Nanotechnology 20, 075602 (2009).
    [Crossref]
  212. J. L. Johnson, Y. Choi, and A. Ural, “GaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst,” J. Vac. Sci. Technol. B 26, 1841–1847 (2008).
    [Crossref]
  213. M. C. Johnson, S. Aloni, D. E. McCready, and E. D. Bourret-Courchesne, “Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport,” Cryst. Growth Des. 6, 1936–1941 (2006).
    [Crossref]
  214. M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
    [Crossref]
  215. M. Kumar, G. Sarau, M. Heilmann, S. Christiansen, V. Kumar, and R. Singh, “Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires,” J. Phys. D 50, 035302 (2017).
    [Crossref]
  216. S. Kumar, G. Sarau, C. Tessarek, M. Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, “Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. D 47, 435101 (2014).
    [Crossref]
  217. C. L. Kuo and M. H. Huang, “The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates,” Nanotechnology 19, 155604 (2008).
    [Crossref]
  218. Z. Li, B. Zhao, P. Liu, and Y. Zhang, “Synthesis of gallium oxide nanowires and their electrical properties,” Microelectron. Eng. 85, 1613–1615 (2008).
    [Crossref]
  219. C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires,” Appl. Phys. Lett. 78, 3202–3204 (2001).
    [Crossref]
  220. I. López, M. Alonso-Orts, E. Nogales, B. Méndez, and J. Piqueras, “Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method,” Semicond. Sci. Technol. 31, 115003 (2016).
    [Crossref]
  221. I. López, E. Nogales, B. Méndez, and J. Piqueras, “Resonant cavity modes in gallium oxide microwires,” Appl. Phys. Lett. 100, 261910 (2012).
    [Crossref]
  222. I. López, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires,” J. Phys. Chem. C 117, 3036–3045 (2013).
    [Crossref]
  223. Y. Luo, Z. Hou, J. Gao, D. Jin, and X. Zheng, “Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route,” Mater. Sci. Eng. B 140, 123–127 (2007).
    [Crossref]
  224. G. Martinez-Criado, J. Segura-Ruiz, M. H. Chu, R. Tucoulou, I. Lopez, E. Nogales, B. Mendez, and J. Piqueras, “Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution,” Nano Lett. 14, 5479–5487 (2014).
    [Crossref]
  225. L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold, and S. M. Prokes, “Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors,” Langmuir 26, 13722–13726 (2010).
    [Crossref]
  226. L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K. Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, and S. M. Prokes, “Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications,” Cryst. Growth Des. 9, 4471–4479 (2009).
    [Crossref]
  227. L. Mazeina, Y. N. Picard, and S. M. Prokes, “Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires,” Cryst. Growth Des. 9, 1164–1169 (2009).
    [Crossref]
  228. E. Nogales, J. A. García, B. Méndez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101, 033517 (2007).
    [Crossref]
  229. E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 91, 133108 (2007).
    [Crossref]
  230. E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, and E. Alves, “Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures,” Nanotechnology 22, 285706 (2011).
    [Crossref]
  231. G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, “Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D 42, 185409 (2009).
    [Crossref]
  232. M. Suh, M. Meyyappan, and S. Ju, “The effect of Ga content on In2xGa2−2xO3 nanowire transistor characteristics,” Nanotechnology 23, 305203 (2012).
    [Crossref]
  233. T. Terasako, Y. Kawasaki, and M. Yagi, “Growth and morphology control of β-Ga2O3 nanostructures by atmospheric-pressure CVD,” Thin Solid Films 620, 23–29 (2016).
    [Crossref]
  234. Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
    [Crossref]
  235. H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
    [Crossref]
  236. S. Kumar, C. Tessarek, S. Christiansen, and R. Singh, “A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique,” J. Alloys Compd. 587, 812–818 (2014).
    [Crossref]
  237. W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, and Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22, 17984–17991 (2012).
    [Crossref]
  238. Y. L. Wu, S.-J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C. Chen, “Ga2O3 nanowire photodetector prepared on SiO2 template,” IEEE Sens. J. 13, 2368–2373 (2013).
    [Crossref]
  239. S. Kumar, S. Dhara, R. Agarwal, and R. Singh, “Study of photoconduction properties of CVD grown β-Ga2O3 nanowires,” J. Alloys Compd. 683, 143–148 (2016).
    [Crossref]
  240. B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15, 3988–3993 (2015).
    [Crossref]
  241. D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
    [Crossref]
  242. X. Liu, G. Qiu, Y. Zhao, N. Zhang, and R. Yi, “Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods,” J. Alloys Compd. 439, 275–278 (2007).
    [Crossref]
  243. J. Zhang, Z. Liu, C. Lin, and J. Lin, “A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties,” J. Cryst. Growth 280, 99–106 (2005).
    [Crossref]
  244. S. C. Vanithakumari and K. K. Nanda, “A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors,” Adv. Mater. 21, 3581–3584 (2009).
    [Crossref]
  245. X.-S. Wang, W.-S. Li, J.-Q. Situ, X.-Y. Ying, H. Chen, Y. Jin, and Y.-Z. Du, “Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery,” RSC Adv. 5, 12886–12889 (2015).
    [Crossref]
  246. G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
    [Crossref]
  247. J. Zhang, S. Jiao, Y. Wan, S. Gao, D. Wang, and J. Wang, “A well-grown β-Ga2O3 microrods array transformed by GaOOH on Si (100) substrate and growth mechanism study,” CrystEngComm 20, 4329–4335 (2018).
    [Crossref]
  248. K. K. Cho, G. B. Cho, K. W. Kim, and K. S. Ryu, “Growth behavior of β-Ga2O3 nanomaterials synthesized by catalyst-free thermal evaporation,” Phys. Scr. T139, 014079 (2010).
    [Crossref]
  249. A. K. Narayana Swamy, E. Shafirovich, and C. V. Ramana, “Synthesis of one-dimensional Ga2O3 nanostructures via high-energy ball milling and annealing of GaN,” Ceram. Int. 39, 7223–7227 (2013).
    [Crossref]
  250. Y. Peng, N. Yu, Y. Xiang, J. Liu, L. Cao, and S. Huang, “One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical properties,” J. Nanosci. Nanotechnol. 18, 5654–5659 (2018).
    [Crossref]
  251. S. Rafique, L. Han, C. A. Zorman, and H. Zhao, “Synthesis of wide bandgap β-Ga2O3 rods on 3C-SiC-on-Si,” Cryst. Growth Des. 16, 511–517 (2015).
    [Crossref]
  252. Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Gallium oxide nanoribbons and nanosheets,” J. Phys. Chem. B 106, 902–904 (2002).
    [Crossref]
  253. Y. Guo, J. Zhang, F. Zhu, Z. X. Yang, J. Xu, and J. Yu, “Self-assembly of β-Ga2O3 nanobelts,” Appl. Surf. Sci. 254, 5124–5128 (2008).
    [Crossref]
  254. L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
    [Crossref]
  255. L.-C. Tien, W.-T. Chen, and C.-H. Ho, “Enhanced photocatalytic activity in β-Ga2O3 nanobelts,” J. Am. Ceram. Soc. 94, 3117–3122 (2011).
    [Crossref]
  256. R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (/00) facet-oriented β-Ga2O3 nanobelts,” Small 10, 1848–1856 (2014).
    [Crossref]
  257. F. Zhu, Z. X. Yang, W. M. Zhou, and Y. F. Zhang, “Direct synthesis of beta gallium oxide nanowires, nanobelts, nanosheets and nanograsses by microwave plasma,” Solid State Commun. 137, 177–181 (2006).
    [Crossref]
  258. W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, and B. Yang, “Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors,” J. Mater. Chem. C 2, 3254–3259 (2014).
    [Crossref]
  259. M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, “High-performance single crystalline UV photodetectors of β-Ga2O3,” J. Alloys Compd. 619, 572–575 (2015).
    [Crossref]
  260. E. Nogales, B. Mendez, and J. Piqueras, “Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope,” Ultramicroscopy 111, 1037–1042 (2011).
    [Crossref]
  261. E. Nogales, B. Mendez, J. Piqueras, and J. A. Garcia, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
    [Crossref]
  262. T. Shao, P. Zhang, L. Jin, and Z. Li, “Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide,” Appl. Catal. B 142-143, 654–661 (2013).
    [Crossref]
  263. Y. Teng, X. Song le, A. Ponchel, Z. K. Yang, and J. Xia, “Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection,” Adv. Mater. 26, 6238–6243 (2014).
    [Crossref]
  264. G. Shin, H.-Y. Kim, and J. Kim, “Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction,” Korean J. Chem. Eng. 35, 574–578 (2017).
    [Crossref]
  265. G. Yang, S. Jang, F. Ren, S. J. Pearton, and J. Kim, “Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors,” ACS Appl. Mater. Interfaces 9, 40471–40476 (2017).
    [Crossref]
  266. P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88, 153107 (2006).
    [Crossref]
  267. N. D. Cuong, Y. W. Park, and S. G. Yoon, “Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique,” Sens. Actuators B 140, 240–244 (2009).
    [Crossref]
  268. S. Phumying, S. Labauyai, W. Chareonboon, S. Phokha, and S. Maensiri, “Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution,” Jpn. J. Appl. Phys. 54, 06fj13 (2015).
    [Crossref]
  269. W.-S. Jung, H. U. Joo, and B.-K. Min, “Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder,” Phys. E (Amsterdam) 36, 226–230 (2007).
    [Crossref]
  270. R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
    [Crossref]
  271. B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, “An ultrahigh responsivity (9.7 mA·W–1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures,” Adv. Funct. Mater. 27, 1700264 (2017).
    [Crossref]
  272. Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
    [Crossref]
  273. C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
    [Crossref]
  274. H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88, 261904 (2006).
    [Crossref]
  275. A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
    [Crossref]
  276. V. M. Bermudez, “The structure of low-index surfaces of β-Ga2O3,” Chem. Phys. 323, 193–203 (2006).
    [Crossref]
  277. T. Liu, I. Tranca, J. Yang, X. Zhou, and C. Li, “Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting,” J. Mater. Chem. A 3, 10309–10319 (2015).
    [Crossref]
  278. K. Yamaguchi, “First principles study on electronic structure of β-Ga2O3,” Solid State Commun. 131, 739–744 (2004).
    [Crossref]
  279. J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97, 142106 (2010).
    [Crossref]
  280. C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
    [Crossref]
  281. T. C. Lovejoy, E. N. Yitamben, N. Shamir, J. Morales, E. G. Villora, K. Shimamura, S. Zheng, F. S. Ohuchi, and M. A. Olmstead, “Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100),” Appl. Phys. Lett. 94, 081906 (2009).
    [Crossref]
  282. M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “The electronic structure of β-Ga2O3,” Appl. Phys. Lett. 97, 211903 (2010).
    [Crossref]
  283. J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
    [Crossref]
  284. T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping,” J. Appl. Phys. 124, 075103 (2018).
    [Crossref]
  285. T. Harwig, F. Kellendonk, and S. Slappendel, “The ultraviolet luminescence of β-galliumsesquioxide,” J. Phys. Chem. Solids 39, 675–680 (1978).
    [Crossref]
  286. T. Harwig and F. Kellendonk, “Some observations on the photoluminescence of doped β-galliumsesquioxide,” J. Solid State Chem. 24, 255–263 (1978).
    [Crossref]
  287. L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59, 1241–1249 (1998).
    [Crossref]
  288. C. Rivera, J. L. Pau, E. Muñoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, “Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates,” Appl. Phys. Lett. 88, 213507 (2006).
    [Crossref]
  289. S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Very narrow-band ultraviolet photodetection based on strained M-plane GaN films,” Appl. Phys. Lett. 90, 091110 (2007).
    [Crossref]
  290. S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Narrow-band photodetection based on M-plane GaN films,” Phys. Status Solidi A 205, 1100–1102 (2008).
    [Crossref]
  291. K. H. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, “P-type transparent conducting oxides,” J. Phys. Condens. Matter 28, 383002 (2016).
    [Crossref]
  292. J. Furthmüller and F. Bechstedt, “Quasiparticle bands and spectra of Ga2O3 polymorphs,” Phys. Rev. B 93, 115204 (2016).
    [Crossref]
  293. J. L. Lyons, “A survey of acceptor dopants for β-Ga2O3,” Semicond. Sci. Technol. 33, 05LT02 (2018).
    [Crossref]
  294. K. Tetzner, A. Thies, E. B. Treidel, F. Brunner, and G. Wagner, “Selective area isolation of β-Ga2O3 using multiple energy nitrogen ion implantation,” Appl. Phys. Lett. 113, 172104 (2018).
    [Crossref]
  295. M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, “Acceptor doping of β-Ga2O3 by Mg and N ion implantations,” Appl. Phys. Lett. 113, 102103 (2018).
    [Crossref]
  296. M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
    [Crossref]
  297. B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
    [Crossref]
  298. A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
    [Crossref]
  299. H. Morko, Handbook of Nitride Semiconductors and Devices (Springer, 2008).
  300. B. C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, “Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach,” Phys. Rev. Lett. 105, 146401 (2010).
    [Crossref]
  301. H. Reiss, C. S. Fuller, and A. J. Pietruszkiewicz, “Solubility of lithium in doped and undoped silicon, evidence for compound formation,” J. Chem. Phys. 25, 650–655 (1956).
    [Crossref]
  302. H. Reiss, C. S. Fuller, and F. J. Morin, “Chemical interactions among defects in germanium and silicon,” Bell Syst. Tech. J. 35, 535–636 (1956).
    [Crossref]
  303. R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Codoping of wide gap epitaxial III-nitride semiconductors,” Opto-Electron. Rev. 10, 243–249 (2002).
  304. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates,” Appl. Phys. Express 1, 011202 (2008).
    [Crossref]
  305. T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, “Flame detection by a β-Ga2O3-based sensor,” Jpn. J. Appl. Phys. 48, 011605 (2009).
    [Crossref]
  306. C. Yang, H. Liang, Z. Zhang, X. Xia, P. Tao, Y. Chen, H. Zhang, R. Shen, Y. Luo, and G. Du, “Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3,” RSC Adv. 8, 6341–6345 (2018).
    [Crossref]
  307. Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90, 031912 (2007).
    [Crossref]
  308. T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors,” Jpn. J. Appl. Phys. 46, 7217–7220 (2007).
    [Crossref]
  309. D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
    [Crossref]
  310. D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
    [Crossref]
  311. G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23, 13554–13561 (2015).
    [Crossref]
  312. Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
    [Crossref]
  313. D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
    [Crossref]
  314. Y. H. An, Y. S. Zhi, W. Cui, X. L. Zhao, Z. P. Wu, D. Y. Guo, P. G. Li, and W. H. Tang, “Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors,” J. Nanosci. Nanotechnol. 17, 9091–9094 (2017).
    [Crossref]
  315. S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, “Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates,” Adv. Opt. Mater. 5, 1700454 (2017).
    [Crossref]
  316. S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
    [Crossref]
  317. L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P. T. Lai, X.-Z. Liu, and Y.-R. Li, “Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide,” ACS Photon. 4, 2203–2211 (2017).
    [Crossref]
  318. A. S. Pratiyush, S. Krishnamoorthy, S. Vishnu Solanke, Z. Xia, R. Muralidharan, S. Rajan, and D. N. Nath, “High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector,” Appl. Phys. Lett. 110, 221107 (2017).
    [Crossref]
  319. F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
    [Crossref]
  320. H.-Y. Lee, J.-T. Liu, and C.-T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photon. Technol. Lett. 30, 549–552 (2018).
    [Crossref]
  321. S.-H. Yuan, C.-C. Wang, S.-Y. Huang, and D.-S. Wuu, “Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum,” IEEE Electron Device Lett. 39, 220–223 (2018).
    [Crossref]
  322. Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
    [Crossref]
  323. W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
    [Crossref]
  324. Y. Kokubun, T. Abe, and S. Nakagomi, “Sol-gel prepared (Ga1–xInx)2O3 thin films for solar-blind ultraviolet photodetectors,” Phys. Status Solidi A 207, 1741–1745 (2010).
    [Crossref]
  325. T.-H. Chang, S.-J. Chang, C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett. 27, 915–918 (2015).
    [Crossref]
  326. Z. Zhang, H. von Wenckstern, J. Lenzner, M. Lorenz, and M. Grundmann, “Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3,” Appl. Phys. Lett. 108, 123503 (2016).
    [Crossref]
  327. J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
    [Crossref]
  328. E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of bias on the responsivity of GaN metal–semiconductor–metal photodiodes,” Phys. Status Solidi A 176, 157–161 (1999).
    [Crossref]
  329. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett. 22, 709–711 (2010).
    [Crossref]
  330. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol. 10, 1047–1052 (2011).
    [Crossref]
  331. Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.-J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20, 3972–3978 (2010).
    [Crossref]
  332. I. López, A. Castaldini, A. Cavallini, E. Nogales, B. Méndez, and J. Piqueras, “β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector,” J. Phys. D 47, 415101 (2014).
    [Crossref]
  333. J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
    [Crossref]
  334. O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
    [Crossref]
  335. X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, “Recent advances in solution-processed inorganic nanofilm photodetectors,” Chem. Soc. Rev. 43, 1400–1422 (2014).
    [Crossref]
  336. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11, 1491–1492 (2011).
    [Crossref]
  337. W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 23, 444–446 (2011).
    [Crossref]
  338. Z.-D. Huang, W. Y. Weng, S. J. Chang, C.-J. Chiu, T.-J. Hsueh, and S.-L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sens. J. 13, 3462–3467 (2013).
    [Crossref]
  339. Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, and T.-Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett. 25, 1809–1811 (2013).
    [Crossref]
  340. S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A 232, 208–213 (2015).
    [Crossref]
  341. P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
    [Crossref]
  342. S. Nakagomi, T. Momo, S. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction,” Appl. Phys. Lett. 103, 072105 (2013).
    [Crossref]
  343. Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” J. Alloys Compd. 680, 247–251 (2016).
    [Crossref]
  344. S. Nakagomi, T. Sakai, K. Kikuchi, and Y. Kokubun, “β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes,” Phys. Status Solidi A 215, 1700796 (2018).
    [Crossref]
  345. Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
    [Crossref]
  346. D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
    [Crossref]
  347. Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
    [Crossref]
  348. Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, P. Li, and W. Tang, “Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer,” Appl. Phys. A 122, 1036 (2016).
    [Crossref]
  349. X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
    [Crossref]
  350. W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, and L. B. Luo, “Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application,” Adv. Mater. 28, 10725–10731 (2016).
    [Crossref]
  351. R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, and F. Huang, “High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication,” ACS Appl. Mater. Interfaces 10, 22419–22426 (2018).
    [Crossref]
  352. W. E. Mahmoud, “Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film,” Sol. Energy Mater. Sol. Cells 152, 65–72 (2016).
    [Crossref]
  353. Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, “Band alignment of Ga2O3/Si heterojunction interface measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 109, 102106 (2016).
    [Crossref]
  354. W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, “Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by x-ray photoelectron spectroscopy,” Nano. Res. Lett. 7, 562 (2012).
    [Crossref]
  355. M. Grodzicki, P. Mazur, S. Zuber, J. Brona, and A. Ciszewski, “Oxidation of GaN(0001) by low-energy ion bombardment,” Appl. Surf. Sci. 304, 20–23 (2014).
    [Crossref]
  356. S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
    [Crossref]
  357. H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
    [Crossref]
  358. T. Wang, W. Li, C. Ni, and A. Janotti, “Band gap and band offset of Ga2O3 and (AlxGa1–x)2O3 alloys,” Phys. Rev. Appl. 10, 011003 (2018).
    [Crossref]
  359. S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev. 5, 011301 (2018).
    [Crossref]
  360. T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay, “Experimental evaluation of impact ionization coefficients in AlxGa1–xN based avalanche photodiodes,” Appl. Phys. Lett. 89, 183524 (2006).
    [Crossref]
  361. Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
    [Crossref]
  362. M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation,” Appl. Phys. Lett. 112, 023503 (2018).
    [Crossref]
  363. J. Kim, S. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, and A. Y. Polyakov, “Radiation damage effects in Ga2O3 materials and devices,” J. Mater. Chem. C 7, 10–24 (2019).
  364. E. Wendler, E. Treiber, J. Baldauf, S. Wolf, and C. Ronning, “High-level damage saturation below amorphisation in ion implanted β-Ga2O3,” Nucl. Instrum. Methods Phys. Res. B 379, 85–90 (2016).
    [Crossref]
  365. “Ground breaking work on gallium oxide (Ga2O3) normally-off transistor,” FLOSFIA Inc., 2018, http://rocakk.sakura.ne.jp/index/struct/wp-content/uploads/79cd9d2dfa54a771f642e008cc4f9cb0.pdf .

2019 (1)

J. Kim, S. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, and A. Y. Polyakov, “Radiation damage effects in Ga2O3 materials and devices,” J. Mater. Chem. C 7, 10–24 (2019).

2018 (37)

R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, and F. Huang, “High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication,” ACS Appl. Mater. Interfaces 10, 22419–22426 (2018).
[Crossref]

T. Wang, W. Li, C. Ni, and A. Janotti, “Band gap and band offset of Ga2O3 and (AlxGa1–x)2O3 alloys,” Phys. Rev. Appl. 10, 011003 (2018).
[Crossref]

S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev. 5, 011301 (2018).
[Crossref]

M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation,” Appl. Phys. Lett. 112, 023503 (2018).
[Crossref]

H.-Y. Lee, J.-T. Liu, and C.-T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photon. Technol. Lett. 30, 549–552 (2018).
[Crossref]

S.-H. Yuan, C.-C. Wang, S.-Y. Huang, and D.-S. Wuu, “Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum,” IEEE Electron Device Lett. 39, 220–223 (2018).
[Crossref]

S. Nakagomi, T. Sakai, K. Kikuchi, and Y. Kokubun, “β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes,” Phys. Status Solidi A 215, 1700796 (2018).
[Crossref]

Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
[Crossref]

W. Zheng, R. Lin, Z. Zhang, and F. Huang, “Vacuum-ultraviolet photodetection in few-layered h-BN,” ACS Appl. Mater. Interfaces 10, 27116–27123 (2018).
[Crossref]

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

D. Li, K. Jiang, X. Sun, and C. Guo, “AlGaN photonics: recent advances in materials and ultraviolet devices,” Adv. Opt. Photon. 10, 43–110 (2018).
[Crossref]

Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV,” IEEE Electron Device Lett. 39, 869–872 (2018).
[Crossref]

Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, “Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors,” Appl. Phys. Lett. 112, 233503 (2018).
[Crossref]

H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, and Y. Zhao, “A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates,” IEEE Trans. Electron Devices 65, 3507–3513 (2018).
[Crossref]

S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
[Crossref]

Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
[Crossref]

R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, “Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer,” Phys. Status Solidi B 255, 1700326 (2018).
[Crossref]

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

D. Tahara, H. Nishinaka, M. Noda, and M. Yoshimoto, “Use of mist chemical vapor deposition to impart ferroelectric properties to ε-Ga2O3 thin films on SnO2/c-sapphire substrates,” Mater. Lett. 232, 47–50 (2018).
[Crossref]

S. B. Cho and R. Mishra, “Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface,” Appl. Phys. Lett. 112, 162101 (2018).
[Crossref]

K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
[Crossref]

S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, “n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 33, 045001 (2018).
[Crossref]

A. Kyrtsos, M. Matsubara, and E. Bellotti, “On the feasibility of p-type Ga2O3,” Appl. Phys. Lett. 112, 032108 (2018).
[Crossref]

A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, and G. H. Jessen, “Donors and deep acceptors in β-Ga2O3,” Appl. Phys. Lett. 113, 062101 (2018).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics,” ACS Appl. Mater. Interfaces 10, 29724–29729 (2018).
[Crossref]

K. Kaneko, S. Fujita, and T. Hitora, “A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique,” Jpn. J. Appl. Phys. 57, 02cb18 (2018).
[Crossref]

T. Uchida, K. Kaneko, and S. Fujita, “Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates,” MRS Adv. 3, 171–177 (2018).
[Crossref]

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

J. Zhang, S. Jiao, Y. Wan, S. Gao, D. Wang, and J. Wang, “A well-grown β-Ga2O3 microrods array transformed by GaOOH on Si (100) substrate and growth mechanism study,” CrystEngComm 20, 4329–4335 (2018).
[Crossref]

Y. Peng, N. Yu, Y. Xiang, J. Liu, L. Cao, and S. Huang, “One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical properties,” J. Nanosci. Nanotechnol. 18, 5654–5659 (2018).
[Crossref]

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping,” J. Appl. Phys. 124, 075103 (2018).
[Crossref]

J. L. Lyons, “A survey of acceptor dopants for β-Ga2O3,” Semicond. Sci. Technol. 33, 05LT02 (2018).
[Crossref]

K. Tetzner, A. Thies, E. B. Treidel, F. Brunner, and G. Wagner, “Selective area isolation of β-Ga2O3 using multiple energy nitrogen ion implantation,” Appl. Phys. Lett. 113, 172104 (2018).
[Crossref]

M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, “Acceptor doping of β-Ga2O3 by Mg and N ion implantations,” Appl. Phys. Lett. 113, 102103 (2018).
[Crossref]

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

C. Yang, H. Liang, Z. Zhang, X. Xia, P. Tao, Y. Chen, H. Zhang, R. Shen, Y. Luo, and G. Du, “Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3,” RSC Adv. 8, 6341–6345 (2018).
[Crossref]

2017 (60)

B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
[Crossref]

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
[Crossref]

G. Shin, H.-Y. Kim, and J. Kim, “Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction,” Korean J. Chem. Eng. 35, 574–578 (2017).
[Crossref]

G. Yang, S. Jang, F. Ren, S. J. Pearton, and J. Kim, “Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors,” ACS Appl. Mater. Interfaces 9, 40471–40476 (2017).
[Crossref]

B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, “An ultrahigh responsivity (9.7 mA·W–1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures,” Adv. Funct. Mater. 27, 1700264 (2017).
[Crossref]

B. Fernandes, M. Hegde, P. C. Stanish, Z. L. Mišković, and P. V. Radovanovic, “Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: the role of exclusion distance at short time scales,” Chem. Phys. Lett. 684, 135–140 (2017).
[Crossref]

V. Ghodsi, S. Jin, J. C. Byers, Y. Pan, and P. V. Radovanovic, “Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states,” J. Phys. Chem. C 121, 9433–9441 (2017).
[Crossref]

M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
[Crossref]

M. Kumar, G. Sarau, M. Heilmann, S. Christiansen, V. Kumar, and R. Singh, “Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires,” J. Phys. D 50, 035302 (2017).
[Crossref]

T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures,” ACS Appl. Mater. Interfaces 9, 36997–37005 (2017).
[Crossref]

A. H. A. Makinudin, T. M. Bawazeer, N. Alsenany, M. S. Alsoufi, and A. Supangat, “Gallium oxide nanospheres: effect of the post-annealing treatment,” Mater. Lett. 194, 53–57 (2017).
[Crossref]

Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton, and F. Ren, “Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching,” Appl. Phys. Lett. 110, 131901 (2017).
[Crossref]

S. Oh, C.-K. Kim, and J. Kim, “High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes,” ACS Photon. 5, 1123–1128 (2017).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor,” ACS Appl. Mater. Interfaces 9, 21322–21327 (2017).
[Crossref]

M. Si, L. Yang, H. Zhou, and P. D. Ye, “β-Ga2O3 nanomembrane negative capacitance field-effect transistors with steep subthreshold slope for wide band gap logic applications,” ACS Omega 2, 7136–7140 (2017).
[Crossref]

H. Zhou, K. Maize, G. Qiu, A. Shakouri, and P. D. Ye, “β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect,” Appl. Phys. Lett. 111, 092102 (2017).
[Crossref]

S. Oh, M. A. Mastro, M. J. Tadjer, and J. Kim, “Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake,” ECS J. Solid State Sci. Technol. 6, Q79–Q83 (2017).
[Crossref]

P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
[Crossref]

E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 10, 041102 (2017).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, “High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method,” J. Alloys Compd. 714, 453–458 (2017).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, J. Zhang, Q. Feng, Y. Hao, and X. Tao, “One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,” CrystEngComm 19, 5122–5127 (2017).
[Crossref]

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, and S. Yamakoshi, “First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes,” IEEE Electron Device Lett. 38, 783–785 (2017).
[Crossref]

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
[Crossref]

S. Ahn, F. Ren, L. Yuan, S. J. Pearton, and A. Kuramata, “Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P68–P72 (2017).
[Crossref]

E. Farzana, Z. Zhang, P. K. Paul, A. R. Arehart, and S. A. Ringel, “Influence of metal choice on (010) β-Ga2O3 Schottky diode properties,” Appl. Phys. Lett. 110, 202102 (2017).
[Crossref]

M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
[Crossref]

J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
[Crossref]

T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu, “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects,” Jpn. J. Appl. Phys. 56, 086501 (2017).
[Crossref]

H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P. D. Ye, “High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450  mA/mm,” IEEE Electron Device Lett. 38, 103–106 (2017).
[Crossref]

E. Ahmadi, Y. Oshima, F. Wu, and J. S. Speck, “Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 32, 035004 (2017).
[Crossref]

Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, “Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals,” J. Vac. Sci. Technol. B 35, 03d113 (2017).
[Crossref]

M. J. Tadjer, V. D. Wheeler, D. I. Shahin, C. R. Eddy, and F. J. Kub, “Thermionic emission analysis of TiN and Pt Schottky contacts to β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P165–P168 (2017).
[Crossref]

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, and I. I. Kravchenko, “Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers,” J. Vac. Sci. Technol. B 35, 061201 (2017).
[Crossref]

S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, “Delta-doped β-gallium oxide field-effect transistor,” Appl. Phys. Express 10, 051102 (2017).
[Crossref]

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10, 041101 (2017).
[Crossref]

K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, “Ga2O3 MOSFETs using spin-on-glass source/drain doping technology,” IEEE Electron Device Lett. 38, 513–516 (2017).
[Crossref]

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

M. Kim, J.-H. Seo, U. Singisetti, and Z. Ma, “Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond,” J. Mater. Chem. C 5, 8338–8354 (2017).
[Crossref]

P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
[Crossref]

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Y. H. An, Y. S. Zhi, W. Cui, X. L. Zhao, Z. P. Wu, D. Y. Guo, P. G. Li, and W. H. Tang, “Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors,” J. Nanosci. Nanotechnol. 17, 9091–9094 (2017).
[Crossref]

S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, “Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates,” Adv. Opt. Mater. 5, 1700454 (2017).
[Crossref]

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P. T. Lai, X.-Z. Liu, and Y.-R. Li, “Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide,” ACS Photon. 4, 2203–2211 (2017).
[Crossref]

A. S. Pratiyush, S. Krishnamoorthy, S. Vishnu Solanke, Z. Xia, R. Muralidharan, S. Rajan, and D. N. Nath, “High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector,” Appl. Phys. Lett. 110, 221107 (2017).
[Crossref]

F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
[Crossref]

F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
[Crossref]

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
[Crossref]

2016 (48)

Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, P. Li, and W. Tang, “Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer,” Appl. Phys. A 122, 1036 (2016).
[Crossref]

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, and L. B. Luo, “Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application,” Adv. Mater. 28, 10725–10731 (2016).
[Crossref]

W. E. Mahmoud, “Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film,” Sol. Energy Mater. Sol. Cells 152, 65–72 (2016).
[Crossref]

Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, “Band alignment of Ga2O3/Si heterojunction interface measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 109, 102106 (2016).
[Crossref]

Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” J. Alloys Compd. 680, 247–251 (2016).
[Crossref]

E. Wendler, E. Treiber, J. Baldauf, S. Wolf, and C. Ronning, “High-level damage saturation below amorphisation in ion implanted β-Ga2O3,” Nucl. Instrum. Methods Phys. Res. B 379, 85–90 (2016).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
[Crossref]

Z. Zhang, H. von Wenckstern, J. Lenzner, M. Lorenz, and M. Grundmann, “Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3,” Appl. Phys. Lett. 108, 123503 (2016).
[Crossref]

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202a2 (2016).
[Crossref]

S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 (2016).
[Crossref]

S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 (2016).
[Crossref]

M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Lett. 37, 212–215 (2016).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

Y. Yao, R. F. Davis, and L. M. Porter, “Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties,” J. Electron. Mater. 46, 2053–2060 (2016).
[Crossref]

M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
[Crossref]

S. Oh, G. Yang, and J. Kim, “Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures,” ECS J. Solid State Sci. Technol. 6, Q3022–Q3025 (2016).
[Crossref]

A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
[Crossref]

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

K. A. Mengle, G. Shi, D. Bayerl, and E. Kioupakis, “First-principles calculations of the near-edge optical properties of β-Ga2O3,” Appl. Phys. Lett. 109, 212104 (2016).
[Crossref]

K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, “Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air,” J. Cryst. Growth 447, 36–41 (2016).
[Crossref]

E. Ohba, T. Kobayashi, M. Kado, and K. Hoshikawa, “Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method,” Jpn. J. Appl. Phys. 55, 1202bf (2016).
[Crossref]

H. Nishinaka, D. Tahara, and M. Yoshimoto, “Heteroepitaxial growth of ε-Ga2O3 thin films on cubic (111) MgO and (111) yttria-stablized zirconia substrates by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202bc (2016).
[Crossref]

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du, “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett. 108, 202103 (2016).
[Crossref]

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, “Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates,” ECS J. Solid State Sci. Technol. 6, Q3040–Q3044 (2016).
[Crossref]

S.-D. Lee, K. Kaneko, and S. Fujita, “Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202B8 (2016).
[Crossref]

C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, and X. Zhao, “Electronic structure and optical property of metal-doped Ga2O3: a first principles study,” RSC Adv. 6, 78322–78334 (2016).
[Crossref]

S. Oh, J. Kim, F. Ren, S. J. Pearton, and J. Kim, “Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity,” J. Mater. Chem. C 4, 9245–9250 (2016).
[Crossref]

N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett. 109, 212101 (2016).
[Crossref]

S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Lett. 109, 062102 (2016).
[Crossref]

M. Oda, K. Kaneko, S. Fujita, and T. Hitora, “Crack-free thick (∼5  μm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers,” Jpn. J. Appl. Phys. 55, 070304 (2016).
[Crossref]

L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
[Crossref]

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109, 132103 (2016).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108, 182105 (2016).
[Crossref]

M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, and T. Hitora, “Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®,” Appl. Phys. Express 9, 021101 (2016).
[Crossref]

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, “Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction,” ACS Appl. Mater. Interfaces 8, 4185–4191 (2016).
[Crossref]

I. López, M. Alonso-Orts, E. Nogales, B. Méndez, and J. Piqueras, “Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method,” Semicond. Sci. Technol. 31, 115003 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

T. Terasako, Y. Kawasaki, and M. Yagi, “Growth and morphology control of β-Ga2O3 nanostructures by atmospheric-pressure CVD,” Thin Solid Films 620, 23–29 (2016).
[Crossref]

S. Kumar, S. Dhara, R. Agarwal, and R. Singh, “Study of photoconduction properties of CVD grown β-Ga2O3 nanowires,” J. Alloys Compd. 683, 143–148 (2016).
[Crossref]

K. H. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, “P-type transparent conducting oxides,” J. Phys. Condens. Matter 28, 383002 (2016).
[Crossref]

J. Furthmüller and F. Bechstedt, “Quasiparticle bands and spectra of Ga2O3 polymorphs,” Phys. Rev. B 93, 115204 (2016).
[Crossref]

2015 (24)

A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
[Crossref]

T. Liu, I. Tranca, J. Yang, X. Zhou, and C. Li, “Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting,” J. Mater. Chem. A 3, 10309–10319 (2015).
[Crossref]

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15, 3988–3993 (2015).
[Crossref]

X.-S. Wang, W.-S. Li, J.-Q. Situ, X.-Y. Ying, H. Chen, Y. Jin, and Y.-Z. Du, “Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery,” RSC Adv. 5, 12886–12889 (2015).
[Crossref]

S. Rafique, L. Han, C. A. Zorman, and H. Zhao, “Synthesis of wide bandgap β-Ga2O3 rods on 3C-SiC-on-Si,” Cryst. Growth Des. 16, 511–517 (2015).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

S. Phumying, S. Labauyai, W. Chareonboon, S. Phokha, and S. Maensiri, “Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution,” Jpn. J. Appl. Phys. 54, 06fj13 (2015).
[Crossref]

M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, “High-performance single crystalline UV photodetectors of β-Ga2O3,” J. Alloys Compd. 619, 572–575 (2015).
[Crossref]

G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, “Mist-CVD grown Sn-doped α-Ga2O3 MESFETs,” IEEE Trans. Electron Devices 62, 3640–3644 (2015).
[Crossref]

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

T. Oshima, K. Matsuyama, K. Yoshimatsu, and A. Ohtomo, “Conducting Si-doped γ-Ga2O3 epitaxial films grown by pulsed-laser deposition,” J. Cryst. Growth 421, 23–26 (2015).
[Crossref]

A. Singhal and I. Lieberwirth, “Non-aqueous synthesis of blue light emitting γ-Ga2O3 and c-In2O3 nanostructures from their ethylene glycolate precursors,” Mater. Lett. 161, 112–116 (2015).
[Crossref]

D. Gogova, M. Schmidbauer, and A. Kwasniewski, “Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE,” CrystEngComm 17, 6744–6752 (2015).
[Crossref]

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Anomalous Fe diffusion in Si-ion-implanted β-Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers,” Appl. Phys. Lett. 106, 032105 (2015).
[Crossref]

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, “Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy,” J. Appl. Phys. 118, 085301 (2015).
[Crossref]

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8, 031101 (2015).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54, 112601 (2015).
[Crossref]

S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, F.-L. Schein, H. Frenzel, and M. Grundmann, “Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals,” Appl. Phys. Express 8, 121102 (2015).
[Crossref]

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A 232, 208–213 (2015).
[Crossref]

G. C. Hu, C. X. Shan, N. Zhang, M. M. Jiang, S. P. Wang, and D. Z. Shen, “High gain Ga2O3 solar-blind photodetectors realized via a carrier multiplication process,” Opt. Express 23, 13554–13561 (2015).
[Crossref]

T.-H. Chang, S.-J. Chang, C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett. 27, 915–918 (2015).
[Crossref]

2014 (19)

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

I. López, A. Castaldini, A. Cavallini, E. Nogales, B. Méndez, and J. Piqueras, “β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector,” J. Phys. D 47, 415101 (2014).
[Crossref]

X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, “Recent advances in solution-processed inorganic nanofilm photodetectors,” Chem. Soc. Rev. 43, 1400–1422 (2014).
[Crossref]

M. Grodzicki, P. Mazur, S. Zuber, J. Brona, and A. Ciszewski, “Oxidation of GaN(0001) by low-energy ion bombardment,” Appl. Surf. Sci. 304, 20–23 (2014).
[Crossref]

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, “Characterization of structural disorder in γ-Ga2O3,” J. Phys. Chem. C 118, 16188–16198 (2014).
[Crossref]

D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J. J. van Rensburg, W. E. Meyer, and M. Grundmann, “Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition,” Phys. Status Solidi A 211, 40–47 (2014).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy,” J. Cryst. Growth 392, 30–33 (2014).
[Crossref]

K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, “Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy,” J. Cryst. Growth 405, 19–22 (2014).
[Crossref]

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

G. Martinez-Criado, J. Segura-Ruiz, M. H. Chu, R. Tucoulou, I. Lopez, E. Nogales, B. Mendez, and J. Piqueras, “Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution,” Nano Lett. 14, 5479–5487 (2014).
[Crossref]

S. Kumar, C. Tessarek, S. Christiansen, and R. Singh, “A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique,” J. Alloys Compd. 587, 812–818 (2014).
[Crossref]

I. D. Hosein, M. Hegde, P. D. Jones, V. Chirmanov, and P. V. Radovanovic, “Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition,” J. Cryst. Growth 396, 24–32 (2014).
[Crossref]

S. Kumar, G. Sarau, C. Tessarek, M. Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, “Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. D 47, 435101 (2014).
[Crossref]

Y. Teng, X. Song le, A. Ponchel, Z. K. Yang, and J. Xia, “Self-assembled metastable γ-Ga2O3 nanoflowers with hexagonal nanopetals for solar-blind photodetection,” Adv. Mater. 26, 6238–6243 (2014).
[Crossref]

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (/00) facet-oriented β-Ga2O3 nanobelts,” Small 10, 1848–1856 (2014).
[Crossref]

W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, and B. Yang, “Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors,” J. Mater. Chem. C 2, 3254–3259 (2014).
[Crossref]

2013 (14)

T. Shao, P. Zhang, L. Jin, and Z. Li, “Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide,” Appl. Catal. B 142-143, 654–661 (2013).
[Crossref]

A. K. Narayana Swamy, E. Shafirovich, and C. V. Ramana, “Synthesis of one-dimensional Ga2O3 nanostructures via high-energy ball milling and annealing of GaN,” Ceram. Int. 39, 7223–7227 (2013).
[Crossref]

Y. L. Wu, S.-J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C. Chen, “Ga2O3 nanowire photodetector prepared on SiO2 template,” IEEE Sens. J. 13, 2368–2373 (2013).
[Crossref]

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

I. López, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires,” J. Phys. Chem. C 117, 3036–3045 (2013).
[Crossref]

T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Appl. Phys. Lett. 103, 041910 (2013).
[Crossref]

H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, “Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction,” Chemistry 19, 2803–2813 (2013).
[Crossref]

S.-D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi C 10, 1592–1595 (2013).
[Crossref]

J. Yu, C. X. Shan, J. S. Liu, X. W. Zhang, B. H. Li, and D. Z. Shen, “MgZnO avalanche photodetectors realized in Schottky structures,” Phys. Status Solidi RRL 7, 425–428 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates,” IEEE Electron Device Lett. 34, 493–495 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Appl. Phys. Express 6, 086502 (2013).
[Crossref]

Z.-D. Huang, W. Y. Weng, S. J. Chang, C.-J. Chiu, T.-J. Hsueh, and S.-L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sens. J. 13, 3462–3467 (2013).
[Crossref]

Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, and T.-Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett. 25, 1809–1811 (2013).
[Crossref]

S. Nakagomi, T. Momo, S. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction,” Appl. Phys. Lett. 103, 072105 (2013).
[Crossref]

2012 (12)

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, “Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by x-ray photoelectron spectroscopy,” Nano. Res. Lett. 7, 562 (2012).
[Crossref]

T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100, 181602 (2012).
[Crossref]

K. Akaiwa and S. Fujita, “Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 070203 (2012).
[Crossref]

K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, “Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy,” Appl. Phys. Express 5, 035502 (2012).
[Crossref]

M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
[Crossref]

T. Oshima, T. Nakazono, A. Mukai, and A. Ohtomo, “Epitaxial growth of γ-Ga2O3 films by mist chemical vapor deposition,” J. Cryst. Growth 359, 60–63 (2012).
[Crossref]

J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle, “Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides,” Phys. Rev. B 85, 081109 (2012).
[Crossref]

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett. 100, 013504 (2012).
[Crossref]

I. López, E. Nogales, B. Méndez, and J. Piqueras, “Resonant cavity modes in gallium oxide microwires,” Appl. Phys. Lett. 100, 261910 (2012).
[Crossref]

W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, and Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22, 17984–17991 (2012).
[Crossref]

M. Suh, M. Meyyappan, and S. Ju, “The effect of Ga content on In2xGa2−2xO3 nanowire transistor characteristics,” Nanotechnology 23, 305203 (2012).
[Crossref]

2011 (13)

E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, and E. Alves, “Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures,” Nanotechnology 22, 285706 (2011).
[Crossref]

L.-W. Chang, T.-Y. Lu, Y.-L. Chen, J.-W. Yeh, and H. C. Shih, “Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires,” Mater. Lett. 65, 2281–2283 (2011).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

L.-C. Tien, W.-T. Chen, and C.-H. Ho, “Enhanced photocatalytic activity in β-Ga2O3 nanobelts,” J. Am. Ceram. Soc. 94, 3117–3122 (2011).
[Crossref]

E. Nogales, B. Mendez, and J. Piqueras, “Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope,” Ultramicroscopy 111, 1037–1042 (2011).
[Crossref]

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method,” J. Appl. Phys. 110, 063720 (2011).
[Crossref]

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98, 131114 (2011).
[Crossref]

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11, 1491–1492 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 23, 444–446 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol. 10, 1047–1052 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

2010 (10)

Y. Kokubun, T. Abe, and S. Nakagomi, “Sol-gel prepared (Ga1–xInx)2O3 thin films for solar-blind ultraviolet photodetectors,” Phys. Status Solidi A 207, 1741–1745 (2010).
[Crossref]

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.-J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20, 3972–3978 (2010).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett. 22, 709–711 (2010).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97, 142106 (2010).
[Crossref]

M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “The electronic structure of β-Ga2O3,” Appl. Phys. Lett. 97, 211903 (2010).
[Crossref]

B. C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, “Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach,” Phys. Rev. Lett. 105, 146401 (2010).
[Crossref]

K. K. Cho, G. B. Cho, K. W. Kim, and K. S. Ryu, “Growth behavior of β-Ga2O3 nanomaterials synthesized by catalyst-free thermal evaporation,” Phys. Scr. T139, 014079 (2010).
[Crossref]

L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold, and S. M. Prokes, “Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors,” Langmuir 26, 13722–13726 (2010).
[Crossref]

T. Wang, S. S. Farvid, and M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc. 132, 9250–9252 (2010).
[Crossref]

T. Wang, S. S. Farvid, and M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc. 132, 9250–9252 (2010).
[Crossref]

2009 (14)

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95, 103102 (2009).
[Crossref]

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K. Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, and S. M. Prokes, “Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications,” Cryst. Growth Des. 9, 4471–4479 (2009).
[Crossref]

L. Mazeina, Y. N. Picard, and S. M. Prokes, “Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires,” Cryst. Growth Des. 9, 1164–1169 (2009).
[Crossref]

G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, “Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D 42, 185409 (2009).
[Crossref]

K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
[Crossref]

J. Jie, C. Wu, Y. Yu, L. Wang, and Z. Hu, “Gallium-assisted growth of flute-like MgO nanotubes, Ga2O3-filled MgO nanotubes, and MgO/Ga2O3 co-axial nanotubes,” Nanotechnology 20, 075602 (2009).
[Crossref]

S. C. Vanithakumari and K. K. Nanda, “A one-step method for the growth of Ga2O3-nanorod-based white-light-emitting phosphors,” Adv. Mater. 21, 3581–3584 (2009).
[Crossref]

E. Nogales, B. Mendez, J. Piqueras, and J. A. Garcia, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[Crossref]

T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, “Flame detection by a β-Ga2O3-based sensor,” Jpn. J. Appl. Phys. 48, 011605 (2009).
[Crossref]

N. D. Cuong, Y. W. Park, and S. G. Yoon, “Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique,” Sens. Actuators B 140, 240–244 (2009).
[Crossref]

T. C. Lovejoy, E. N. Yitamben, N. Shamir, J. Morales, E. G. Villora, K. Shimamura, S. Zheng, F. S. Ohuchi, and M. A. Olmstead, “Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100),” Appl. Phys. Lett. 94, 081906 (2009).
[Crossref]

R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, “Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing,” Appl. Phys. Lett. 94, 222102 (2009).
[Crossref]

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm,” Science 325, 1665–1667 (2009).
[Crossref]

2008 (13)

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method,” Jpn. J. Appl. Phys. 47, 8506–8509 (2008).
[Crossref]

S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing,” Thin Solid Films 516, 5763–5767 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[Crossref]

D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47, 7311–7313 (2008).
[Crossref]

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates,” Appl. Phys. Express 1, 011202 (2008).
[Crossref]

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Narrow-band photodetection based on M-plane GaN films,” Phys. Status Solidi A 205, 1100–1102 (2008).
[Crossref]

Y. Guo, J. Zhang, F. Zhu, Z. X. Yang, J. Xu, and J. Yu, “Self-assembly of β-Ga2O3 nanobelts,” Appl. Surf. Sci. 254, 5124–5128 (2008).
[Crossref]

J. L. Johnson, Y. Choi, and A. Ural, “GaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst,” J. Vac. Sci. Technol. B 26, 1841–1847 (2008).
[Crossref]

C. L. Kuo and M. H. Huang, “The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates,” Nanotechnology 19, 155604 (2008).
[Crossref]

Z. Li, B. Zhao, P. Liu, and Y. Zhang, “Synthesis of gallium oxide nanowires and their electrical properties,” Microelectron. Eng. 85, 1613–1615 (2008).
[Crossref]

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
[Crossref]

K. F. Cai, S. Shen, C. Yan, and S. Bateman, “Preparation, characterization and formation mechanism of gallium oxide nanowires,” Curr. Appl. Phys. 8, 363–366 (2008).
[Crossref]

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516, 5768–5771 (2008).
[Crossref]

2007 (12)

E. Nogales, J. A. García, B. Méndez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101, 033517 (2007).
[Crossref]

E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 91, 133108 (2007).
[Crossref]

Y. Luo, Z. Hou, J. Gao, D. Jin, and X. Zheng, “Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route,” Mater. Sci. Eng. B 140, 123–127 (2007).
[Crossref]

W.-S. Jung, H. U. Joo, and B.-K. Min, “Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder,” Phys. E (Amsterdam) 36, 226–230 (2007).
[Crossref]

X. Liu, G. Qiu, Y. Zhao, N. Zhang, and R. Yi, “Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods,” J. Alloys Compd. 439, 275–278 (2007).
[Crossref]

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90, 031912 (2007).
[Crossref]

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors,” Jpn. J. Appl. Phys. 46, 7217–7220 (2007).
[Crossref]

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Very narrow-band ultraviolet photodetection based on strained M-plane GaN films,” Appl. Phys. Lett. 90, 091110 (2007).
[Crossref]

S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, “Structures and energetics of Ga2O3 polymorphs,” J. Phys. Condens. Matter 19, 346211 (2007).
[Crossref]

N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal,” Phys. Status Solidi C 4, 2310–2313 (2007).
[Crossref]

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

X. Chen, H. Zhu, J. Cai, and Z. Wu, “High-performance 4H-SiC-based ultraviolet p-i-n photodetector,” J. Appl. Phys. 102, 024505 (2007).
[Crossref]

2006 (14)

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, and M. Edoff, “Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys,” Phys. Rev. Lett. 97, 146403 (2006).
[Crossref]

J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, and J. Xu, “Growth and spectral characterization of β-Ga2O3 single crystals,” J. Phys. Chem. Solids 67, 2448–2451 (2006).
[Crossref]

J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu, “Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn,” J. Phys. Chem. Solids 67, 1656–1659 (2006).
[Crossref]

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74, 195123 (2006).
[Crossref]

C. Rivera, J. L. Pau, E. Muñoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, “Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates,” Appl. Phys. Lett. 88, 213507 (2006).
[Crossref]

V. M. Bermudez, “The structure of low-index surfaces of β-Ga2O3,” Chem. Phys. 323, 193–203 (2006).
[Crossref]

P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88, 153107 (2006).
[Crossref]

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88, 261904 (2006).
[Crossref]

F. Zhu, Z. X. Yang, W. M. Zhou, and Y. F. Zhang, “Direct synthesis of beta gallium oxide nanowires, nanobelts, nanosheets and nanograsses by microwave plasma,” Solid State Commun. 137, 177–181 (2006).
[Crossref]

Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, “Preparation and electrical properties of ultrafine Ga2O3 nanowires,” J. Phys. Chem. B 110, 796–800 (2006).
[Crossref]

M. C. Johnson, S. Aloni, D. E. McCready, and E. D. Bourret-Courchesne, “Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport,” Cryst. Growth Des. 6, 1936–1941 (2006).
[Crossref]

E. G. Víllora, K. Shimamura, K. Kitamura, and K. Aoki, “Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3,” Appl. Phys. Lett. 88, 031105 (2006).
[Crossref]

T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay, “Experimental evaluation of impact ionization coefficients in AlxGa1–xN based avalanche photodiodes,” Appl. Phys. Lett. 89, 183524 (2006).
[Crossref]

2005 (4)

P.-C. Chang, Z. Fan, W.-Y. Tseng, A. Rajagopal, and J. G. Lu, “β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor,” Appl. Phys. Lett. 87, 222102 (2005).
[Crossref]

J. Zhang, Z. Liu, C. Lin, and J. Lin, “A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties,” J. Cryst. Growth 280, 99–106 (2005).
[Crossref]

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, and Y. D. Ye, “Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition,” J. Cryst. Growth 283, 279–285 (2005).
[Crossref]

A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005).
[Crossref]

2004 (7)

T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett. 84, 4884–4886 (2004).
[Crossref]

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84, 535–537 (2004).
[Crossref]

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

S. N. Mohammad, “Contact mechanisms and design principles for alloyed ohmic contacts to n-GaN,” J. Appl. Phys. 95, 7940–7953 (2004).
[Crossref]

E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[Crossref]

K. Yamaguchi, “First principles study on electronic structure of β-Ga2O3,” Solid State Commun. 131, 739–744 (2004).
[Crossref]

K.-W. Chang and J.-J. Wu, “Low-temperature catalytic growth of β-Ga2O3 nanowires using single organometallic precursor,” J. Phys. Chem. B 108, 1838–1843 (2004).
[Crossref]

2003 (3)

E. G. Víllora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura, and T. Fukuda, “Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses,” Solid State Commun. 127, 385–388 (2003).
[Crossref]

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33–R51 (2003).
[Crossref]

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1−x O on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett. 82, 3424–3426 (2003).
[Crossref]

2002 (6)

E. G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study on β-Ga2O3,” Jpn. J. Appl. Phys. 41, L622–L625 (2002).
[Crossref]

E. G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, and T. Fukuda, “Infrared reflectance and electrical conductivity of β-Ga2O3,” Phys. Status Solidi A 193, 187–195 (2002).
[Crossref]

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,” Thin Solid Films 411, 134–139 (2002).
[Crossref]

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
[Crossref]

R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Codoping of wide gap epitaxial III-nitride semiconductors,” Opto-Electron. Rev. 10, 243–249 (2002).

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Gallium oxide nanoribbons and nanosheets,” J. Phys. Chem. B 106, 902–904 (2002).
[Crossref]

2001 (4)

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires,” Appl. Phys. Lett. 78, 3202–3204 (2001).
[Crossref]

Y. Tomm, J. M. Ko, A. Yoshikawa, and T. Fukuda, “Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications,” Sol. Energy Mater. Sol. Cells 66, 369–374 (2001).
[Crossref]

F. Vigue, E. Tournie, and J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection,” IEEE J. Quantum Electron. 37, 1146–1152 (2001).
[Crossref]

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001).
[Crossref]

2000 (4)

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[Crossref]

C. O. Areán, A. L. Bellan, M. P. Mentruit, M. R. G. Delgado, and G. T. Palomino, “Preparation and characterization of mesoporous γ-Ga2O3,” Microporous Mesoporous Mater. 40, 35–42 (2000).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77, 4166–4168 (2000).
[Crossref]

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

1999 (2)

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of bias on the responsivity of GaN metal–semiconductor–metal photodiodes,” Phys. Status Solidi A 176, 157–161 (1999).
[Crossref]

1998 (2)

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59, 1241–1249 (1998).
[Crossref]

1997 (3)

N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Anisotropy of electrical and optical properties in β-Ga2O3 single crystals,” Appl. Phys. Lett. 71, 933–935 (1997).
[Crossref]

N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett. 70, 3561–3563 (1997).
[Crossref]

S. Salvatori, M. C. Rossi, F. Galluzzi, and E. Pace, “Solar-blind UV-photodetector based on polycrystalline diamond films: basic design principle and comparison with experimental results,” Mater. Sci. Eng. B 46, 105–111 (1997).
[Crossref]

1996 (1)

M. Razeghi and A. Rogalski, “Semiconductor ultraviolet detectors,” J. Appl. Phys. 79, 7433–7473 (1996).
[Crossref]

1995 (1)

P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi, “Kinetics of photoconductivity in n-type GaN photodetector,” Appl. Phys. Lett. 67, 3792–3794 (1995).
[Crossref]

1994 (1)

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[Crossref]

1993 (2)

M. Fleischer and H. Meixner, “Electron mobility in single- and polycrystalline Ga2O3,” J. Appl. Phys. 74, 300–305 (1993).
[Crossref]

V. I. Chani, K. Inoue, K. Shimamura, K. Sugiyama, and T. Fukuda, “Segregation coefficients in β-Ga2O3: Cr crystals grown from a B2O3 based flux,” J. Cryst. Growth 132, 335–336 (1993).
[Crossref]

1986 (2)

H. Juskowiak and A. Pajaczkowska, “Chemical transport of β-Ga2O3 using chlorine as a transporting agent,” J. Mater. Sci. 21, 3430–3434 (1986).
[Crossref]

A. Pajączkowska and H. Juskowiak, “On the chemical transport of gallium oxide in the Ga2O3/N-H-Cl system,” J. Cryst. Growth 79, 421–426 (1986).
[Crossref]

1982 (1)

C. Y. Wu, “Interfacial layer-thermionic-diffusion theory for the Schottky barrier diode,” J. Appl. Phys. 53, 5947–5950 (1982).
[Crossref]

1978 (2)

T. Harwig, F. Kellendonk, and S. Slappendel, “The ultraviolet luminescence of β-galliumsesquioxide,” J. Phys. Chem. Solids 39, 675–680 (1978).
[Crossref]

T. Harwig and F. Kellendonk, “Some observations on the photoluminescence of doped β-galliumsesquioxide,” J. Solid State Chem. 24, 255–263 (1978).
[Crossref]

1974 (1)

T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, “Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3,” Jpn. J. Appl. Phys. 13, 1578–1582 (1974).
[Crossref]

1973 (1)

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44, 292–296 (1973).
[Crossref]

1972 (3)

K. Osamura, K. Nakajima, Y. Murakami, P. H. Shingu, and A. Ohtsuki, “Fundamental absorption edge in GaN, InN and their alloys,” Solid State Commun. 11, 617–621 (1972).
[Crossref]

R. Hackam and P. Harrop, “Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes,” IEEE Trans. Electron Devices 19, 1231–1238 (1972).
[Crossref]

G. Garton, S. H. Smith, and B. M. Wanklyn, “Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5,” J. Cryst. Growth 13-14, 588–592 (1972).
[Crossref]

1971 (1)

M. Saurat and A. Revcolevschi, “Preparation by floating zone method, of refractory oxide monocrystals, in particular of gallium oxide, and study of some of their properties,” Rev. Int. Hautes Temp. Refract. 8, 291 (1971).

1967 (1)

M. Marezio and J. P. Remeika, “Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2–xFexO3,” J. Chem. Phys. 46, 1862–1865 (1967).
[Crossref]

1966 (2)

G. Katz and R. Roy, “Flux growth and characterization of β-Ga2O3 single crystals,” J. Am. Ceram. Soc. 49, 168–169 (1966).
[Crossref]

C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9, 1035–1048 (1966).
[Crossref]

1965 (2)

A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys. 36, 3212–3220 (1965).
[Crossref]

H. H. Tippins, “Optical absorption and photoconductivity in the band edge of β-Ga2O3,” Phys. Rev. 140, A316–A319 (1965).
[Crossref]

1964 (2)

A. O. Chase, “Growth of β-Ga2O3 by the Verneuil technique,” J. Am. Ceram. Soc. 47, 470 (1964).
[Crossref]

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[Crossref]

1960 (1)

S. Geller, “Crystal structure of β-Ga2O3,” J. Chem. Phys. 33, 676–684 (1960).
[Crossref]

1956 (2)

H. Reiss, C. S. Fuller, and A. J. Pietruszkiewicz, “Solubility of lithium in doped and undoped silicon, evidence for compound formation,” J. Chem. Phys. 25, 650–655 (1956).
[Crossref]

H. Reiss, C. S. Fuller, and F. J. Morin, “Chemical interactions among defects in germanium and silicon,” Bell Syst. Tech. J. 35, 535–636 (1956).
[Crossref]

1952 (1)

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74, 719–722 (1952).
[Crossref]

1939 (1)

W. Schottky and E. Spenke, “Quantitative treatment of the space charge and boundary-layer theory of the crystal rectifier,” Wiss. Veroff. Siemens-Werken 18, 225–291 (1939).

Abe, T.

Y. Kokubun, T. Abe, and S. Nakagomi, “Sol-gel prepared (Ga1–xInx)2O3 thin films for solar-blind ultraviolet photodetectors,” Phys. Status Solidi A 207, 1741–1745 (2010).
[Crossref]

Abulikemu, M.

T. Wang, S. S. Farvid, and M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc. 132, 9250–9252 (2010).
[Crossref]

Adelung, R.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Agarwal, R.

S. Kumar, S. Dhara, R. Agarwal, and R. Singh, “Study of photoconduction properties of CVD grown β-Ga2O3 nanowires,” J. Alloys Compd. 683, 143–148 (2016).
[Crossref]

Ahmadi, E.

S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, “n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 33, 045001 (2018).
[Crossref]

A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, and G. H. Jessen, “Donors and deep acceptors in β-Ga2O3,” Appl. Phys. Lett. 113, 062101 (2018).
[Crossref]

E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 10, 041102 (2017).
[Crossref]

E. Ahmadi, Y. Oshima, F. Wu, and J. S. Speck, “Schottky barrier height of Ni to β-(AlxGa1−x)2O3 with different compositions grown by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 32, 035004 (2017).
[Crossref]

F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
[Crossref]

Ahn, H. J.

K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
[Crossref]

Ahn, S.

S. Ahn, F. Ren, L. Yuan, S. J. Pearton, and A. Kuramata, “Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P68–P72 (2017).
[Crossref]

J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
[Crossref]

S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Lett. 109, 062102 (2016).
[Crossref]

Ahyi, A.

A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
[Crossref]

Ai, M.

Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” J. Alloys Compd. 680, 247–251 (2016).
[Crossref]

Aida, H.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method,” Jpn. J. Appl. Phys. 47, 8506–8509 (2008).
[Crossref]

Akaiwa, K.

S.-D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi C 10, 1592–1595 (2013).
[Crossref]

K. Akaiwa and S. Fujita, “Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 070203 (2012).
[Crossref]

Akasaki, I.

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Alamé, S.

A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
[Crossref]

Albrecht, M.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, “Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates,” ECS J. Solid State Sci. Technol. 6, Q3040–Q3044 (2016).
[Crossref]

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Alema, F.

F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
[Crossref]

Alghamdi, S.

H. Zhou, M. Si, S. Alghamdi, G. Qiu, L. Yang, and P. D. Ye, “High-performance depletion/enhancement-ode β-Ga2O3 on insulator (GOOI) field-effect transistors with record drain currents of 600/450  mA/mm,” IEEE Electron Device Lett. 38, 103–106 (2017).
[Crossref]

Allen, M. W.

G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, “Mist-CVD grown Sn-doped α-Ga2O3 MESFETs,” IEEE Trans. Electron Devices 62, 3640–3644 (2015).
[Crossref]

Aloni, S.

M. C. Johnson, S. Aloni, D. E. McCready, and E. D. Bourret-Courchesne, “Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport,” Cryst. Growth Des. 6, 1936–1941 (2006).
[Crossref]

Alonso-Orts, M.

I. López, M. Alonso-Orts, E. Nogales, B. Méndez, and J. Piqueras, “Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method,” Semicond. Sci. Technol. 31, 115003 (2016).
[Crossref]

Alsenany, N.

A. H. A. Makinudin, T. M. Bawazeer, N. Alsenany, M. S. Alsoufi, and A. Supangat, “Gallium oxide nanospheres: effect of the post-annealing treatment,” Mater. Lett. 194, 53–57 (2017).
[Crossref]

Alsoufi, M. S.

A. H. A. Makinudin, T. M. Bawazeer, N. Alsenany, M. S. Alsoufi, and A. Supangat, “Gallium oxide nanospheres: effect of the post-annealing treatment,” Mater. Lett. 194, 53–57 (2017).
[Crossref]

Alves, E.

E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, and E. Alves, “Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures,” Nanotechnology 22, 285706 (2011).
[Crossref]

Amano, H.

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Amzallag, E.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74, 195123 (2006).
[Crossref]

An, Y.

Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” J. Alloys Compd. 680, 247–251 (2016).
[Crossref]

Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, P. Li, and W. Tang, “Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer,” Appl. Phys. A 122, 1036 (2016).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
[Crossref]

An, Y. H.

Y. H. An, Y. S. Zhi, W. Cui, X. L. Zhao, Z. P. Wu, D. Y. Guo, P. G. Li, and W. H. Tang, “Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors,” J. Nanosci. Nanotechnol. 17, 9091–9094 (2017).
[Crossref]

D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
[Crossref]

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

Anderson, T. J.

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

Angelone, M.

A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005).
[Crossref]

Aoki, K.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, T. Ujiie, and K. Aoki, “Electrical conductivity and carrier concentration control in β-Ga2O3 by Si doping,” Appl. Phys. Lett. 92, 202120 (2008).
[Crossref]

E. G. Víllora, K. Shimamura, K. Kitamura, and K. Aoki, “Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3,” Appl. Phys. Lett. 88, 031105 (2006).
[Crossref]

E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[Crossref]

Aoki, M.

T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, “Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3,” Jpn. J. Appl. Phys. 13, 1578–1582 (1974).
[Crossref]

Aono, T.

T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, “Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3,” Jpn. J. Appl. Phys. 13, 1578–1582 (1974).
[Crossref]

Aota, N.

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, and Y. Yaguchi, “Growth of β-Ga2O3 single crystals by the edge-defined, film fed growth method,” Jpn. J. Appl. Phys. 47, 8506–8509 (2008).
[Crossref]

Aradi, B.

P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
[Crossref]

Arai, N.

R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, “Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing,” Appl. Phys. Lett. 94, 222102 (2009).
[Crossref]

T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, “Flame detection by a β-Ga2O3-based sensor,” Jpn. J. Appl. Phys. 48, 011605 (2009).
[Crossref]

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates,” Appl. Phys. Express 1, 011202 (2008).
[Crossref]

S. Ohira, N. Suzuki, N. Arai, M. Tanaka, T. Sugawara, K. Nakajima, and T. Shishido, “Characterization of transparent and conducting Sn-doped β-Ga2O3 single crystal after annealing,” Thin Solid Films 516, 5763–5767 (2008).
[Crossref]

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516, 5768–5771 (2008).
[Crossref]

Areán, C. O.

C. O. Areán, A. L. Bellan, M. P. Mentruit, M. R. G. Delgado, and G. T. Palomino, “Preparation and characterization of mesoporous γ-Ga2O3,” Microporous Mesoporous Mater. 40, 35–42 (2000).
[Crossref]

Arehart, A. R.

E. Farzana, Z. Zhang, P. K. Paul, A. R. Arehart, and S. A. Ringel, “Influence of metal choice on (010) β-Ga2O3 Schottky diode properties,” Appl. Phys. Lett. 110, 202102 (2017).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Arita, M.

Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, “Band alignment of Ga2O3/Si heterojunction interface measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 109, 102106 (2016).
[Crossref]

Armstrong, A. M.

A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
[Crossref]

Arnold, S. P.

L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold, and S. M. Prokes, “Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors,” Langmuir 26, 13722–13726 (2010).
[Crossref]

S. P. Arnold, S. M. Prokes, F. K. Perkins, and M. E. Zaghloul, “Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor,” Appl. Phys. Lett. 95, 103102 (2009).
[Crossref]

Ashbrook, S. E.

H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, “Characterization of structural disorder in γ-Ga2O3,” J. Phys. Chem. C 118, 16188–16198 (2014).
[Crossref]

Atou, T.

E. G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, and T. Fukuda, “Infrared reflectance and electrical conductivity of β-Ga2O3,” Phys. Status Solidi A 193, 187–195 (2002).
[Crossref]

Auer, E.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

Bae, D. J.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Bahir, G.

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001).
[Crossref]

Bai, X. D.

Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, “Preparation and electrical properties of ultrafine Ga2O3 nanowires,” J. Phys. Chem. B 110, 796–800 (2006).
[Crossref]

Bai, Z. G.

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

Baik, K. H.

S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
[Crossref]

Bajaj, S.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, “Delta-doped β-gallium oxide field-effect transistor,” Appl. Phys. Express 10, 051102 (2017).
[Crossref]

Balakrishnan, K.

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Baldauf, J.

E. Wendler, E. Treiber, J. Baldauf, S. Wolf, and C. Ronning, “High-level damage saturation below amorphisation in ion implanted β-Ga2O3,” Nucl. Instrum. Methods Phys. Res. B 379, 85–90 (2016).
[Crossref]

Baldini, M.

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, “Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates,” ECS J. Solid State Sci. Technol. 6, Q3040–Q3044 (2016).
[Crossref]

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

Balducci, A.

A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005).
[Crossref]

Bando, Y.

X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, “Recent advances in solution-processed inorganic nanofilm photodetectors,” Chem. Soc. Rev. 43, 1400–1422 (2014).
[Crossref]

W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, and Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22, 17984–17991 (2012).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
[Crossref]

Bandoh, A.

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Baraille, I.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74, 195123 (2006).
[Crossref]

Baranowski, I.

H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, and Y. Zhao, “A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates,” IEEE Trans. Electron Devices 65, 3507–3513 (2018).
[Crossref]

Barney, E. R.

H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, “Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction,” Chemistry 19, 2803–2813 (2013).
[Crossref]

Bashouti, M. Y.

S. Kumar, G. Sarau, C. Tessarek, M. Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, “Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. D 47, 435101 (2014).
[Crossref]

Basilio, A. M.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Bateman, S.

K. F. Cai, S. Shen, C. Yan, and S. Bateman, “Preparation, characterization and formation mechanism of gallium oxide nanowires,” Curr. Appl. Phys. 8, 363–366 (2008).
[Crossref]

Bawazeer, T. M.

A. H. A. Makinudin, T. M. Bawazeer, N. Alsenany, M. S. Alsoufi, and A. Supangat, “Gallium oxide nanospheres: effect of the post-annealing treatment,” Mater. Lett. 194, 53–57 (2017).
[Crossref]

Bayerl, D.

K. A. Mengle, G. Shi, D. Bayerl, and E. Kioupakis, “First-principles calculations of the near-edge optical properties of β-Ga2O3,” Appl. Phys. Lett. 109, 212104 (2016).
[Crossref]

Bechstedt, F.

J. Furthmüller and F. Bechstedt, “Quasiparticle bands and spectra of Ga2O3 polymorphs,” Phys. Rev. B 93, 115204 (2016).
[Crossref]

A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
[Crossref]

Beers, K.

S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
[Crossref]

Bellan, A. L.

C. O. Areán, A. L. Bellan, M. P. Mentruit, M. R. G. Delgado, and G. T. Palomino, “Preparation and characterization of mesoporous γ-Ga2O3,” Microporous Mesoporous Mater. 40, 35–42 (2000).
[Crossref]

Bellotti, E.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

A. Kyrtsos, M. Matsubara, and E. Bellotti, “On the feasibility of p-type Ga2O3,” Appl. Phys. Lett. 112, 032108 (2018).
[Crossref]

Bermudez, V. M.

L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold, and S. M. Prokes, “Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors,” Langmuir 26, 13722–13726 (2010).
[Crossref]

V. M. Bermudez, “The structure of low-index surfaces of β-Ga2O3,” Chem. Phys. 323, 193–203 (2006).
[Crossref]

Bertagnolli, E.

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

Bertram, R.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Berzina, T.

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

Bethe, H. A.

H. A. Bethe, Theory of the Boundary Layer of Crystal Rectifiers (Radiation Laboratory, Massachusetts Institute of Technology, 1942).

Bevlin, K.

J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
[Crossref]

Bickermann, M.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

Bierwagen, O.

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

Binet, L.

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59, 1241–1249 (1998).
[Crossref]

Blamire, M. G.

K. H. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, “P-type transparent conducting oxides,” J. Phys. Condens. Matter 28, 383002 (2016).
[Crossref]

Blanco, M. A.

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88, 261904 (2006).
[Crossref]

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74, 195123 (2006).
[Crossref]

Blevins, J. D.

A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, and G. H. Jessen, “Donors and deep acceptors in β-Ga2O3,” Appl. Phys. Lett. 113, 062101 (2018).
[Crossref]

Boeckl, J. J.

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

Boschi, F.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

Bosi, M.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

Bourret-Courchesne, E. D.

M. C. Johnson, S. Aloni, D. E. McCready, and E. D. Bourret-Courchesne, “Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport,” Cryst. Growth Des. 6, 1936–1941 (2006).
[Crossref]

Brandt, O.

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Narrow-band photodetection based on M-plane GaN films,” Phys. Status Solidi A 205, 1100–1102 (2008).
[Crossref]

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Very narrow-band ultraviolet photodetection based on strained M-plane GaN films,” Appl. Phys. Lett. 90, 091110 (2007).
[Crossref]

C. Rivera, J. L. Pau, E. Muñoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, “Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates,” Appl. Phys. Lett. 88, 213507 (2006).
[Crossref]

Brandt, R. E.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Braniste, T.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Brenner, M.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, “Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors,” Appl. Phys. Lett. 112, 233503 (2018).
[Crossref]

S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, “Delta-doped β-gallium oxide field-effect transistor,” Appl. Phys. Express 10, 051102 (2017).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Brezna, W.

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

Briley, C.

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

Brona, J.

M. Grodzicki, P. Mazur, S. Zuber, J. Brona, and A. Ciszewski, “Oxidation of GaN(0001) by low-energy ion bombardment,” Appl. Surf. Sci. 304, 20–23 (2014).
[Crossref]

Brown, J. L.

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

Brunner, F.

K. Tetzner, A. Thies, E. B. Treidel, F. Brunner, and G. Wagner, “Selective area isolation of β-Ga2O3 using multiple energy nitrogen ion implantation,” Appl. Phys. Lett. 113, 172104 (2018).
[Crossref]

Bruno, T.

T. Bruno, W. Haynes, and D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2016).

Brützam, M.

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Buffagni, E.

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

Buonassisi, T.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Burns, M.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[Crossref]

Butun, B.

T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay, “Experimental evaluation of impact ionization coefficients in AlxGa1–xN based avalanche photodiodes,” Appl. Phys. Lett. 89, 183524 (2006).
[Crossref]

Butun, S.

T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay, “Experimental evaluation of impact ionization coefficients in AlxGa1–xN based avalanche photodiodes,” Appl. Phys. Lett. 89, 183524 (2006).
[Crossref]

Byers, J. C.

V. Ghodsi, S. Jin, J. C. Byers, Y. Pan, and P. V. Radovanovic, “Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states,” J. Phys. Chem. C 121, 9433–9441 (2017).
[Crossref]

Cai, J.

X. Chen, H. Zhu, J. Cai, and Z. Wu, “High-performance 4H-SiC-based ultraviolet p-i-n photodetector,” J. Appl. Phys. 102, 024505 (2007).
[Crossref]

Cai, K. F.

K. F. Cai, S. Shen, C. Yan, and S. Bateman, “Preparation, characterization and formation mechanism of gallium oxide nanowires,” Curr. Appl. Phys. 8, 363–366 (2008).
[Crossref]

Cai, W.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm,” Science 325, 1665–1667 (2009).
[Crossref]

Calestani, G.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

Calle, F.

E. Monroy, F. Omnès, and F. Calle, “Wide-bandgap semiconductor ultraviolet photodetectors,” Semicond. Sci. Technol. 18, R33–R51 (2003).
[Crossref]

E. Monroy, F. Calle, E. Munoz, and F. Omnes, “Effects of bias on the responsivity of GaN metal–semiconductor–metal photodiodes,” Phys. Status Solidi A 176, 157–161 (1999).
[Crossref]

Campbell, J. C.

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

Cao, D. P.

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

Cao, L.

Y. Peng, N. Yu, Y. Xiang, J. Liu, L. Cao, and S. Huang, “One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical properties,” J. Nanosci. Nanotechnol. 18, 5654–5659 (2018).
[Crossref]

Cao, W.

W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, and B. Yang, “Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors,” J. Mater. Chem. C 2, 3254–3259 (2014).
[Crossref]

Cao, Y.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm,” Science 325, 1665–1667 (2009).
[Crossref]

Caplovicová, M.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

Carey, P. H.

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, and I. I. Kravchenko, “Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers,” J. Vac. Sci. Technol. B 35, 061201 (2017).
[Crossref]

Carrano, J. C.

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

Cary, P. H.

S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev. 5, 011301 (2018).
[Crossref]

Castaldini, A.

I. López, A. Castaldini, A. Cavallini, E. Nogales, B. Méndez, and J. Piqueras, “β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector,” J. Phys. D 47, 415101 (2014).
[Crossref]

Castanedo, C. G. T.

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

Cavallini, A.

I. López, A. Castaldini, A. Cavallini, E. Nogales, B. Méndez, and J. Piqueras, “β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector,” J. Phys. D 47, 415101 (2014).
[Crossref]

Chabak, K.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

Chabak, K. D.

A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, and G. H. Jessen, “Donors and deep acceptors in β-Ga2O3,” Appl. Phys. Lett. 113, 062101 (2018).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Chang, K. B.

B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
[Crossref]

Chang, K.-W.

K.-W. Chang and J.-J. Wu, “Low-temperature catalytic growth of β-Ga2O3 nanowires using single organometallic precursor,” J. Phys. Chem. B 108, 1838–1843 (2004).
[Crossref]

Chang, L.-W.

L.-W. Chang, T.-Y. Lu, Y.-L. Chen, J.-W. Yeh, and H. C. Shih, “Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires,” Mater. Lett. 65, 2281–2283 (2011).
[Crossref]

Chang, P.-C.

P.-C. Chang, Z. Fan, W.-Y. Tseng, A. Rajagopal, and J. G. Lu, “β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor,” Appl. Phys. Lett. 87, 222102 (2005).
[Crossref]

Chang, S. J.

Z.-D. Huang, W. Y. Weng, S. J. Chang, C.-J. Chiu, T.-J. Hsueh, and S.-L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sens. J. 13, 3462–3467 (2013).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 23, 444–446 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11, 1491–1492 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol. 10, 1047–1052 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett. 22, 709–711 (2010).
[Crossref]

Chang, S. P.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett. 22, 709–711 (2010).
[Crossref]

Chang, S.-H.

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

Chang, S.-J.

T.-H. Chang, S.-J. Chang, C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett. 27, 915–918 (2015).
[Crossref]

Y. L. Wu, S.-J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C. Chen, “Ga2O3 nanowire photodetector prepared on SiO2 template,” IEEE Sens. J. 13, 2368–2373 (2013).
[Crossref]

Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, and T.-Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett. 25, 1809–1811 (2013).
[Crossref]

Chang, T.-H.

T.-H. Chang, S.-J. Chang, C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett. 27, 915–918 (2015).
[Crossref]

Chani, V. I.

V. I. Chani, K. Inoue, K. Shimamura, K. Sugiyama, and T. Fukuda, “Segregation coefficients in β-Ga2O3: Cr crystals grown from a B2O3 based flux,” J. Cryst. Growth 132, 335–336 (1993).
[Crossref]

Chareonboon, W.

S. Phumying, S. Labauyai, W. Chareonboon, S. Phokha, and S. Maensiri, “Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution,” Jpn. J. Appl. Phys. 54, 06fj13 (2015).
[Crossref]

Chase, A. O.

A. O. Chase, “Growth of β-Ga2O3 by the Verneuil technique,” J. Am. Ceram. Soc. 47, 470 (1964).
[Crossref]

Chattopadhyay, S.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Chauhan, N.

M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
[Crossref]

Chavan, P. G.

G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, “Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D 42, 185409 (2009).
[Crossref]

Chen, B.-Y.

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

Chen, D. J.

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

Chen, H.

H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, and Y. Zhao, “A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates,” IEEE Trans. Electron Devices 65, 3507–3513 (2018).
[Crossref]

B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, “An ultrahigh responsivity (9.7 mA·W–1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures,” Adv. Funct. Mater. 27, 1700264 (2017).
[Crossref]

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15, 3988–3993 (2015).
[Crossref]

X.-S. Wang, W.-S. Li, J.-Q. Situ, X.-Y. Ying, H. Chen, Y. Jin, and Y.-Z. Du, “Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery,” RSC Adv. 5, 12886–12889 (2015).
[Crossref]

Chen, H. W.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Chen, H. Y.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Chen, K.

P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
[Crossref]

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Chen, K. C.

Y. L. Wu, S.-J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C. Chen, “Ga2O3 nanowire photodetector prepared on SiO2 template,” IEEE Sens. J. 13, 2368–2373 (2013).
[Crossref]

Chen, K. H.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Chen, L. C.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Chen, R.

T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100, 181602 (2012).
[Crossref]

Chen, S.

W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, and Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22, 17984–17991 (2012).
[Crossref]

Chen, W.-T.

L.-C. Tien, W.-T. Chen, and C.-H. Ho, “Enhanced photocatalytic activity in β-Ga2O3 nanobelts,” J. Am. Ceram. Soc. 94, 3117–3122 (2011).
[Crossref]

Chen, X.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures,” ACS Appl. Mater. Interfaces 9, 36997–37005 (2017).
[Crossref]

X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, “Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction,” ACS Appl. Mater. Interfaces 8, 4185–4191 (2016).
[Crossref]

X. Chen, H. Zhu, J. Cai, and Z. Wu, “High-performance 4H-SiC-based ultraviolet p-i-n photodetector,” J. Appl. Phys. 102, 024505 (2007).
[Crossref]

Chen, Y.

C. Yang, H. Liang, Z. Zhang, X. Xia, P. Tao, Y. Chen, H. Zhang, R. Shen, Y. Luo, and G. Du, “Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3,” RSC Adv. 8, 6341–6345 (2018).
[Crossref]

X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du, “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett. 108, 202103 (2016).
[Crossref]

Chen, Y.-C.

Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
[Crossref]

Chen, Y.-L.

L.-W. Chang, T.-Y. Lu, Y.-L. Chen, J.-W. Yeh, and H. C. Shih, “Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires,” Mater. Lett. 65, 2281–2283 (2011).
[Crossref]

Chen, Z.

P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
[Crossref]

Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, “Band alignment of Ga2O3/Si heterojunction interface measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 109, 102106 (2016).
[Crossref]

Chen, Z.-Z.

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

Chirmanov, V.

I. D. Hosein, M. Hegde, P. D. Jones, V. Chirmanov, and P. V. Radovanovic, “Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition,” J. Cryst. Growth 396, 24–32 (2014).
[Crossref]

Chiu, C. J.

T.-H. Chang, S.-J. Chang, C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett. 27, 915–918 (2015).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

Chiu, C.-J.

Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, and T.-Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett. 25, 1809–1811 (2013).
[Crossref]

Z.-D. Huang, W. Y. Weng, S. J. Chang, C.-J. Chiu, T.-J. Hsueh, and S.-L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sens. J. 13, 3462–3467 (2013).
[Crossref]

Cho, G. B.

K. K. Cho, G. B. Cho, K. W. Kim, and K. S. Ryu, “Growth behavior of β-Ga2O3 nanomaterials synthesized by catalyst-free thermal evaporation,” Phys. Scr. T139, 014079 (2010).
[Crossref]

K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
[Crossref]

Cho, K. K.

K. K. Cho, G. B. Cho, K. W. Kim, and K. S. Ryu, “Growth behavior of β-Ga2O3 nanomaterials synthesized by catalyst-free thermal evaporation,” Phys. Scr. T139, 014079 (2010).
[Crossref]

K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
[Crossref]

Cho, S. B.

S. B. Cho and R. Mishra, “Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface,” Appl. Phys. Lett. 112, 162101 (2018).
[Crossref]

Cho, W.-S.

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

Choi, K. H.

K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
[Crossref]

Choi, W. B.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Choi, Y.

J. L. Johnson, Y. Choi, and A. Ural, “GaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst,” J. Vac. Sci. Technol. B 26, 1841–1847 (2008).
[Crossref]

Choi, Y. C.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Chou, L. J.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
[Crossref]

Chowdhury, S.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Christiansen, S.

M. Kumar, G. Sarau, M. Heilmann, S. Christiansen, V. Kumar, and R. Singh, “Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires,” J. Phys. D 50, 035302 (2017).
[Crossref]

S. Kumar, G. Sarau, C. Tessarek, M. Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, “Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. D 47, 435101 (2014).
[Crossref]

S. Kumar, C. Tessarek, S. Christiansen, and R. Singh, “A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique,” J. Alloys Compd. 587, 812–818 (2014).
[Crossref]

Chu, M. H.

G. Martinez-Criado, J. Segura-Ruiz, M. H. Chu, R. Tucoulou, I. Lopez, E. Nogales, B. Mendez, and J. Piqueras, “Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution,” Nano Lett. 14, 5479–5487 (2014).
[Crossref]

Chu, X. L.

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

Chua, C. L.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Chua, D.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Ciszewski, A.

M. Grodzicki, P. Mazur, S. Zuber, J. Brona, and A. Ciszewski, “Oxidation of GaN(0001) by low-energy ion bombardment,” Appl. Surf. Sci. 304, 20–23 (2014).
[Crossref]

Cohen, M. L.

B. C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, “Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach,” Phys. Rev. Lett. 105, 146401 (2010).
[Crossref]

Collazo, R.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Colò, F.

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

Coltrin, M. E.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Cooper, J. A.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Cora, I.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

Cowley, A. M.

A. M. Cowley and S. M. Sze, “Surface states and barrier height of metal-semiconductor systems,” J. Appl. Phys. 36, 3212–3220 (1965).
[Crossref]

Crawford, M. H.

A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
[Crossref]

Crespo, A.

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

Crowell, C. R.

C. R. Crowell and S. M. Sze, “Current transport in metal-semiconductor barriers,” Solid-State Electron. 9, 1035–1048 (1966).
[Crossref]

Cui, C.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
[Crossref]

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Cui, S.

S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, “Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates,” Adv. Opt. Mater. 5, 1700454 (2017).
[Crossref]

Cui, W.

Y. H. An, Y. S. Zhi, W. Cui, X. L. Zhao, Z. P. Wu, D. Y. Guo, P. G. Li, and W. H. Tang, “Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors,” J. Nanosci. Nanotechnol. 17, 9091–9094 (2017).
[Crossref]

P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
[Crossref]

Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, P. Li, and W. Tang, “Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer,” Appl. Phys. A 122, 1036 (2016).
[Crossref]

D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
[Crossref]

Cui, X.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

Cuong, N. D.

N. D. Cuong, Y. W. Park, and S. G. Yoon, “Microstructural and electrical properties of Ga2O3 nanowires grown at various temperatures by vapor–liquid–solid technique,” Sens. Actuators B 140, 240–244 (2009).
[Crossref]

Dai, Z. R.

Z. R. Dai, Z. W. Pan, and Z. L. Wang, “Gallium oxide nanoribbons and nanosheets,” J. Phys. Chem. B 106, 902–904 (2002).
[Crossref]

Dang, G. T.

G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, “Mist-CVD grown Sn-doped α-Ga2O3 MESFETs,” IEEE Trans. Electron Devices 62, 3640–3644 (2015).
[Crossref]

Darakchieva, V.

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

Das, K. K.

Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, “Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals,” J. Vac. Sci. Technol. B 35, 03d113 (2017).
[Crossref]

Datta, A.

G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, “Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D 42, 185409 (2009).
[Crossref]

Davis, R. F.

Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, “Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals,” J. Vac. Sci. Technol. B 35, 03d113 (2017).
[Crossref]

Y. Yao, R. F. Davis, and L. M. Porter, “Investigation of different metals as ohmic contacts to β-Ga2O3: comparison and analysis of electrical behavior, morphology, and other physical properties,” J. Electron. Mater. 46, 2053–2060 (2016).
[Crossref]

Dawson, D. M.

H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, “Characterization of structural disorder in γ-Ga2O3,” J. Phys. Chem. C 118, 16188–16198 (2014).
[Crossref]

de Walle, C. V.

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

Deák, P.

P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
[Crossref]

Delaunay, J.-J.

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.-J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20, 3972–3978 (2010).
[Crossref]

Delgado, M. R. G.

C. O. Areán, A. L. Bellan, M. P. Mentruit, M. R. G. Delgado, and G. T. Palomino, “Preparation and characterization of mesoporous γ-Ga2O3,” Microporous Mesoporous Mater. 40, 35–42 (2000).
[Crossref]

Delmonte, D.

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

Deng, M.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Deng, Q.

J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, and J. Xu, “Growth and spectral characterization of β-Ga2O3 single crystals,” J. Phys. Chem. Solids 67, 2448–2451 (2006).
[Crossref]

J. Zhang, C. Xia, Q. Deng, W. Xu, H. Shi, F. Wu, and J. Xu, “Growth and characterization of new transparent conductive oxides single crystals β-Ga2O3: Sn,” J. Phys. Chem. Solids 67, 1656–1659 (2006).
[Crossref]

Destro, M.

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

Dhar, S.

A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
[Crossref]

Dhara, S.

S. Kumar, S. Dhara, R. Agarwal, and R. Singh, “Study of photoconduction properties of CVD grown β-Ga2O3 nanowires,” J. Alloys Compd. 683, 143–148 (2016).
[Crossref]

Ding, W.

L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
[Crossref]

Ding, Y.

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

Dódony, I.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

Dong, H.

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

Dong, J.

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

Dong, K. X.

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

Dong, L.

Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
[Crossref]

Dorsey, D.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

Du, G.

C. Yang, H. Liang, Z. Zhang, X. Xia, P. Tao, Y. Chen, H. Zhang, R. Shen, Y. Luo, and G. Du, “Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3,” RSC Adv. 8, 6341–6345 (2018).
[Crossref]

X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du, “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett. 108, 202103 (2016).
[Crossref]

Du, J.

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

Du, X.

S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, “Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates,” Adv. Opt. Mater. 5, 1700454 (2017).
[Crossref]

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

Du, Y.-Z.

X.-S. Wang, W.-S. Li, J.-Q. Situ, X.-Y. Ying, H. Chen, Y. Jin, and Y.-Z. Du, “Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery,” RSC Adv. 5, 12886–12889 (2015).
[Crossref]

Dunham, S. T.

T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100, 181602 (2012).
[Crossref]

Dupuis, R. D.

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

Duy Ho, Q.

P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
[Crossref]

Dwelk, H.

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

Eddy, C. R.

M. J. Tadjer, V. D. Wheeler, D. I. Shahin, C. R. Eddy, and F. J. Kub, “Thermionic emission analysis of TiN and Pt Schottky contacts to β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P165–P168 (2017).
[Crossref]

Edoff, M.

C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, and M. Edoff, “Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys,” Phys. Rev. Lett. 97, 146403 (2006).
[Crossref]

Egdell, R. G.

K. H. Zhang, K. Xi, M. G. Blamire, and R. G. Egdell, “P-type transparent conducting oxides,” J. Phys. Condens. Matter 28, 383002 (2016).
[Crossref]

Eickhoff, M.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Eiting, C. J.

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

Ellis, W. C.

R. S. Wagner and W. C. Ellis, “Vapor-liquid-solid mechanism of single crystal growth,” Appl. Phys. Lett. 4, 89–90 (1964).
[Crossref]

Endo, F.

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90, 031912 (2007).
[Crossref]

Esser, N.

A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
[Crossref]

Ettenberg, M.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44, 292–296 (1973).
[Crossref]

Evans, K. R.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Fan, S.

W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, “Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by x-ray photoelectron spectroscopy,” Nano. Res. Lett. 7, 562 (2012).
[Crossref]

Fan, Z.

P.-C. Chang, Z. Fan, W.-Y. Tseng, A. Rajagopal, and J. G. Lu, “β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor,” Appl. Phys. Lett. 87, 222102 (2005).
[Crossref]

Fang, L.

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Fang, X.

B. Zhao, F. Wang, H. Chen, L. Zheng, L. Su, D. Zhao, and X. Fang, “An ultrahigh responsivity (9.7 mA·W–1) self-powered solar-blind photodetector based on individual ZnO–Ga2O3 heterostructures,” Adv. Funct. Mater. 27, 1700264 (2017).
[Crossref]

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15, 3988–3993 (2015).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

Fares, C.

J. Kim, S. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, and A. Y. Polyakov, “Radiation damage effects in Ga2O3 materials and devices,” J. Mater. Chem. C 7, 10–24 (2019).

Farvid, S. S.

T. Wang, S. S. Farvid, and M. Abulikemu, and P. V. Radovanovic, “Size-tunable phosphorescence in colloidal metastable γ-Ga2O3 nanocrystals,” J. Am. Chem. Soc. 132, 9250–9252 (2010).
[Crossref]

Farzana, E.

E. Farzana, Z. Zhang, P. K. Paul, A. R. Arehart, and S. A. Ringel, “Influence of metal choice on (010) β-Ga2O3 Schottky diode properties,” Appl. Phys. Lett. 110, 202102 (2017).
[Crossref]

Faurie, J. P.

F. Vigue, E. Tournie, and J. P. Faurie, “Evaluation of the potential of ZnSe and Zn(Mg)BeSe compounds for ultraviolet photodetection,” IEEE J. Quantum Electron. 37, 1146–1152 (2001).
[Crossref]

Feng, L.

L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
[Crossref]

Feng, P.

P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88, 153107 (2006).
[Crossref]

Feng, Q.

Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, J. Zhang, Q. Feng, Y. Hao, and X. Tao, “One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,” CrystEngComm 19, 5122–5127 (2017).
[Crossref]

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du, “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett. 108, 202103 (2016).
[Crossref]

Feng, S. Q.

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

Feng, W.

W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, and B. Yang, “Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors,” J. Mater. Chem. C 2, 3254–3259 (2014).
[Crossref]

Feng, Z.

Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
[Crossref]

Fernandes, B.

B. Fernandes, M. Hegde, P. C. Stanish, Z. L. Mišković, and P. V. Radovanovic, “Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: the role of exclusion distance at short time scales,” Chem. Phys. Lett. 684, 135–140 (2017).
[Crossref]

Ferrari, C.

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

Fiedler, A.

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, “Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates,” ECS J. Solid State Sci. Technol. 6, Q3040–Q3044 (2016).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Fiorilli, S.

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

Fitch, R.

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

Fitch, R. C.

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Fleischer, M.

M. Fleischer and H. Meixner, “Electron mobility in single- and polycrystalline Ga2O3,” J. Appl. Phys. 74, 300–305 (1993).
[Crossref]

Fornari, R.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

F. Boschi, M. Bosi, T. Berzina, E. Buffagni, C. Ferrari, and R. Fornari, “Hetero-epitaxy of ε-Ga2O3 layers by MOCVD and ALD,” J. Cryst. Growth 443, 25–30 (2016).
[Crossref]

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
[Crossref]

K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method,” J. Appl. Phys. 110, 063720 (2011).
[Crossref]

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “The electronic structure of β-Ga2O3,” Appl. Phys. Lett. 97, 211903 (2010).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Foundos, G. K.

B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
[Crossref]

Franchini, C.

J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle, “Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides,” Phys. Rev. B 85, 081109 (2012).
[Crossref]

Frauenheim, T.

P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
[Crossref]

Freitas, J. A.

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108, 182105 (2016).
[Crossref]

L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K. Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, and S. M. Prokes, “Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications,” Cryst. Growth Des. 9, 4471–4479 (2009).
[Crossref]

French, R. H.

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109, 132103 (2016).
[Crossref]

Frenzel, H.

S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, F.-L. Schein, H. Frenzel, and M. Grundmann, “Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals,” Appl. Phys. Express 8, 121102 (2015).
[Crossref]

Fu, H.

H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, and Y. Zhao, “A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates,” IEEE Trans. Electron Devices 65, 3507–3513 (2018).
[Crossref]

Fu, L.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

Fujimoto, N.

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Fujioka, S.

T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Appl. Phys. Lett. 103, 041910 (2013).
[Crossref]

Fujita, S.

T. Uchida, K. Kaneko, and S. Fujita, “Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates,” MRS Adv. 3, 171–177 (2018).
[Crossref]

K. Kaneko, S. Fujita, and T. Hitora, “A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique,” Jpn. J. Appl. Phys. 57, 02cb18 (2018).
[Crossref]

R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, “Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer,” Phys. Status Solidi B 255, 1700326 (2018).
[Crossref]

T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
[Crossref]

M. Oda, K. Kaneko, S. Fujita, and T. Hitora, “Crack-free thick (∼5  μm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers,” Jpn. J. Appl. Phys. 55, 070304 (2016).
[Crossref]

S.-D. Lee, K. Kaneko, and S. Fujita, “Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202B8 (2016).
[Crossref]

S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 (2016).
[Crossref]

S.-D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi C 10, 1592–1595 (2013).
[Crossref]

K. Akaiwa and S. Fujita, “Electrical conductive corundum-structured α-Ga2O3 thin films on sapphire with tin-doping grown by spray-assisted mist chemical vapor deposition,” Jpn. J. Appl. Phys. 51, 070203 (2012).
[Crossref]

T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, “Flame detection by a β-Ga2O3-based sensor,” Jpn. J. Appl. Phys. 48, 011605 (2009).
[Crossref]

T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates,” Appl. Phys. Express 1, 011202 (2008).
[Crossref]

T. Oshima, N. Arai, N. Suzuki, S. Ohira, and S. Fujita, “Surface morphology of homoepitaxial β-Ga2O3 thin films grown by molecular beam epitaxy,” Thin Solid Films 516, 5768–5771 (2008).
[Crossref]

D. Shinohara and S. Fujita, “Heteroepitaxy of corundum-structured α-Ga2O3 thin films on α-Al2O3 substrates by ultrasonic mist chemical vapor deposition,” Jpn. J. Appl. Phys. 47, 7311–7313 (2008).
[Crossref]

T. Oshima, T. Okuno, and S. Fujita, “Ga2O3 thin film growth on c-plane sapphire substrates by molecular beam epitaxy for deep-ultraviolet photodetectors,” Jpn. J. Appl. Phys. 46, 7217–7220 (2007).
[Crossref]

S. Fujita, “Evolution of oxide semiconductors for novel functional device applications,” in IEEE 16th International Conference on Nanotechnology (IEEE-Nano) (2016), pp. 714–717.

Fukuda, T.

E. G. Víllora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura, and T. Fukuda, “Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses,” Solid State Commun. 127, 385–388 (2003).
[Crossref]

E. G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, and T. Fukuda, “Infrared reflectance and electrical conductivity of β-Ga2O3,” Phys. Status Solidi A 193, 187–195 (2002).
[Crossref]

E. G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study on β-Ga2O3,” Jpn. J. Appl. Phys. 41, L622–L625 (2002).
[Crossref]

Y. Tomm, J. M. Ko, A. Yoshikawa, and T. Fukuda, “Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications,” Sol. Energy Mater. Sol. Cells 66, 369–374 (2001).
[Crossref]

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[Crossref]

V. I. Chani, K. Inoue, K. Shimamura, K. Sugiyama, and T. Fukuda, “Segregation coefficients in β-Ga2O3: Cr crystals grown from a B2O3 based flux,” J. Cryst. Growth 132, 335–336 (1993).
[Crossref]

Fukumura, H.

E. G. Víllora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura, and T. Fukuda, “Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses,” Solid State Commun. 127, 385–388 (2003).
[Crossref]

Fuller, C. S.

H. Reiss, C. S. Fuller, and F. J. Morin, “Chemical interactions among defects in germanium and silicon,” Bell Syst. Tech. J. 35, 535–636 (1956).
[Crossref]

H. Reiss, C. S. Fuller, and A. J. Pietruszkiewicz, “Solubility of lithium in doped and undoped silicon, evidence for compound formation,” J. Chem. Phys. 25, 650–655 (1956).
[Crossref]

Furthmüller, J.

J. Furthmüller and F. Bechstedt, “Quasiparticle bands and spectra of Ga2O3 polymorphs,” Phys. Rev. B 93, 115204 (2016).
[Crossref]

A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
[Crossref]

Furuta, M.

G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, “Mist-CVD grown Sn-doped α-Ga2O3 MESFETs,” IEEE Trans. Electron Devices 62, 3640–3644 (2015).
[Crossref]

Galazka, Z.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

A. Navarro-Quezada, S. Alamé, N. Esser, J. Furthmüller, F. Bechstedt, Z. Galazka, D. Skuridina, and P. Vogt, “Near valence-band electronic properties of semiconducting β–Ga2O3 single crystals,” Phys. Rev. B 92, 195306 (2015).
[Crossref]

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
[Crossref]

K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method,” J. Appl. Phys. 110, 063720 (2011).
[Crossref]

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “The electronic structure of β-Ga2O3,” Appl. Phys. Lett. 97, 211903 (2010).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Gallagher, J. C.

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

Galluzzi, F.

S. Salvatori, M. C. Rossi, F. Galluzzi, and E. Pace, “Solar-blind UV-photodetector based on polycrystalline diamond films: basic design principle and comparison with experimental results,” Mater. Sci. Eng. B 46, 105–111 (1997).
[Crossref]

Gangireddy, R.

Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, “Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals,” J. Vac. Sci. Technol. B 35, 03d113 (2017).
[Crossref]

Ganschow, S.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Gao, C.-J.

Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
[Crossref]

Gao, G. B.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[Crossref]

Gao, H.

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

Gao, J.

Y. Luo, Z. Hou, J. Gao, D. Jin, and X. Zheng, “Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route,” Mater. Sci. Eng. B 140, 123–127 (2007).
[Crossref]

Gao, S.

J. Zhang, S. Jiao, Y. Wan, S. Gao, D. Wang, and J. Wang, “A well-grown β-Ga2O3 microrods array transformed by GaOOH on Si (100) substrate and growth mechanism study,” CrystEngComm 20, 4329–4335 (2018).
[Crossref]

Garber, V.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001).
[Crossref]

Garcia, J. A.

E. Nogales, B. Mendez, J. Piqueras, and J. A. Garcia, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[Crossref]

García, J. A.

E. Nogales, J. A. García, B. Méndez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101, 033517 (2007).
[Crossref]

García, J. Á.

E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 91, 133108 (2007).
[Crossref]

Gardella, J. A.

K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, “Ga2O3 MOSFETs using spin-on-glass source/drain doping technology,” IEEE Electron Device Lett. 38, 513–516 (2017).
[Crossref]

Garton, G.

G. Garton, S. H. Smith, and B. M. Wanklyn, “Crystal growth from the flux systems PbO-V2O5 and Bi2O3-V2O5,” J. Cryst. Growth 13-14, 588–592 (1972).
[Crossref]

Gautam, U. K.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

Ge, C.

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

Geerpuram, D.

J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
[Crossref]

Geller, S.

S. Geller, “Crystal structure of β-Ga2O3,” J. Chem. Phys. 33, 676–684 (1960).
[Crossref]

Gerbaldi, C.

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

Gerken, B.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Ghimpu, L.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Ghodsi, V.

V. Ghodsi, S. Jin, J. C. Byers, Y. Pan, and P. V. Radovanovic, “Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states,” J. Phys. Chem. C 121, 9433–9441 (2017).
[Crossref]

Ghosh, S.

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Narrow-band photodetection based on M-plane GaN films,” Phys. Status Solidi A 205, 1100–1102 (2008).
[Crossref]

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Very narrow-band ultraviolet photodetection based on strained M-plane GaN films,” Appl. Phys. Lett. 90, 091110 (2007).
[Crossref]

Gilbert, R.

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

Gilbert, S. L.

W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, and S. L. Gilbert, “Epitaxially grown AlN and its optical band gap,” J. Appl. Phys. 44, 292–296 (1973).
[Crossref]

Giles, N. C.

B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
[Crossref]

Glaser, E. R.

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K. Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, and S. M. Prokes, “Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications,” Cryst. Growth Des. 9, 4471–4479 (2009).
[Crossref]

Gogova, D.

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

D. Gogova, M. Schmidbauer, and A. Kwasniewski, “Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE,” CrystEngComm 17, 6744–6752 (2015).
[Crossref]

Gokkavas, M.

T. Tut, M. Gokkavas, B. Butun, S. Butun, E. Ulker, and E. Ozbay, “Experimental evaluation of impact ionization coefficients in AlxGa1–xN based avalanche photodiodes,” Appl. Phys. Lett. 89, 183524 (2006).
[Crossref]

Golberg, D.

X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, “Recent advances in solution-processed inorganic nanofilm photodetectors,” Chem. Soc. Rev. 43, 1400–1422 (2014).
[Crossref]

W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, and Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22, 17984–17991 (2012).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
[Crossref]

Gong, X.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm,” Science 325, 1665–1667 (2009).
[Crossref]

Gong, Z.

L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
[Crossref]

González-Calbet, J. M.

I. López, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires,” J. Phys. Chem. C 117, 3036–3045 (2013).
[Crossref]

Gordon, R. G.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Goto, K.

K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
[Crossref]

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
[Crossref]

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, “Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy,” J. Cryst. Growth 405, 19–22 (2014).
[Crossref]

Gourier, D.

L. Binet and D. Gourier, “Origin of the blue luminescence of β-Ga2O3,” J. Phys. Chem. Solids 59, 1241–1249 (1998).
[Crossref]

Graham, S.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Grahn, H. T.

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Narrow-band photodetection based on M-plane GaN films,” Phys. Status Solidi A 205, 1100–1102 (2008).
[Crossref]

S. Ghosh, C. Rivera, J. L. Pau, E. Muñoz, O. Brandt, and H. T. Grahn, “Very narrow-band ultraviolet photodetection based on strained M-plane GaN films,” Appl. Phys. Lett. 90, 091110 (2007).
[Crossref]

C. Rivera, J. L. Pau, E. Muñoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, “Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates,” Appl. Phys. Lett. 88, 213507 (2006).
[Crossref]

Green, A.

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

Green, A. J.

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Gregie, J. M.

R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Codoping of wide gap epitaxial III-nitride semiconductors,” Opto-Electron. Rev. 10, 243–249 (2002).

Grodzicki, M.

M. Grodzicki, P. Mazur, S. Zuber, J. Brona, and A. Ciszewski, “Oxidation of GaN(0001) by low-energy ion bombardment,” Appl. Surf. Sci. 304, 20–23 (2014).
[Crossref]

Grotjohn, T. A.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Grudowski, P. A.

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

Grundmann, M.

Z. Zhang, H. von Wenckstern, J. Lenzner, M. Lorenz, and M. Grundmann, “Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3,” Appl. Phys. Lett. 108, 123503 (2016).
[Crossref]

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

S. Müller, H. von Wenckstern, F. Schmidt, D. Splith, F.-L. Schein, H. Frenzel, and M. Grundmann, “Comparison of Schottky contacts on β-gallium oxide thin films and bulk crystals,” Appl. Phys. Express 8, 121102 (2015).
[Crossref]

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J. J. van Rensburg, W. E. Meyer, and M. Grundmann, “Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition,” Phys. Status Solidi A 211, 40–47 (2014).
[Crossref]

Gu, C.

Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, “Preparation and electrical properties of ultrafine Ga2O3 nanowires,” J. Phys. Chem. B 110, 796–800 (2006).
[Crossref]

Gu, S.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures,” ACS Appl. Mater. Interfaces 9, 36997–37005 (2017).
[Crossref]

Gu, S. L.

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, and Y. D. Ye, “Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition,” J. Cryst. Growth 283, 279–285 (2005).
[Crossref]

Guo, C.

Guo, D.

Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
[Crossref]

P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
[Crossref]

Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” J. Alloys Compd. 680, 247–251 (2016).
[Crossref]

Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, P. Li, and W. Tang, “Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer,” Appl. Phys. A 122, 1036 (2016).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
[Crossref]

Guo, D. Y.

Y. H. An, Y. S. Zhi, W. Cui, X. L. Zhao, Z. P. Wu, D. Y. Guo, P. G. Li, and W. H. Tang, “Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors,” J. Nanosci. Nanotechnol. 17, 9091–9094 (2017).
[Crossref]

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

Guo, Q.

Z. Chen, K. Nishihagi, X. Wang, K. Saito, T. Tanaka, M. Nishio, M. Arita, and Q. Guo, “Band alignment of Ga2O3/Si heterojunction interface measured by x-ray photoelectron spectroscopy,” Appl. Phys. Lett. 109, 102106 (2016).
[Crossref]

Guo, W.

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

Guo, X.

Guo, X. C.

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

Guo, Y.

Y. Guo, J. Zhang, F. Zhu, Z. X. Yang, J. Xu, and J. Yu, “Self-assembly of β-Ga2O3 nanobelts,” Appl. Surf. Sci. 254, 5124–5128 (2008).
[Crossref]

Guo, Z.

N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett. 109, 212101 (2016).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

Hackam, R.

R. Hackam and P. Harrop, “Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes,” IEEE Trans. Electron Devices 19, 1231–1238 (1972).
[Crossref]

Haensch, W.

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

Hähnel, A.

S. Kumar, G. Sarau, C. Tessarek, M. Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, “Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. D 47, 435101 (2014).
[Crossref]

Halliburton, L. E.

B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
[Crossref]

Han, G.

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Han, K. I.

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

Han, K.-S.

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

Han, L.

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108, 182105 (2016).
[Crossref]

S. Rafique, L. Han, A. T. Neal, S. Mou, M. J. Tadjer, R. H. French, and H. Zhao, “Heteroepitaxy of N-type β-Ga2O3 thin films on sapphire substrate by low pressure chemical vapor deposition,” Appl. Phys. Lett. 109, 132103 (2016).
[Crossref]

S. Rafique, L. Han, C. A. Zorman, and H. Zhao, “Synthesis of wide bandgap β-Ga2O3 rods on 3C-SiC-on-Si,” Cryst. Growth Des. 16, 511–517 (2015).
[Crossref]

Han, S.-H.

S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, “n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 33, 045001 (2018).
[Crossref]

Hanada, K.

M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
[Crossref]

M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
[Crossref]

Hang, Q. L.

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

Hannon, A. C.

H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, “Characterization of structural disorder in γ-Ga2O3,” J. Phys. Chem. C 118, 16188–16198 (2014).
[Crossref]

H. Y. Playford, A. C. Hannon, E. R. Barney, and R. I. Walton, “Structures of uncharacterised polymorphs of gallium oxide from total neutron diffraction,” Chemistry 19, 2803–2813 (2013).
[Crossref]

Hao, H.

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

Hao, N. H.

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

Hao, Y.

Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, J. Zhang, Q. Feng, Y. Hao, and X. Tao, “One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,” CrystEngComm 19, 5122–5127 (2017).
[Crossref]

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Harada, K.

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8, 031101 (2015).
[Crossref]

Harrop, P.

R. Hackam and P. Harrop, “Electrical properties of nickel-low-doped n-type gallium arsenide Schottky-barrier diodes,” IEEE Trans. Electron Devices 19, 1231–1238 (1972).
[Crossref]

Harwig, T.

T. Harwig and F. Kellendonk, “Some observations on the photoluminescence of doped β-galliumsesquioxide,” J. Solid State Chem. 24, 255–263 (1978).
[Crossref]

T. Harwig, F. Kellendonk, and S. Slappendel, “The ultraviolet luminescence of β-galliumsesquioxide,” J. Phys. Chem. Solids 39, 675–680 (1978).
[Crossref]

Hasegawa, H.

T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett. 84, 4884–4886 (2004).
[Crossref]

Hashiguchi, A.

T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu, “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects,” Jpn. J. Appl. Phys. 56, 086501 (2017).
[Crossref]

M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
[Crossref]

M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
[Crossref]

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

Hashizume, T.

T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett. 84, 4884–4886 (2004).
[Crossref]

Hatanaka, K.

E. G. Víllora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura, and T. Fukuda, “Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses,” Solid State Commun. 127, 385–388 (2003).
[Crossref]

Hattori, M.

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

Hayashi, H.

S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, “Structures and energetics of Ga2O3 polymorphs,” J. Phys. Condens. Matter 19, 346211 (2007).
[Crossref]

Haynes, W.

T. Bruno, W. Haynes, and D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2016).

Hays, D. C.

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, and I. I. Kravchenko, “Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers,” J. Vac. Sci. Technol. B 35, 061201 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
[Crossref]

He, H.

H. He, R. Orlando, M. A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat, “First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases,” Phys. Rev. B 74, 195123 (2006).
[Crossref]

H. He, M. A. Blanco, and R. Pandey, “Electronic and thermodynamic properties of β-Ga2O3,” Appl. Phys. Lett. 88, 261904 (2006).
[Crossref]

He, Q.

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

Heeger, A. J.

X. Gong, M. Tong, Y. Xia, W. Cai, J. S. Moon, Y. Cao, G. Yu, C. L. Shieh, B. Nilsson, and A. J. Heeger, “High-detectivity polymer photodetectors with spectral response from 300  nm to 1450  nm,” Science 325, 1665–1667 (2009).
[Crossref]

Hegde, M.

B. Fernandes, M. Hegde, P. C. Stanish, Z. L. Mišković, and P. V. Radovanovic, “Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: the role of exclusion distance at short time scales,” Chem. Phys. Lett. 684, 135–140 (2017).
[Crossref]

I. D. Hosein, M. Hegde, P. D. Jones, V. Chirmanov, and P. V. Radovanovic, “Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition,” J. Cryst. Growth 396, 24–32 (2014).
[Crossref]

Heilmann, M.

M. Kumar, G. Sarau, M. Heilmann, S. Christiansen, V. Kumar, and R. Singh, “Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires,” J. Phys. D 50, 035302 (2017).
[Crossref]

Heimburger, C.

K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, “Ga2O3 MOSFETs using spin-on-glass source/drain doping technology,” IEEE Electron Device Lett. 38, 513–516 (2017).
[Crossref]

Heinemann, M. D.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Heller, E. R.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Heremans, J. P.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

Hertog, B.

F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
[Crossref]

Hickman, A.

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

Hidalgo, P.

E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, and E. Alves, “Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures,” Nanotechnology 22, 285706 (2011).
[Crossref]

Higashiwaki, M.

T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping,” J. Appl. Phys. 124, 075103 (2018).
[Crossref]

M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, “Acceptor doping of β-Ga2O3 by Mg and N ion implantations,” Appl. Phys. Lett. 113, 102103 (2018).
[Crossref]

M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation,” Appl. Phys. Lett. 112, 023503 (2018).
[Crossref]

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
[Crossref]

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10, 041101 (2017).
[Crossref]

K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, and S. Yamakoshi, “First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes,” IEEE Electron Device Lett. 38, 783–785 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
[Crossref]

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Lett. 37, 212–215 (2016).
[Crossref]

M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Anomalous Fe diffusion in Si-ion-implanted β-Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers,” Appl. Phys. Lett. 106, 032105 (2015).
[Crossref]

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54, 112601 (2015).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy,” J. Cryst. Growth 392, 30–33 (2014).
[Crossref]

T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Appl. Phys. Lett. 103, 041910 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Appl. Phys. Express 6, 086502 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates,” IEEE Electron Device Lett. 34, 493–495 (2013).
[Crossref]

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett. 100, 013504 (2012).
[Crossref]

M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEEE International Electron Devices Meeting (2013).

Hill, V. G.

R. Roy, V. G. Hill, and E. F. Osborn, “Polymorphism of Ga2O3 and the system Ga2O3-H2O,” J. Am. Chem. Soc. 74, 719–722 (1952).
[Crossref]

Hino, H.

T. Oshima, T. Okuno, N. Arai, N. Suzuki, H. Hino, and S. Fujita, “Flame detection by a β-Ga2O3-based sensor,” Jpn. J. Appl. Phys. 48, 011605 (2009).
[Crossref]

Hiramatsu, H.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,” Thin Solid Films 411, 134–139 (2002).
[Crossref]

Hirano, M.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,” Thin Solid Films 411, 134–139 (2002).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77, 4166–4168 (2000).
[Crossref]

Hitora, T.

K. Kaneko, S. Fujita, and T. Hitora, “A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique,” Jpn. J. Appl. Phys. 57, 02cb18 (2018).
[Crossref]

M. Oda, K. Kaneko, S. Fujita, and T. Hitora, “Crack-free thick (∼5  μm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers,” Jpn. J. Appl. Phys. 55, 070304 (2016).
[Crossref]

M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, and T. Hitora, “Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®,” Appl. Phys. Express 9, 021101 (2016).
[Crossref]

S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 (2016).
[Crossref]

Ho, C.-H.

L.-C. Tien, W.-T. Chen, and C.-H. Ho, “Enhanced photocatalytic activity in β-Ga2O3 nanobelts,” J. Am. Ceram. Soc. 94, 3117–3122 (2011).
[Crossref]

Hobart, K. D.

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

Hollis, M. A.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Honda, T.

T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping,” J. Appl. Phys. 124, 075103 (2018).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54, 112601 (2015).
[Crossref]

T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Appl. Phys. Lett. 103, 041910 (2013).
[Crossref]

Hosein, I. D.

I. D. Hosein, M. Hegde, P. D. Jones, V. Chirmanov, and P. V. Radovanovic, “Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition,” J. Cryst. Growth 396, 24–32 (2014).
[Crossref]

Hoshikawa, K.

K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, “Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air,” J. Cryst. Growth 447, 36–41 (2016).
[Crossref]

E. Ohba, T. Kobayashi, M. Kado, and K. Hoshikawa, “Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method,” Jpn. J. Appl. Phys. 55, 1202bf (2016).
[Crossref]

Hosono, H.

M. Orita, H. Hiramatsu, H. Ohta, M. Hirano, and H. Hosono, “Preparation of highly conductive, deep ultraviolet transparent β-Ga2O3 thin film at low deposition temperatures,” Thin Solid Films 411, 134–139 (2002).
[Crossref]

M. Orita, H. Ohta, M. Hirano, and H. Hosono, “Deep-ultraviolet transparent conductive β-Ga2O3 thin films,” Appl. Phys. Lett. 77, 4166–4168 (2000).
[Crossref]

N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Anisotropy of electrical and optical properties in β-Ga2O3 single crystals,” Appl. Phys. Lett. 71, 933–935 (1997).
[Crossref]

N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett. 70, 3561–3563 (1997).
[Crossref]

Hou, Z.

Y. Luo, Z. Hou, J. Gao, D. Jin, and X. Zheng, “Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route,” Mater. Sci. Eng. B 140, 123–127 (2007).
[Crossref]

Hsieh, C. H.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
[Crossref]

Hsu, C. L.

Y. L. Wu, S.-J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C. Chen, “Ga2O3 nanowire photodetector prepared on SiO2 template,” IEEE Sens. J. 13, 2368–2373 (2013).
[Crossref]

Hsu, G. M.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Hsu, Y. K.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Hsueh, H. T.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11, 1491–1492 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 23, 444–446 (2011).
[Crossref]

Hsueh, T. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11, 1491–1492 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol. 10, 1047–1052 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 23, 444–446 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett. 22, 709–711 (2010).
[Crossref]

Hsueh, T.-J.

Z.-D. Huang, W. Y. Weng, S. J. Chang, C.-J. Chiu, T.-J. Hsueh, and S.-L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sens. J. 13, 3462–3467 (2013).
[Crossref]

Hu, G. C.

Hu, J.

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (/00) facet-oriented β-Ga2O3 nanobelts,” Small 10, 1848–1856 (2014).
[Crossref]

Hu, J. Q.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
[Crossref]

Hu, P.

W. Feng, X. Wang, J. Zhang, L. Wang, W. Zheng, P. Hu, W. Cao, and B. Yang, “Synthesis of two-dimensional β-Ga2O3 nanosheets for high-performance solar blind photodetectors,” J. Mater. Chem. C 2, 3254–3259 (2014).
[Crossref]

Hu, Q.

W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, “High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method,” J. Alloys Compd. 714, 453–458 (2017).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, J. Zhang, Q. Feng, Y. Hao, and X. Tao, “One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,” CrystEngComm 19, 5122–5127 (2017).
[Crossref]

Hu, Z.

Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
[Crossref]

Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV,” IEEE Electron Device Lett. 39, 869–872 (2018).
[Crossref]

J. Jie, C. Wu, Y. Yu, L. Wang, and Z. Hu, “Gallium-assisted growth of flute-like MgO nanotubes, Ga2O3-filled MgO nanotubes, and MgO/Ga2O3 co-axial nanotubes,” Nanotechnology 20, 075602 (2009).
[Crossref]

Hua, Y.-F.

Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, and T.-Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett. 25, 1809–1811 (2013).
[Crossref]

Huang, F.

R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, and F. Huang, “High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication,” ACS Appl. Mater. Interfaces 10, 22419–22426 (2018).
[Crossref]

W. Zheng, R. Lin, Z. Zhang, and F. Huang, “Vacuum-ultraviolet photodetection in few-layered h-BN,” ACS Appl. Mater. Interfaces 10, 27116–27123 (2018).
[Crossref]

Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
[Crossref]

Huang, G. J.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN Schottky-barrier photodetector,” IEEE Photon. Technol. Lett. 23, 444–446 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and H. T. Hsueh, “A β-Ga2O3/GaN hetero-structured solar-blind and visible-blind dual-band photodetector,” IEEE Sens. J. 11, 1491–1492 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol. 10, 1047–1052 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. P. Chang, “A solar-blind β-Ga2O3 nanowire photodetector,” IEEE Photon. Technol. Lett. 22, 709–711 (2010).
[Crossref]

Huang, L.

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Huang, M. H.

C. L. Kuo and M. H. Huang, “The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates,” Nanotechnology 19, 155604 (2008).
[Crossref]

Huang, S.

Y. Peng, N. Yu, Y. Xiang, J. Liu, L. Cao, and S. Huang, “One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical properties,” J. Nanosci. Nanotechnol. 18, 5654–5659 (2018).
[Crossref]

Huang, S.-Y.

S.-H. Yuan, C.-C. Wang, S.-Y. Huang, and D.-S. Wuu, “Improved responsivity drop from 250 to 200 nm in sputtered gallium oxide photodetectors by incorporating trace aluminum,” IEEE Electron Device Lett. 39, 220–223 (2018).
[Crossref]

Huang, W.

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

Huang, X.

H. Fu, H. Chen, X. Huang, I. Baranowski, J. Montes, T.-H. Yang, and Y. Zhao, “A comparative study on the electrical properties of vertical (2¯01) and (010)β-Ga2O3 Schottky barrier diodes on EFG single-crystal substrates,” IEEE Trans. Electron Devices 65, 3507–3513 (2018).
[Crossref]

Huang, Y.

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

Y. Huang, S. Yue, Z. Wang, Q. Wang, C. Shi, Z. Xu, X. D. Bai, C. Tang, and C. Gu, “Preparation and electrical properties of ultrafine Ga2O3 nanowires,” J. Phys. Chem. B 110, 796–800 (2006).
[Crossref]

Huang, Y. Q.

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
[Crossref]

Huang, Z. D.

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

Huang, Z.-D.

Z.-D. Huang, W. Y. Weng, S. J. Chang, C.-J. Chiu, T.-J. Hsueh, and S.-L. Wu, “Ga2O3/AlGaN/GaN heterostructure ultraviolet three-band photodetector,” IEEE Sens. J. 13, 3462–3467 (2013).
[Crossref]

Z.-D. Huang, W.-Y. Weng, S.-J. Chang, Y.-F. Hua, C.-J. Chiu, and T.-Y. Tsai, “Ga2O3/GaN-based metal-semiconductor-metal photodetectors covered with Au nanoparticles,” IEEE Photonics Technol. Lett. 25, 1809–1811 (2013).
[Crossref]

Hullavarad, S. S.

W. Yang, S. S. Hullavarad, B. Nagaraj, I. Takeuchi, R. P. Sharma, T. Venkatesan, R. D. Vispute, and H. Shen, “Compositionally-tuned epitaxial cubic MgxZn1−x O on Si(100) for deep ultraviolet photodetectors,” Appl. Phys. Lett. 82, 3424–3426 (2003).
[Crossref]

Hung, S. C.

W. Y. Weng, T. J. Hsueh, S. J. Chang, G. J. Huang, and S. C. Hung, “Growth of Ga2O3 nanowires and the fabrication of solar-blind photodetector,” IEEE Trans. Nanotechnol. 10, 1047–1052 (2011).
[Crossref]

W. Y. Weng, T. J. Hsueh, S. J. Chang, S. C. Hung, G. J. Huang, H. T. Hsueh, Z. D. Huang, and C. J. Chiu, “An (AlxGa1–x)2O3 metal-semiconductor-metal VUV photodetector,” IEEE Sens. J. 11, 1795–1799 (2011).
[Crossref]

Hwang, J.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Hwang, J. S.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Hwang, K.-T.

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

Hwang, W. S.

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

Hyun, Y. J.

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

Ichinose, N.

E. G. Víllora, K. Shimamura, Y. Yoshikawa, K. Aoki, and N. Ichinose, “Large-size β-Ga2O3 single crystals and wafers,” J. Cryst. Growth 270, 420–426 (2004).
[Crossref]

Imura, M.

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Inoue, K.

V. I. Chani, K. Inoue, K. Shimamura, K. Sugiyama, and T. Fukuda, “Segregation coefficients in β-Ga2O3: Cr crystals grown from a B2O3 based flux,” J. Cryst. Growth 132, 335–336 (1993).
[Crossref]

Inoue, T.

E. G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study on β-Ga2O3,” Jpn. J. Appl. Phys. 41, L622–L625 (2002).
[Crossref]

Irmscher, K.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

M. Baldini, M. Albrecht, A. Fiedler, K. Irmscher, R. Schewski, and G. Wagner, “Si- and Sn-doped homoepitaxial β-Ga2O3 layers grown by MOVPE on (010)-oriented substrates,” ECS J. Solid State Sci. Technol. 6, Q3040–Q3044 (2016).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
[Crossref]

K. Irmscher, Z. Galazka, M. Pietsch, R. Uecker, and R. Fornari, “Electrical properties of β-Ga2O3 single crystals grown by the Czochralski method,” J. Appl. Phys. 110, 063720 (2011).
[Crossref]

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Islam, M. S.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Iwaya, M.

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Jagadish, C.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

Janek, J.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Jang, S.

S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
[Crossref]

G. Yang, S. Jang, F. Ren, S. J. Pearton, and J. Kim, “Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors,” ACS Appl. Mater. Interfaces 9, 40471–40476 (2017).
[Crossref]

Janotti, A.

T. Wang, W. Li, C. Ni, and A. Janotti, “Band gap and band offset of Ga2O3 and (AlxGa1–x)2O3 alloys,” Phys. Rev. Appl. 10, 011003 (2018).
[Crossref]

J. B. Varley, A. Janotti, C. Franchini, and C. G. Van de Walle, “Role of self-trapping in luminescence and p-type conductivity of wide-band-gap oxides,” Phys. Rev. B 85, 081109 (2012).
[Crossref]

J. B. Varley, J. R. Weber, A. Janotti, and C. G. Van de Walle, “Oxygen vacancies and donor impurities in β-Ga2O3,” Appl. Phys. Lett. 97, 142106 (2010).
[Crossref]

Janowitz, C.

M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
[Crossref]

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “The electronic structure of β-Ga2O3,” Appl. Phys. Lett. 97, 211903 (2010).
[Crossref]

Jaramillo, R.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Jayawardena, A.

A. M. Armstrong, M. H. Crawford, A. Jayawardena, A. Ahyi, and S. Dhar, “Role of self-trapped holes in the photoconductive gain of β-gallium oxide Schottky diodes,” J. Appl. Phys. 119, 103102 (2016).
[Crossref]

Jena, D.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV,” IEEE Electron Device Lett. 39, 869–872 (2018).
[Crossref]

N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett. 109, 212101 (2016).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

W. S. Hwang, A. Verma, H. Peelaers, V. Protasenko, S. Rouvimov, H. Xing, A. Seabaugh, W. Haensch, C. V. de Walle, Z. Galazka, M. Albrecht, R. Fornari, and D. Jena, “High-voltage field effect transistors with wide-bandgap β-Ga2O3 nanomembranes,” Appl. Phys. Lett. 104, 203111 (2014).
[Crossref]

Jessen, G.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

Jessen, G. H.

A. T. Neal, S. Mou, S. Rafique, H. Zhao, E. Ahmadi, J. S. Speck, K. T. Stevens, J. D. Blevins, D. B. Thomson, N. Moser, K. D. Chabak, and G. H. Jessen, “Donors and deep acceptors in β-Ga2O3,” Appl. Phys. Lett. 113, 062101 (2018).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

Jia, Z.

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, J. Zhang, Q. Feng, Y. Hao, and X. Tao, “One-step exfoliation of ultra-smooth β-Ga2O3 wafers from bulk crystal for photodetectors,” CrystEngComm 19, 5122–5127 (2017).
[Crossref]

W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, “High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method,” J. Alloys Compd. 714, 453–458 (2017).
[Crossref]

C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, and X. Zhao, “Electronic structure and optical property of metal-doped Ga2O3: a first principles study,” RSC Adv. 6, 78322–78334 (2016).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Jiang, K.

Jiang, M.

B. Zhao, F. Wang, H. Chen, Y. Wang, M. Jiang, X. Fang, and D. Zhao, “Solar-blind avalanche photodetector based on single ZnO–Ga2O3 core–shell microwire,” Nano Lett. 15, 3988–3993 (2015).
[Crossref]

Jiang, M. M.

Jiao, L.

Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
[Crossref]

Jiao, S.

J. Zhang, S. Jiao, Y. Wan, S. Gao, D. Wang, and J. Wang, “A well-grown β-Ga2O3 microrods array transformed by GaOOH on Si (100) substrate and growth mechanism study,” CrystEngComm 20, 4329–4335 (2018).
[Crossref]

Jie, J.

J. Jie, C. Wu, Y. Yu, L. Wang, and Z. Hu, “Gallium-assisted growth of flute-like MgO nanotubes, Ga2O3-filled MgO nanotubes, and MgO/Ga2O3 co-axial nanotubes,” Nanotechnology 20, 075602 (2009).
[Crossref]

Jin, D.

Y. Luo, Z. Hou, J. Gao, D. Jin, and X. Zheng, “Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route,” Mater. Sci. Eng. B 140, 123–127 (2007).
[Crossref]

Jin, L.

T. Shao, P. Zhang, L. Jin, and Z. Li, “Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide,” Appl. Catal. B 142-143, 654–661 (2013).
[Crossref]

Jin, S.

V. Ghodsi, S. Jin, J. C. Byers, Y. Pan, and P. V. Radovanovic, “Anomalous photocatalytic activity of nanocrystalline γ-phase Ga2O3 enabled by long-lived defect trap states,” J. Phys. Chem. C 121, 9433–9441 (2017).
[Crossref]

Jin, Y.

X.-S. Wang, W.-S. Li, J.-Q. Situ, X.-Y. Ying, H. Chen, Y. Jin, and Y.-Z. Du, “Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery,” RSC Adv. 5, 12886–12889 (2015).
[Crossref]

Jinno, R.

R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, “Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer,” Phys. Status Solidi B 255, 1700326 (2018).
[Crossref]

Joag, D. S.

G. Sinha, A. Datta, S. K. Panda, P. G. Chavan, M. A. More, D. S. Joag, and A. Patra, “Self-catalytic growth and field-emission properties of Ga2O3 nanowires,” J. Phys. D 42, 185409 (2009).
[Crossref]

Johnson, J.

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Johnson, J. L.

J. L. Johnson, Y. Choi, and A. Ural, “GaN nanowire and Ga2O3 nanowire and nanoribbon growth from ion implanted iron catalyst,” J. Vac. Sci. Technol. B 26, 1841–1847 (2008).
[Crossref]

Johnson, J. M.

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

Johnson, M. C.

M. C. Johnson, S. Aloni, D. E. McCready, and E. D. Bourret-Courchesne, “Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport,” Cryst. Growth Des. 6, 1936–1941 (2006).
[Crossref]

Johnson, N. M.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Joishi, C.

Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, “Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors,” Appl. Phys. Lett. 112, 233503 (2018).
[Crossref]

Y. Zhang, A. Neal, Z. Xia, C. Joishi, J. M. Johnson, Y. Zheng, S. Bajaj, M. Brenner, D. Dorsey, K. Chabak, G. Jessen, J. Hwang, S. Mou, J. P. Heremans, and S. Rajan, “Demonstration of high mobility and quantum transport in modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterostructures,” Appl. Phys. Lett. 112, 173502 (2018).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Jones, K. A.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Jones, P. D.

I. D. Hosein, M. Hegde, P. D. Jones, V. Chirmanov, and P. V. Radovanovic, “Evolution of the faceting, morphology and aspect ratio of gallium oxide nanowires grown by vapor–solid deposition,” J. Cryst. Growth 396, 24–32 (2014).
[Crossref]

Joo, H. U.

W.-S. Jung, H. U. Joo, and B.-K. Min, “Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder,” Phys. E (Amsterdam) 36, 226–230 (2007).
[Crossref]

Ju, S.

M. Suh, M. Meyyappan, and S. Ju, “The effect of Ga content on In2xGa2−2xO3 nanowire transistor characteristics,” Nanotechnology 23, 305203 (2012).
[Crossref]

Juan, Y.-M.

T.-H. Chang, S.-J. Chang, C. J. Chiu, C.-Y. Wei, Y.-M. Juan, and W.-Y. Weng, “Bandgap-engineered in indium–gallium–oxide ultraviolet phototransistors,” IEEE Photon. Technol. Lett. 27, 915–918 (2015).
[Crossref]

Jung, H. J.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Jung, J.-Y.

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

Jung, S.

S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
[Crossref]

Jung, W.-S.

W.-S. Jung, H. U. Joo, and B.-K. Min, “Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder,” Phys. E (Amsterdam) 36, 226–230 (2007).
[Crossref]

Juodawlkis, P. W.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Juskowiak, H.

H. Juskowiak and A. Pajaczkowska, “Chemical transport of β-Ga2O3 using chlorine as a transporting agent,” J. Mater. Sci. 21, 3430–3434 (1986).
[Crossref]

A. Pajączkowska and H. Juskowiak, “On the chemical transport of gallium oxide in the Ga2O3/N-H-Cl system,” J. Cryst. Growth 79, 421–426 (1986).
[Crossref]

Kado, M.

E. Ohba, T. Kobayashi, M. Kado, and K. Hoshikawa, “Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method,” Jpn. J. Appl. Phys. 55, 1202bf (2016).
[Crossref]

Kambara, H.

M. Oda, R. Tokuda, H. Kambara, T. Tanikawa, T. Sasaki, and T. Hitora, “Schottky barrier diodes of corundum-structured gallium oxide showing on-resistance of 0.1 mΩ·cm2 grown by MIST EPITAXY®,” Appl. Phys. Express 9, 021101 (2016).
[Crossref]

Kamimura, T.

M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEEE International Electron Devices Meeting (2013).

Kamiyama, S.

K. Balakrishnan, A. Bandoh, M. Iwaya, S. Kamiyama, H. Amano, and I. Akasaki, “Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy,” Jpn. J. Appl. Phys. 46, L307–L310 (2007).
[Crossref]

M. Imura, K. Nakano, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “High-temperature metal-organic vapor phase epitaxial growth of AlN on sapphire by multi transition growth mode method varying V/III ratio,” Jpn. J. Appl. Phys. 45, 8639–8643 (2006).
[Crossref]

Kananen, B. E.

B. E. Kananen, L. E. Halliburton, E. M. Scherrer, K. T. Stevens, G. K. Foundos, K. B. Chang, and N. C. Giles, “Electron paramagnetic resonance study of neutral Mg acceptors in β-Ga2O3 crystals,” Appl. Phys. Lett. 111, 072102 (2017).
[Crossref]

Kaneko, K.

R. Jinno, T. Uchida, K. Kaneko, and S. Fujita, “Control of crystal structure of Ga2O3 on sapphire substrate by introduction of α-(AlxGa1−x)2O3 buffer layer,” Phys. Status Solidi B 255, 1700326 (2018).
[Crossref]

K. Kaneko, S. Fujita, and T. Hitora, “A power device material of corundum-structured α-Ga2O3 fabricated by MIST EPITAXY® technique,” Jpn. J. Appl. Phys. 57, 02cb18 (2018).
[Crossref]

T. Uchida, K. Kaneko, and S. Fujita, “Electrical characterization of Si-doped n-type α-Ga2O3 on sapphire substrates,” MRS Adv. 3, 171–177 (2018).
[Crossref]

M. Oda, K. Kaneko, S. Fujita, and T. Hitora, “Crack-free thick (∼5  μm) α-Ga2O3 films on sapphire substrates with α-(Al, Ga)2O3 buffer layers,” Jpn. J. Appl. Phys. 55, 070304 (2016).
[Crossref]

S.-D. Lee, K. Kaneko, and S. Fujita, “Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202B8 (2016).
[Crossref]

S. Fujita, M. Oda, and K. Kaneko, and T. Hitora, “Evolution of corundum-structured III-oxide semiconductors: growth, properties, and devices,” Jpn. J. Appl. Phys. 55, 1202a3 (2016).
[Crossref]

Kang, E.-T.

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

Kaplar, R. J.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Karg, A.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Kastiban, R. J.

H. Y. Playford, A. C. Hannon, M. G. Tucker, D. M. Dawson, S. E. Ashbrook, R. J. Kastiban, J. Sloan, and R. I. Walton, “Characterization of structural disorder in γ-Ga2O3,” J. Phys. Chem. C 118, 16188–16198 (2014).
[Crossref]

Kasu, M.

T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu, “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects,” Jpn. J. Appl. Phys. 56, 086501 (2017).
[Crossref]

M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
[Crossref]

T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
[Crossref]

M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
[Crossref]

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8, 031101 (2015).
[Crossref]

Kato, Y.

T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
[Crossref]

Katz, G.

G. Katz and R. Roy, “Flux growth and characterization of β-Ga2O3 single crystals,” J. Am. Ceram. Soc. 49, 168–169 (1966).
[Crossref]

Katz, O.

O. Katz, G. Bahir, and J. Salzman, “Persistent photocurrent and surface trapping in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 84, 4092–4094 (2004).
[Crossref]

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001).
[Crossref]

Kaun, S. W.

E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 10, 041102 (2017).
[Crossref]

Kawaharamura, T.

G. T. Dang, T. Kawaharamura, M. Furuta, and M. W. Allen, “Mist-CVD grown Sn-doped α-Ga2O3 MESFETs,” IEEE Trans. Electron Devices 62, 3640–3644 (2015).
[Crossref]

Kawano, N.

T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
[Crossref]

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

Kawara, K.

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

Kawasaki, Y.

T. Terasako, Y. Kawasaki, and M. Yagi, “Growth and morphology control of β-Ga2O3 nanostructures by atmospheric-pressure CVD,” Thin Solid Films 620, 23–29 (2016).
[Crossref]

Kawazoe, H.

N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Synthesis and control of conductivity of ultraviolet transmitting β-Ga2O3 single crystals,” Appl. Phys. Lett. 70, 3561–3563 (1997).
[Crossref]

N. Ueda, H. Hosono, R. Waseda, and H. Kawazoe, “Anisotropy of electrical and optical properties in β-Ga2O3 single crystals,” Appl. Phys. Lett. 71, 933–935 (1997).
[Crossref]

Kellendonk, F.

T. Harwig and F. Kellendonk, “Some observations on the photoluminescence of doped β-galliumsesquioxide,” J. Solid State Chem. 24, 255–263 (1978).
[Crossref]

T. Harwig, F. Kellendonk, and S. Slappendel, “The ultraviolet luminescence of β-galliumsesquioxide,” J. Phys. Chem. Solids 39, 675–680 (1978).
[Crossref]

Keyes, R. J.

R. J. Keyes, Optical and Infrared Detectors, Topics in Applied Physics (Springer-Verlag, 1977).

Khan, M. A.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Khanna, R.

J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
[Crossref]

Kienle, L.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Kikuchi, K.

S. Nakagomi, T. Sakai, K. Kikuchi, and Y. Kokubun, “β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes,” Phys. Status Solidi A 215, 1700796 (2018).
[Crossref]

Kikuchi, M.

E. G. Víllora, Y. Morioka, T. Atou, T. Sugawara, M. Kikuchi, and T. Fukuda, “Infrared reflectance and electrical conductivity of β-Ga2O3,” Phys. Status Solidi A 193, 187–195 (2002).
[Crossref]

Kim, B. H.

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

Kim, C.-K.

S. Oh, C.-K. Kim, and J. Kim, “High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes,” ACS Photon. 5, 1123–1128 (2017).
[Crossref]

Kim, H.-Y.

G. Shin, H.-Y. Kim, and J. Kim, “Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction,” Korean J. Chem. Eng. 35, 574–578 (2017).
[Crossref]

Kim, J.

J. Kim, S. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, and A. Y. Polyakov, “Radiation damage effects in Ga2O3 materials and devices,” J. Mater. Chem. C 7, 10–24 (2019).

S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev. 5, 011301 (2018).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics,” ACS Appl. Mater. Interfaces 10, 29724–29729 (2018).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics,” ACS Appl. Mater. Interfaces 10, 29724–29729 (2018).
[Crossref]

Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton, and F. Ren, “Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching,” Appl. Phys. Lett. 110, 131901 (2017).
[Crossref]

S. Oh, C.-K. Kim, and J. Kim, “High responsivity β-Ga2O3 metal–semiconductor–metal solar-blind photodetectors with ultraviolet transparent graphene electrodes,” ACS Photon. 5, 1123–1128 (2017).
[Crossref]

S. Oh, M. A. Mastro, M. J. Tadjer, and J. Kim, “Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake,” ECS J. Solid State Sci. Technol. 6, Q79–Q83 (2017).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor,” ACS Appl. Mater. Interfaces 9, 21322–21327 (2017).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor,” ACS Appl. Mater. Interfaces 9, 21322–21327 (2017).
[Crossref]

Y. Yao, R. Gangireddy, J. Kim, K. K. Das, R. F. Davis, and L. M. Porter, “Electrical behavior of β-Ga2O3 Schottky diodes with different Schottky metals,” J. Vac. Sci. Technol. B 35, 03d113 (2017).
[Crossref]

G. Shin, H.-Y. Kim, and J. Kim, “Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction,” Korean J. Chem. Eng. 35, 574–578 (2017).
[Crossref]

G. Yang, S. Jang, F. Ren, S. J. Pearton, and J. Kim, “Influence of high-energy proton irradiation on β-Ga2O3 nanobelt field-effect transistors,” ACS Appl. Mater. Interfaces 9, 40471–40476 (2017).
[Crossref]

S. Oh, G. Yang, and J. Kim, “Electrical characteristics of vertical Ni/β-Ga2O3 Schottky barrier diodes at high temperatures,” ECS J. Solid State Sci. Technol. 6, Q3022–Q3025 (2016).
[Crossref]

S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Lett. 109, 062102 (2016).
[Crossref]

S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Lett. 109, 062102 (2016).
[Crossref]

S. Oh, J. Kim, F. Ren, S. J. Pearton, and J. Kim, “Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity,” J. Mater. Chem. C 4, 9245–9250 (2016).
[Crossref]

S. Oh, J. Kim, F. Ren, S. J. Pearton, and J. Kim, “Quasi-two-dimensional β-gallium oxide solar-blind photodetectors with ultrahigh responsivity,” J. Mater. Chem. C 4, 9245–9250 (2016).
[Crossref]

Kim, J. M.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Kim, J. P.

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

Kim, J.-H.

J.-Y. Jung, W.-S. Cho, J.-H. Kim, K.-T. Hwang, E.-T. Kang, and K.-S. Han, “Morphological and crystal structural characterization of Ga2O3 particles synthesized by a controlled precipitation and polymerized complex method,” Ceram. Int. 42, 2582–2588 (2016).
[Crossref]

Kim, K. W.

K. K. Cho, G. B. Cho, K. W. Kim, and K. S. Ryu, “Growth behavior of β-Ga2O3 nanomaterials synthesized by catalyst-free thermal evaporation,” Phys. Scr. T139, 014079 (2010).
[Crossref]

K. H. Choi, K. K. Cho, G. B. Cho, H. J. Ahn, and K. W. Kim, “The growth behavior of β-Ga2O3 nanowires on the basis of catalyst size,” J. Cryst. Growth 311, 1195–1200 (2009).
[Crossref]

Kim, M.

M. Kim, J.-H. Seo, U. Singisetti, and Z. Ma, “Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond,” J. Mater. Chem. C 5, 8338–8354 (2017).
[Crossref]

Kim, S.

J. Kim, S. Pearton, C. Fares, J. Yang, F. Ren, S. Kim, and A. Y. Polyakov, “Radiation damage effects in Ga2O3 materials and devices,” J. Mater. Chem. C 7, 10–24 (2019).

Kim, S. B.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Kim, S. M.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Kim, S.-K.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Kim, W. S.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Kim, Y.

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

Kinoshita, A.

T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, “Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3,” Jpn. J. Appl. Phys. 13, 1578–1582 (1974).
[Crossref]

Kioupakis, E.

K. A. Mengle, G. Shi, D. Bayerl, and E. Kioupakis, “First-principles calculations of the near-edge optical properties of β-Ga2O3,” Appl. Phys. Lett. 109, 212104 (2016).
[Crossref]

Kitamura, K.

E. G. Víllora, K. Shimamura, K. Kitamura, and K. Aoki, “Rf-plasma-assisted molecular-beam epitaxy of β-Ga2O3,” Appl. Phys. Lett. 88, 031105 (2006).
[Crossref]

Klar, P. J.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Klimm, D.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

Z. Galazka, R. Uecker, K. Irmscher, M. Albrecht, D. Klimm, M. Pietsch, M. Brützam, R. Bertram, S. Ganschow, and R. Fornari, “Czochralski growth and characterization of β-Ga2O3 single crystals,” Cryst. Res. Technol. 45, 1229–1236 (2010).
[Crossref]

Y. Tomm, P. Reiche, D. Klimm, and T. Fukuda, “Czochralski grown Ga2O3 crystals,” J. Cryst. Growth 220, 510–514 (2000).
[Crossref]

Ko, J. M.

Y. Tomm, J. M. Ko, A. Yoshikawa, and T. Fukuda, “Floating zone growth of β-Ga2O3: a new window material for optoelectronic device applications,” Sol. Energy Mater. Sol. Cells 66, 369–374 (2001).
[Crossref]

Kobayashi, K.

T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100, 181602 (2012).
[Crossref]

Kobayashi, T.

K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, “Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air,” J. Cryst. Growth 447, 36–41 (2016).
[Crossref]

E. Ohba, T. Kobayashi, M. Kado, and K. Hoshikawa, “Defect characterization of β-Ga2O3 single crystals grown by vertical Bridgman method,” Jpn. J. Appl. Phys. 55, 1202bf (2016).
[Crossref]

Koehler, A. D.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

Koga, Y.

T. Oishi, Y. Koga, K. Harada, and M. Kasu, “High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact,” Appl. Phys. Express 8, 031101 (2015).
[Crossref]

Koide, Y.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.-J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20, 3972–3978 (2010).
[Crossref]

Koishikawa, Y.

K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, and S. Yamakoshi, “First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes,” IEEE Electron Device Lett. 38, 783–785 (2017).
[Crossref]

Koksaldi, O. S.

E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 10, 041102 (2017).
[Crossref]

Kokubun, Y.

S. Nakagomi, T. Sakai, K. Kikuchi, and Y. Kokubun, “β-Ga2O3/p-type 4H-SiC heterojunction diodes and applications to deep-UV photodiodes,” Phys. Status Solidi A 215, 1700796 (2018).
[Crossref]

S. Nakagomi, T.-A. Sato, Y. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on the β-Ga2O3/GaN heterojunction,” Sens. Actuators A 232, 208–213 (2015).
[Crossref]

S. Nakagomi, T. Momo, S. Takahashi, and Y. Kokubun, “Deep ultraviolet photodiodes based on β-Ga2O3/SiC heterojunction,” Appl. Phys. Lett. 103, 072105 (2013).
[Crossref]

R. Suzuki, S. Nakagomi, and Y. Kokubun, “Solar-blind photodiodes composed of a Au Schottky contact and a β-Ga2O3 single crystal with a high resistivity cap layer,” Appl. Phys. Lett. 98, 131114 (2011).
[Crossref]

Y. Kokubun, T. Abe, and S. Nakagomi, “Sol-gel prepared (Ga1–xInx)2O3 thin films for solar-blind ultraviolet photodetectors,” Phys. Status Solidi A 207, 1741–1745 (2010).
[Crossref]

R. Suzuki, S. Nakagomi, Y. Kokubun, N. Arai, and S. Ohira, “Enhancement of responsivity in solar-blind β-Ga2O3 photodiodes with a Au Schottky contact fabricated on single crystal substrates by annealing,” Appl. Phys. Lett. 94, 222102 (2009).
[Crossref]

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90, 031912 (2007).
[Crossref]

Kong, W. Y.

W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, and L. B. Luo, “Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application,” Adv. Mater. 28, 10725–10731 (2016).
[Crossref]

Kong, Y. C.

H. Z. Zhang, Y. C. Kong, Y. Z. Wang, X. Du, Z. G. Bai, J. J. Wang, D. P. Yu, Y. Ding, Q. L. Hang, and S. Q. Feng, “Ga2O3 nanowires prepared by physical evaporation,” Solid State Commun. 109, 677–682 (1999).
[Crossref]

Konishi, K.

K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
[Crossref]

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

Korlacki, R.

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

Korotkov, R. Y.

R. Y. Korotkov, J. M. Gregie, and B. W. Wessels, “Codoping of wide gap epitaxial III-nitride semiconductors,” Opto-Electron. Rev. 10, 243–249 (2002).

Koshi, K.

T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu, “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects,” Jpn. J. Appl. Phys. 56, 086501 (2017).
[Crossref]

M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
[Crossref]

M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
[Crossref]

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202a2 (2016).
[Crossref]

Kotani, J.

T. Hashizume, J. Kotani, and H. Hasegawa, “Leakage mechanism in GaN and AlGaN Schottky interfaces,” Appl. Phys. Lett. 84, 4884–4886 (2004).
[Crossref]

Koukitu, A.

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, “Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy,” J. Cryst. Growth 405, 19–22 (2014).
[Crossref]

Kracht, M.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Kranert, C.

C. Kranert, C. Sturm, R. Schmidt-Grund, and M. Grundmann, “Raman tensor elements of β-Ga2O3,” Sci. Rep. 6, 35964 (2016).
[Crossref]

Krapf, A.

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

Kravchenko, I. I.

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, and I. I. Kravchenko, “Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers,” J. Vac. Sci. Technol. B 35, 061201 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
[Crossref]

Krishnamoorthy, S.

S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, and S. Rajan, “Delta-doped β-gallium oxide field-effect transistor,” Appl. Phys. Express 10, 051102 (2017).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

A. S. Pratiyush, S. Krishnamoorthy, S. Vishnu Solanke, Z. Xia, R. Muralidharan, S. Rajan, and D. N. Nath, “High responsivity in molecular beam epitaxy grown β-Ga2O3 metal semiconductor metal solar blind deep-UV photodetector,” Appl. Phys. Lett. 110, 221107 (2017).
[Crossref]

Krishnamurthy, D.

M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEEE International Electron Devices Meeting (2013).

Kub, F. J.

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

M. J. Tadjer, V. D. Wheeler, D. I. Shahin, C. R. Eddy, and F. J. Kub, “Thermionic emission analysis of TiN and Pt Schottky contacts to β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P165–P168 (2017).
[Crossref]

Kumagai, Y.

K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
[Crossref]

M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, “Acceptor doping of β-Ga2O3 by Mg and N ion implantations,” Appl. Phys. Lett. 113, 102103 (2018).
[Crossref]

A. Mock, R. Korlacki, C. Briley, V. Darakchieva, B. Monemar, Y. Kumagai, K. Goto, M. Higashiwaki, and M. Schubert, “Band-to-band transitions, selection rules, effective mass, and excitonic contributions in monoclinic β-Ga2O3,” Phys. Rev. B 96, 245205 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
[Crossref]

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, “Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy,” J. Cryst. Growth 405, 19–22 (2014).
[Crossref]

Kumar, D. S.

M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
[Crossref]

Kumar, M.

M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
[Crossref]

M. Kumar, G. Sarau, M. Heilmann, S. Christiansen, V. Kumar, and R. Singh, “Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires,” J. Phys. D 50, 035302 (2017).
[Crossref]

Kumar, S.

M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
[Crossref]

S. Kumar, S. Dhara, R. Agarwal, and R. Singh, “Study of photoconduction properties of CVD grown β-Ga2O3 nanowires,” J. Alloys Compd. 683, 143–148 (2016).
[Crossref]

S. Kumar, C. Tessarek, S. Christiansen, and R. Singh, “A comparative study of β-Ga2O3 nanowires grown on different substrates using CVD technique,” J. Alloys Compd. 587, 812–818 (2014).
[Crossref]

S. Kumar, G. Sarau, C. Tessarek, M. Y. Bashouti, A. Hähnel, S. Christiansen, and R. Singh, “Study of iron-catalysed growth of β-Ga2O3 nanowires and their detailed characterization using TEM, Raman and cathodoluminescence techniques,” J. Phys. D 47, 435101 (2014).
[Crossref]

Kumar, V.

M. Kumar, G. Sarau, M. Heilmann, S. Christiansen, V. Kumar, and R. Singh, “Effect of ammonification temperature on the formation of coaxial GaN/Ga2O3 nanowires,” J. Phys. D 50, 035302 (2017).
[Crossref]

M. Kumar, S. Kumar, N. Chauhan, D. S. Kumar, V. Kumar, and R. Singh, “Study of GaN nanowires converted from β-Ga2O3 and photoconduction in a single nanowire,” Semicond. Sci. Technol. 32, 085012 (2017).
[Crossref]

Kung, P.

P. Kung, X. Zhang, D. Walker, A. Saxler, J. Piotrowski, A. Rogalski, and M. Razeghi, “Kinetics of photoconductivity in n-type GaN photodetector,” Appl. Phys. Lett. 67, 3792–3794 (1995).
[Crossref]

Kuo, C. L.

C. L. Kuo and M. H. Huang, “The growth of ultralong and highly blue luminescent gallium oxide nanowires and nanobelts, and direct horizontal nanowire growth on substrates,” Nanotechnology 19, 155604 (2008).
[Crossref]

Kuramata, A.

T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping,” J. Appl. Phys. 124, 075103 (2018).
[Crossref]

M. J. Tadjer, A. D. Koehler, J. A. Freitas, J. C. Gallagher, M. C. Specht, E. R. Glaser, K. D. Hobart, T. J. Anderson, F. J. Kub, Q. T. Thieu, K. Sasaki, D. Wakimoto, K. Goto, S. Watanabe, and A. Kuramata, “High resistivity halide vapor phase homoepitaxial β-Ga2O3 films co-doped by silicon and nitrogen,” Appl. Phys. Lett. 113, 192102 (2018).
[Crossref]

M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, “Acceptor doping of β-Ga2O3 by Mg and N ion implantations,” Appl. Phys. Lett. 113, 102103 (2018).
[Crossref]

M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation,” Appl. Phys. Lett. 112, 023503 (2018).
[Crossref]

Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV,” IEEE Electron Device Lett. 39, 869–872 (2018).
[Crossref]

S. Jang, S. Jung, K. Beers, J. Yang, F. Ren, A. Kuramata, S. J. Pearton, and K. H. Baik, “A comparative study of wet etching and contacts on (201) and (010) oriented β-Ga2O3,” J. Alloys Compd. 731, 118–125 (2018).
[Crossref]

K. Goto, K. Konishi, H. Murakami, Y. Kumagai, B. Monemar, M. Higashiwaki, A. Kuramata, and S. Yamakoshi, “Halide vapor phase epitaxy of Si doped β-Ga2O3 and its electrical properties,” Thin Solid Films 666, 182–184 (2018).
[Crossref]

T. Oshima, Y. Kato, N. Kawano, A. Kuramata, S. Yamakoshi, S. Fujita, T. Oishi, and M. Kasu, “Carrier confinement observed at modulation-doped β-(AlxGa1−x)2O3/Ga2O3 heterojunction interface,” Appl. Phys. Express 10, 035701 (2017).
[Crossref]

T. Oshima, A. Hashiguchi, T. Moribayashi, K. Koshi, K. Sasaki, A. Kuramata, O. Ueda, T. Oishi, and M. Kasu, “Electrical properties of Schottky barrier diodes fabricated on (001) β-Ga2O3 substrates with crystal defects,” Jpn. J. Appl. Phys. 56, 086501 (2017).
[Crossref]

J. Yang, S. Ahn, F. Ren, R. Khanna, K. Bevlin, D. Geerpuram, S. J. Pearton, and A. Kuramata, “Inductively coupled plasma etch damage in (-201) Ga2O3 Schottky diodes,” Appl. Phys. Lett. 110, 142101 (2017).
[Crossref]

S. Ahn, F. Ren, L. Yuan, S. J. Pearton, and A. Kuramata, “Temperature-dependent characteristics of Ni/Au and Pt/Au Schottky diodes on β-Ga2O3,” ECS J. Solid State Sci. Technol. 6, P68–P72 (2017).
[Crossref]

M. Kasu, T. Oshima, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Crystal defects observed by the etch-pit method and their effects on Schottky-barrier-diode characteristics on (201) β-Ga2O3,” Jpn. J. Appl. Phys. 56, 091101 (2017).
[Crossref]

K. Konishi, K. Goto, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “1-kV vertical Ga2O3 field-plated Schottky barrier diodes,” Appl. Phys. Lett. 110, 103506 (2017).
[Crossref]

K. Sasaki, D. Wakimoto, Q. T. Thieu, Y. Koishikawa, A. Kuramata, M. Higashiwaki, and S. Yamakoshi, “First demonstration of Ga2O3 trench MOS-type Schottky barrier diodes,” IEEE Electron Device Lett. 38, 783–785 (2017).
[Crossref]

K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, “Ga2O3 MOSFETs using spin-on-glass source/drain doping technology,” IEEE Electron Device Lett. 38, 513–516 (2017).
[Crossref]

M. H. Wong, Y. Nakata, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Enhancement-mode Ga2O3 MOSFETs with Si-ion-implanted source and drain,” Appl. Phys. Express 10, 041101 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, S. Jang, A. Kuramata, and I. I. Kravchenko, “Ohmic contacts on n-type β-Ga2O3 using AZO/Ti/Au,” AIP Adv. 7, 095313 (2017).
[Crossref]

P. H. Carey, J. Yang, F. Ren, D. C. Hays, S. J. Pearton, A. Kuramata, and I. I. Kravchenko, “Improvement of ohmic contacts on Ga2O3 through use of ITO-interlayers,” J. Vac. Sci. Technol. B 35, 061201 (2017).
[Crossref]

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Field-plated Ga2O3 MOSFETs with a breakdown voltage of over 750 V,” IEEE Electron Device Lett. 37, 212–215 (2016).
[Crossref]

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202a2 (2016).
[Crossref]

M. Kasu, K. Hanada, T. Moribayashi, A. Hashiguchi, T. Oshima, T. Oishi, K. Koshi, K. Sasaki, A. Kuramata, and O. Ueda, “Relationship between crystal defects and leakage current in β-Ga2O3 Schottky barrier diodes,” Jpn. J. Appl. Phys. 55, 1202bb (2016).
[Crossref]

M. Higashiwaki, K. Konishi, K. Sasaki, K. Goto, K. Nomura, Q. T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, A. Kuramata, and S. Yamakoshi, “Temperature-dependent capacitance-voltage and current-voltage characteristics of Pt/Ga2O3 (001) Schottky barrier diodes fabricated on n--Ga2O3 drift layers grown by halide vapor phase epitaxy,” Appl. Phys. Lett. 108, 133503 (2016).
[Crossref]

H. Murakami, K. Nomura, K. Goto, K. Sasaki, K. Kawara, Q. T. Thieu, R. Togashi, Y. Kumagai, M. Higashiwaki, A. Kuramata, S. Yamakoshi, B. Monemar, and A. Koukitu, “Homoepitaxial growth of β-Ga2O3 layers by halide vapor phase epitaxy,” Appl. Phys. Express 8, 015503 (2015).
[Crossref]

M. H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Anomalous Fe diffusion in Si-ion-implanted β-Ga2O3 and its suppression in Ga2O3 transistor structures through highly resistive buffer layers,” Appl. Phys. Lett. 106, 032105 (2015).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

K. Nomura, K. Goto, R. Togashi, H. Murakami, Y. Kumagai, A. Kuramata, S. Yamakoshi, and A. Koukitu, “Thermodynamic study of β-Ga2O3 growth by halide vapor phase epitaxy,” J. Cryst. Growth 405, 19–22 (2014).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy,” J. Cryst. Growth 392, 30–33 (2014).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates,” IEEE Electron Device Lett. 34, 493–495 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Appl. Phys. Express 6, 086502 (2013).
[Crossref]

K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, “Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy,” Appl. Phys. Express 5, 035502 (2012).
[Crossref]

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett. 100, 013504 (2012).
[Crossref]

M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEEE International Electron Devices Meeting (2013).

Kuwabara, A.

S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, “Structures and energetics of Ga2O3 polymorphs,” J. Phys. Condens. Matter 19, 346211 (2007).
[Crossref]

Kwasniewski, A.

Z. Galazka, R. Uecker, D. Klimm, K. Irmscher, M. Naumann, M. Pietsch, A. Kwasniewski, R. Bertram, S. Ganschow, and M. Bickermann, “Scaling-up of bulk β-Ga2O3 single crystals by the Czochralski method,” ECS J. Solid State Sci. Technol. 6, Q3007–Q3011 (2017).
[Crossref]

D. Gogova, M. Schmidbauer, and A. Kwasniewski, “Homo- and heteroepitaxial growth of Sn-doped β-Ga2O3 layers by MOVPE,” CrystEngComm 17, 6744–6752 (2015).
[Crossref]

Z. Galazka, K. Irmscher, R. Uecker, R. Bertram, M. Pietsch, A. Kwasniewski, M. Naumann, T. Schulz, R. Schewski, D. Klimm, and M. Bickermann, “On the bulk β-Ga2O3 single crystals grown by the Czochralski method,” J. Cryst. Growth 404, 184–191 (2014).
[Crossref]

Kwon, Y.

Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton, and F. Ren, “Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching,” Appl. Phys. Lett. 110, 131901 (2017).
[Crossref]

Kyrtsos, A.

A. Kyrtsos, M. Matsubara, and E. Bellotti, “On the feasibility of p-type Ga2O3,” Appl. Phys. Lett. 112, 032108 (2018).
[Crossref]

Labauyai, S.

S. Phumying, S. Labauyai, W. Chareonboon, S. Phokha, and S. Maensiri, “Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution,” Jpn. J. Appl. Phys. 54, 06fj13 (2015).
[Crossref]

Lai, P. T.

L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P. T. Lai, X.-Z. Liu, and Y.-R. Li, “Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide,” ACS Photon. 4, 2203–2211 (2017).
[Crossref]

Leach, J. H.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

Lee, C. S.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
[Crossref]

Lee, C.-T.

H.-Y. Lee, J.-T. Liu, and C.-T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photon. Technol. Lett. 30, 549–552 (2018).
[Crossref]

Lee, G.

Y. Kwon, G. Lee, S. Oh, J. Kim, S. J. Pearton, and F. Ren, “Tuning the thickness of exfoliated quasi-two-dimensional β-Ga2O3 flakes by plasma etching,” Appl. Phys. Lett. 110, 131901 (2017).
[Crossref]

Lee, H.-Y.

H.-Y. Lee, J.-T. Liu, and C.-T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photon. Technol. Lett. 30, 549–552 (2018).
[Crossref]

Lee, I. G.

Y. Yoon, K. I. Han, B. H. Kim, I. G. Lee, Y. Kim, J. P. Kim, and W. S. Hwang, “Formation of β-Ga2O3 nanofibers of sub-50  nm diameter synthesized by electrospinning method,” Thin Solid Films 645, 358–362 (2018).
[Crossref]

Lee, K. M.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Lee, M.-K.

S. M. Sze and M.-K. Lee, Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, 2012).

Lee, N. S.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Lee, S. H.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Lee, S. M.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Lee, S. T.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
[Crossref]

Lee, S. W.

S. H. Lee, S. B. Kim, Y.-J. Moon, S. M. Kim, H. J. Jung, M. S. Seo, K. M. Lee, S.-K. Kim, and S. W. Lee, “High-responsivity deep-ultraviolet-selective photodetectors using ultrathin gallium oxide films,” ACS Photon. 4, 2937–2943 (2017).
[Crossref]

Lee, S.-D.

S.-D. Lee, K. Kaneko, and S. Fujita, “Homoepitaxial growth of beta gallium oxide films by mist chemical vapor deposition,” Jpn. J. Appl. Phys. 55, 1202B8 (2016).
[Crossref]

S.-D. Lee, K. Akaiwa, and S. Fujita, “Thermal stability of single crystalline alpha gallium oxide films on sapphire substrates,” Phys. Status Solidi C 10, 1592–1595 (2013).
[Crossref]

Lee, Y. H.

Y. C. Choi, W. S. Kim, Y. S. Park, S. M. Lee, D. J. Bae, Y. H. Lee, G. S. Park, W. B. Choi, N. S. Lee, and J. M. Kim, “Catalytic growth of β-Ga2O3 nanowires by arc discharge,” Adv. Mater. 12, 746–750 (2000).
[Crossref]

Leedy, K.

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

A. J. Green, K. D. Chabak, E. R. Heller, R. C. Fitch, M. Baldini, A. Fiedler, K. Irmscher, G. Wagner, Z. Galazka, S. E. Tetlak, A. Crespo, K. Leedy, and G. H. Jessen, “3.8-MV/cm breakdown strength of MOVPE-grown Sn-doped β-Ga2O3 MOSFETs,” IEEE Electron Device Lett. 37, 902–905 (2016).
[Crossref]

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

Leedy, K. D.

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

Lei, M.

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

Lenzner, J.

Z. Zhang, H. von Wenckstern, J. Lenzner, M. Lorenz, and M. Grundmann, “Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3,” Appl. Phys. Lett. 108, 123503 (2016).
[Crossref]

Li, B.

X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, “Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction,” ACS Appl. Mater. Interfaces 8, 4185–4191 (2016).
[Crossref]

J. Zhang, B. Li, C. Xia, G. Pei, Q. Deng, Z. Yang, W. Xu, H. Shi, F. Wu, Y. Wu, and J. Xu, “Growth and spectral characterization of β-Ga2O3 single crystals,” J. Phys. Chem. Solids 67, 2448–2451 (2006).
[Crossref]

Li, B. H.

J. Yu, C. X. Shan, J. S. Liu, X. W. Zhang, B. H. Li, and D. Z. Shen, “MgZnO avalanche photodetectors realized in Schottky structures,” Phys. Status Solidi RRL 7, 425–428 (2013).
[Crossref]

Li, C.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
[Crossref]

T. Liu, I. Tranca, J. Yang, X. Zhou, and C. Li, “Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting,” J. Mater. Chem. A 3, 10309–10319 (2015).
[Crossref]

Li, C. C.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Li, C. R.

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Li, D.

Li, F.

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Li, J.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, “High-performance single crystalline UV photodetectors of β-Ga2O3,” J. Alloys Compd. 619, 572–575 (2015).
[Crossref]

Li, K.-H.

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

Li, L.

Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
[Crossref]

Y. Qu, Z. Wu, M. Ai, D. Guo, Y. An, H. Yang, L. Li, and W. Tang, “Enhanced Ga2O3/SiC ultraviolet photodetector with graphene top electrodes,” J. Alloys Compd. 680, 247–251 (2016).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
[Crossref]

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

Li, L. H.

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

Li, P.

P. Li, H. Shi, K. Chen, D. Guo, W. Cui, Y. Zhi, S. Wang, Z. Wu, Z. Chen, and W. Tang, “Construction of GaN/Ga2O3 p–n junction for an extremely high responsivity self-powered UV photodetector,” J. Mater. Chem. C 5, 10562–10570 (2017).
[Crossref]

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
[Crossref]

Y. An, Y. Zhi, Z. Wu, W. Cui, X. Zhao, D. Guo, P. Li, and W. Tang, “Deep ultraviolet photodetectors based on p-Si/i-SiC/n-Ga2O3 heterojunction by inserting thin SiC barrier layer,” Appl. Phys. A 122, 1036 (2016).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
[Crossref]

Li, P. G.

Y. H. An, Y. S. Zhi, W. Cui, X. L. Zhao, Z. P. Wu, D. Y. Guo, P. G. Li, and W. H. Tang, “Thickness tuning photoelectric properties of β-Ga2O3 thin film based photodetectors,” J. Nanosci. Nanotechnol. 17, 9091–9094 (2017).
[Crossref]

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

X. C. Guo, N. H. Hao, D. Y. Guo, Z. P. Wu, Y. H. An, X. L. Chu, L. H. Li, P. G. Li, M. Lei, and W. H. Tang, “β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity,” J. Alloys Compd. 660, 136–140 (2016).
[Crossref]

D. Y. Guo, X. L. Zhao, Y. S. Zhi, W. Cui, Y. Q. Huang, Y. H. An, P. G. Li, Z. P. Wu, and W. H. Tang, “Epitaxial growth and solar-blind photoelectric properties of corundum-structured α-Ga2O3 thin films,” Mater. Lett. 164, 364–367 (2016).
[Crossref]

D. Y. Guo, Z. P. Wu, Y. H. An, X. C. Guo, X. L. Chu, C. L. Sun, L. H. Li, P. G. Li, and W. H. Tang, “Oxygen vacancy tuned ohmic-Schottky conversion for enhanced performance in β-Ga2O3 solar-blind ultraviolet photodetectors,” Appl. Phys. Lett. 105, 023507 (2014).
[Crossref]

Li, Q.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
[Crossref]

Li, Q. H.

P. Feng, J. Y. Zhang, Q. H. Li, and T. H. Wang, “Individual β-Ga2O3 nanowires as solar-blind photodetectors,” Appl. Phys. Lett. 88, 153107 (2006).
[Crossref]

Li, S. Y.

Y. H. An, D. Y. Guo, S. Y. Li, Z. P. Wu, Y. Q. Huang, P. G. Li, L. H. Li, and W. H. Tang, “Influence of oxygen vacancies on the photoresponse of β-Ga2O3/SiC n–n type heterojunctions,” J. Phys. D 49, 285111 (2016).
[Crossref]

Li, T.

J. C. Carrano, T. Li, P. A. Grudowski, C. J. Eiting, R. D. Dupuis, and J. C. Campbell, “Current transport mechanisms in GaN-based metal–semiconductor–metal photodetectors,” Appl. Phys. Lett. 72, 542–544 (1998).
[Crossref]

Li, W.

T. Wang, W. Li, C. Ni, and A. Janotti, “Band gap and band offset of Ga2O3 and (AlxGa1–x)2O3 alloys,” Phys. Rev. Appl. 10, 011003 (2018).
[Crossref]

Z. Hu, K. Nomoto, W. Li, N. Tanen, K. Sasaki, A. Kuramata, T. Nakamura, D. Jena, and H. G. Xing, “Enhancement-mode Ga2O3 vertical transistors with breakdown voltage >1  kV,” IEEE Electron Device Lett. 39, 869–872 (2018).
[Crossref]

Z. Wu, L. Jiao, X. Wang, D. Guo, W. Li, L. Li, F. Huang, and W. Tang, “A self-powered deep-ultraviolet photodetector based on an epitaxial Ga2O3/Ga:ZnO heterojunction,” J. Mater. Chem. C 5, 8688–8693 (2017).
[Crossref]

Li, W.-S.

X.-S. Wang, W.-S. Li, J.-Q. Situ, X.-Y. Ying, H. Chen, Y. Jin, and Y.-Z. Du, “Multi-functional mesoporous β-Ga2O3:Cr3+ nanorod with long lasting near infrared luminescence for in vivo imaging and drug delivery,” RSC Adv. 5, 12886–12889 (2015).
[Crossref]

Li, X.

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

Q. Feng, X. Li, G. Han, L. Huang, F. Li, W. Tang, J. Zhang, and Y. Hao, “(AlGa)2O3 solar-blind photodetectors on sapphire with wider bandgap and improved responsivity,” Opt. Mater. Express 7, 1240–1248 (2017).
[Crossref]

Q. Feng, L. Huang, G. Han, F. Li, X. Li, L. Fang, X. Xing, J. Zhang, W. Mu, Z. Jia, D. Guo, W. Tang, X. Tao, and Y. Hao, “Comparison study of β-Ga2O3 photodetectors on bulk substrate and sapphire,” IEEE Trans. Electron Devices 63, 3578–3583 (2016).
[Crossref]

Li, Y.

W. Mu, Z. Jia, Y. Yin, Q. Hu, Y. Li, B. Wu, J. Zhang, and X. Tao, “High quality crystal growth and anisotropic physical characterization of β-Ga2O3 single crystals grown by EFG method,” J. Alloys Compd. 714, 453–458 (2017).
[Crossref]

L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
[Crossref]

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.-J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20, 3972–3978 (2010).
[Crossref]

Li, Y.-R.

L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P. T. Lai, X.-Z. Liu, and Y.-R. Li, “Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide,” ACS Photon. 4, 2203–2211 (2017).
[Crossref]

Li, Z.

T. Shao, P. Zhang, L. Jin, and Z. Li, “Photocatalytic decomposition of perfluorooctanoic acid in pure water and sewage water by nanostructured gallium oxide,” Appl. Catal. B 142-143, 654–661 (2013).
[Crossref]

W. Wei, Z. Qin, S. Fan, Z. Li, K. Shi, Q. Zhu, and G. Zhang, “Valence band offset of β-Ga2O3/wurtzite GaN heterostructure measured by x-ray photoelectron spectroscopy,” Nano. Res. Lett. 7, 562 (2012).
[Crossref]

Z. Li, B. Zhao, P. Liu, and Y. Zhang, “Synthesis of gallium oxide nanowires and their electrical properties,” Microelectron. Eng. 85, 1613–1615 (2008).
[Crossref]

Li, Z. H.

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

Li, Z.-Z.

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

Lian, X.

Q. Feng, Z. Feng, Z. Hu, X. Xing, G. Yan, J. Zhang, Y. Xu, X. Lian, and Y. Hao, “Temperature dependent electrical properties of pulse laser deposited Au/Ni/β-(AlGa)2O3 Schottky diode,” Appl. Phys. Lett. 112, 072103 (2018).
[Crossref]

Liang, C. H.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires,” Appl. Phys. Lett. 78, 3202–3204 (2001).
[Crossref]

Liang, H.

C. Yang, H. Liang, Z. Zhang, X. Xia, P. Tao, Y. Chen, H. Zhang, R. Shen, Y. Luo, and G. Du, “Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3,” RSC Adv. 8, 6341–6345 (2018).
[Crossref]

S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, “Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates,” Adv. Opt. Mater. 5, 1700454 (2017).
[Crossref]

X. Xia, Y. Chen, Q. Feng, H. Liang, P. Tao, M. Xu, and G. Du, “Hexagonal phase-pure wide band gap ε-Ga2O3 films grown on 6H-SiC substrates by metal organic chemical vapor deposition,” Appl. Phys. Lett. 108, 202103 (2016).
[Crossref]

Liao, M.

X. Wang, W. Tian, M. Liao, Y. Bando, and D. Golberg, “Recent advances in solution-processed inorganic nanofilm photodetectors,” Chem. Soc. Rev. 43, 1400–1422 (2014).
[Crossref]

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (/00) facet-oriented β-Ga2O3 nanobelts,” Small 10, 1848–1856 (2014).
[Crossref]

W. Tian, C. Zhi, T. Zhai, S. Chen, X. Wang, M. Liao, D. Golberg, and Y. Bando, “In-doped Ga2O3 nanobelt based photodetector with high sensitivity and wide-range photoresponse,” J. Mater. Chem. 22, 17984–17991 (2012).
[Crossref]

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

Y. Li, T. Tokizono, M. Liao, M. Zhong, Y. Koide, I. Yamada, and J.-J. Delaunay, “Efficient assembly of bridged β-Ga2O3 nanowires for solar-blind photodetection,” Adv. Funct. Mater. 20, 3972–3978 (2010).
[Crossref]

Liao, Q.

R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, and F. Huang, “High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication,” ACS Appl. Mater. Interfaces 10, 22419–22426 (2018).
[Crossref]

Lide, D.

T. Bruno, W. Haynes, and D. Lide, CRC Handbook of Chemistry and Physics (CRC Press, 2016).

Lieberwirth, I.

A. Singhal and I. Lieberwirth, “Non-aqueous synthesis of blue light emitting γ-Ga2O3 and c-In2O3 nanostructures from their ethylene glycolate precursors,” Mater. Lett. 161, 112–116 (2015).
[Crossref]

Lim, K.

S. C. Siah, R. E. Brandt, K. Lim, L. T. Schelhas, R. Jaramillo, M. D. Heinemann, D. Chua, J. Wright, J. D. Perkins, C. U. Segre, R. G. Gordon, M. F. Toney, and T. Buonassisi, “Dopant activation in Sn-doped Ga2O3 investigated by x-ray absorption spectroscopy,” Appl. Phys. Lett. 107, 252103 (2015).
[Crossref]

Lin, C.

J. Zhang, Z. Liu, C. Lin, and J. Lin, “A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties,” J. Cryst. Growth 280, 99–106 (2005).
[Crossref]

Lin, C.-H.

M. H. Wong, C.-H. Lin, A. Kuramata, S. Yamakoshi, H. Murakami, Y. Kumagai, and M. Higashiwaki, “Acceptor doping of β-Ga2O3 by Mg and N ion implantations,” Appl. Phys. Lett. 113, 102103 (2018).
[Crossref]

Lin, C.-N.

Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
[Crossref]

Lin, G. R.

C. H. Hsieh, L. J. Chou, G. R. Lin, Y. Bando, and D. Golberg, “Nanophotonic switch: gold-in-Ga2O3 peapod nanowires,” Nano Lett. 8, 3081–3085 (2008).
[Crossref]

Lin, J.

J. Zhang, Z. Liu, C. Lin, and J. Lin, “A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties,” J. Cryst. Growth 280, 99–106 (2005).
[Crossref]

Lin, M. E.

H. Morkoç, S. Strite, G. B. Gao, M. E. Lin, B. Sverdlov, and M. Burns, “Large-band-gap SiC, III-V nitride, and II-VI ZnSe-based semiconductor device technologies,” J. Appl. Phys. 76, 1363–1398 (1994).
[Crossref]

Lin, N.

C. Tang, J. Sun, N. Lin, Z. Jia, W. Mu, X. Tao, and X. Zhao, “Electronic structure and optical property of metal-doped Ga2O3: a first principles study,” RSC Adv. 6, 78322–78334 (2016).
[Crossref]

Lin, R.

R. Lin, W. Zheng, D. Zhang, Z. Zhang, Q. Liao, L. Yang, and F. Huang, “High-performance graphene/β-Ga2O3 heterojunction deep-ultraviolet photodetector with hot-electron excited carrier multiplication,” ACS Appl. Mater. Interfaces 10, 22419–22426 (2018).
[Crossref]

W. Zheng, R. Lin, Z. Zhang, and F. Huang, “Vacuum-ultraviolet photodetection in few-layered h-BN,” ACS Appl. Mater. Interfaces 10, 27116–27123 (2018).
[Crossref]

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

Lin, Y. G.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Liu, C. H.

Y. L. Wu, S.-J. Chang, W. Y. Weng, C. H. Liu, T. Y. Tsai, C. L. Hsu, and K. C. Chen, “Ga2O3 nanowire photodetector prepared on SiO2 template,” IEEE Sens. J. 13, 2368–2373 (2013).
[Crossref]

Liu, H.

D. Guo, H. Liu, P. Li, Z. Wu, S. Wang, C. Cui, C. Li, and W. Tang, “Zero-power-consumption solar-blind photodetector based on β-Ga2O3/NSTO heterojunction,” ACS Appl. Mater. Interfaces 9, 1619–1628 (2017).
[Crossref]

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

L. Feng, Y. Li, X. Su, S. Wang, H. Liu, J. Wang, Z. Gong, W. Ding, Y. Zhang, and F. Yun, “Growth and characterization of spindle-like Ga2O3 nanocrystals by electrochemical reaction in hydrofluoric solution,” Appl. Surf. Sci. 389, 205–210 (2016).
[Crossref]

D. Guo, Z. Wu, P. Li, Y. An, H. Liu, X. Guo, H. Yan, G. Wang, C. Sun, L. Li, and W. Tang, “Fabrication of β-Ga2O3 thin films and solar-blind photodetectors by laser MBE technology,” Opt. Mater. Express 4, 1067–1076 (2014).
[Crossref]

Liu, J.

Y. Peng, N. Yu, Y. Xiang, J. Liu, L. Cao, and S. Huang, “One-step hydrothemal synthesis of nitrogen doped β-Ga2O3 nanostructure and its optical properties,” J. Nanosci. Nanotechnol. 18, 5654–5659 (2018).
[Crossref]

Liu, J. S.

J. Yu, C. X. Shan, J. S. Liu, X. W. Zhang, B. H. Li, and D. Z. Shen, “MgZnO avalanche photodetectors realized in Schottky structures,” Phys. Status Solidi RRL 7, 425–428 (2013).
[Crossref]

Liu, J.-T.

H.-Y. Lee, J.-T. Liu, and C.-T. Lee, “Modulated Al2O3-alloyed Ga2O3 materials and deep ultraviolet photodetectors,” IEEE Photon. Technol. Lett. 30, 549–552 (2018).
[Crossref]

Liu, K.

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

X. Chen, K. Liu, Z. Zhang, C. Wang, B. Li, H. Zhao, D. Zhao, and D. Shen, “Self-powered solar-blind photodetector with fast response based on Au/β-Ga2O3 nanowires array film Schottky junction,” ACS Appl. Mater. Interfaces 8, 4185–4191 (2016).
[Crossref]

Liu, M.

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

Liu, P.

J. Du, J. Xing, C. Ge, H. Liu, P. Liu, H. Hao, J. Dong, Z. Zheng, and H. Gao, “Highly sensitive and ultrafast deep UV photodetector based on a β-Ga2O3 nanowire network grown by CVD,” J. Phys. D 49, 425105 (2016).
[Crossref]

Z. Li, B. Zhao, P. Liu, and Y. Zhang, “Synthesis of gallium oxide nanowires and their electrical properties,” Microelectron. Eng. 85, 1613–1615 (2008).
[Crossref]

Liu, Q.

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

R. Zou, Z. Zhang, Q. Liu, J. Hu, L. Sang, M. Liao, and W. Zhang, “High detectivity solar-blind high-temperature deep-ultraviolet photodetector based on multi-layered (/00) facet-oriented β-Ga2O3 nanobelts,” Small 10, 1848–1856 (2014).
[Crossref]

Liu, S. M.

J. D. Ye, S. L. Gu, S. M. Zhu, S. M. Liu, Y. D. Zheng, R. Zhang, Y. Shi, H. Q. Yu, and Y. D. Ye, “Gallium doping dependence of single-crystal n-type ZnO grown by metal organic chemical vapor deposition,” J. Cryst. Growth 283, 279–285 (2005).
[Crossref]

Liu, T.

T. Liu, I. Tranca, J. Yang, X. Zhou, and C. Li, “Theoretical insight into the roles of cocatalysts in the Ni–NiO/β-Ga2O3 photocatalyst for overall water splitting,” J. Mater. Chem. A 3, 10309–10319 (2015).
[Crossref]

Liu, T. Y.

J. S. Hwang, T. Y. Liu, S. Chattopadhyay, G. M. Hsu, A. M. Basilio, H. W. Chen, Y. K. Hsu, W. H. Tu, Y. G. Lin, K. H. Chen, C. C. Li, S. B. Wang, H. Y. Chen, and L. C. Chen, “Growth of β-Ga2O3 and GaN nanowires on GaN for photoelectrochemical hydrogen generation,” Nanotechnology 24, 055401 (2013).
[Crossref]

Liu, X.

H. Sun, C. G. T. Castanedo, K. Liu, K.-H. Li, W. Guo, R. Lin, X. Liu, J. Li, and X. Li, “Valence and conduction band offsets of β-Ga2O3/AlN heterojunction,” Appl. Phys. Lett. 111, 162105 (2017).
[Crossref]

X. Liu, G. Qiu, Y. Zhao, N. Zhang, and R. Yi, “Gallium oxide nanorods by the conversion of gallium oxide hydroxide nanorods,” J. Alloys Compd. 439, 275–278 (2007).
[Crossref]

Liu, X.-C.

S.-H. Chang, Z.-Z. Chen, W. Huang, X.-C. Liu, B.-Y. Chen, Z.-Z. Li, and E.-W. Shi, “Band alignment of Ga2O3/6H-SiC heterojunction,” Chin. Phys. B 20, 116101 (2011).
[Crossref]

Liu, X.-Z.

L.-X. Qian, Z.-H. Wu, Y.-Y. Zhang, P. T. Lai, X.-Z. Liu, and Y.-R. Li, “Ultrahigh-responsivity, rapid-recovery, solar-blind photodetector based on highly nonstoichiometric amorphous gallium oxide,” ACS Photon. 4, 2203–2211 (2017).
[Crossref]

Liu, Z.

J. Zhang, Z. Liu, C. Lin, and J. Lin, “A simple method to synthesize β-Ga2O3 nanorods and their photoluminescence properties,” J. Cryst. Growth 280, 99–106 (2005).
[Crossref]

Lodha, S.

Y. Zhang, C. Joishi, Z. Xia, M. Brenner, S. Lodha, and S. Rajan, “Demonstration of β-(AlxGa1−x)2O3/Ga2O3 double heterostructure field effect transistors,” Appl. Phys. Lett. 112, 233503 (2018).
[Crossref]

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Loffler, S.

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

Long, S.

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

Look, D. C.

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

F. H. Teherani, D. C. Look, D. J. Rogers, F. Alema, B. Hertog, A. V. Osinsky, P. Mukhopadhyay, M. Toporkov, W. V. Schoenfeld, and E. Ahmadi, and J. Speck, “Vertical solar blind Schottky photodiode based on homoepitaxial Ga2O3 thin film,” Proc. SPIE 10105, 101051M (2017).
[Crossref]

Lopez, I.

G. Martinez-Criado, J. Segura-Ruiz, M. H. Chu, R. Tucoulou, I. Lopez, E. Nogales, B. Mendez, and J. Piqueras, “Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution,” Nano Lett. 14, 5479–5487 (2014).
[Crossref]

López, I.

I. López, M. Alonso-Orts, E. Nogales, B. Méndez, and J. Piqueras, “Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method,” Semicond. Sci. Technol. 31, 115003 (2016).
[Crossref]

I. López, A. Castaldini, A. Cavallini, E. Nogales, B. Méndez, and J. Piqueras, “β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector,” J. Phys. D 47, 415101 (2014).
[Crossref]

I. López, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires,” J. Phys. Chem. C 117, 3036–3045 (2013).
[Crossref]

I. López, E. Nogales, B. Méndez, and J. Piqueras, “Resonant cavity modes in gallium oxide microwires,” Appl. Phys. Lett. 100, 261910 (2012).
[Crossref]

Lorenz, K.

E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, and E. Alves, “Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures,” Nanotechnology 22, 285706 (2011).
[Crossref]

Lorenz, M.

Z. Zhang, H. von Wenckstern, J. Lenzner, M. Lorenz, and M. Grundmann, “Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3,” Appl. Phys. Lett. 108, 123503 (2016).
[Crossref]

Lorke, M.

P. Deák, Q. Duy Ho, F. Seemann, B. Aradi, M. Lorke, and T. Frauenheim, “Choosing the correct hybrid for defect calculations: a case study on intrinsic carrier trapping in β–Ga2O3,” Phys. Rev. B 95, 075208 (2017).
[Crossref]

Louie, S. G.

B. C. Shih, Y. Xue, P. Zhang, M. L. Cohen, and S. G. Louie, “Quasiparticle band gap of ZnO: high accuracy from the conventional G0W0 approach,” Phys. Rev. Lett. 105, 146401 (2010).
[Crossref]

Lovejoy, T. C.

T. C. Lovejoy, R. Chen, X. Zheng, E. G. Villora, K. Shimamura, H. Yoshikawa, Y. Yamashita, S. Ueda, K. Kobayashi, S. T. Dunham, F. S. Ohuchi, and M. A. Olmstead, “Band bending and surface defects in β-Ga2O3,” Appl. Phys. Lett. 100, 181602 (2012).
[Crossref]

T. C. Lovejoy, E. N. Yitamben, N. Shamir, J. Morales, E. G. Villora, K. Shimamura, S. Zheng, F. S. Ohuchi, and M. A. Olmstead, “Surface morphology and electronic structure of bulk single crystal β-Ga2O3 (100),” Appl. Phys. Lett. 94, 081906 (2009).
[Crossref]

Lu, H.

X. Chen, Y. Xu, D. Zhou, S. Yang, F. F. Ren, H. Lu, K. Tang, S. Gu, R. Zhang, Y. Zheng, and J. Ye, “Solar-blind photodetector with high avalanche gains and bias-tunable detecting functionality based on metastable phase α-Ga2O3/ZnO isotype heterostructures,” ACS Appl. Mater. Interfaces 9, 36997–37005 (2017).
[Crossref]

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

Y. Huang, D. J. Chen, H. Lu, K. X. Dong, R. Zhang, Y. D. Zheng, L. Li, and Z. H. Li, “Back-illuminated separate absorption and multiplication AlGaN solar-blind avalanche photodiodes,” Appl. Phys. Lett. 101, 253516 (2012).
[Crossref]

Lu, J. G.

P.-C. Chang, Z. Fan, W.-Y. Tseng, A. Rajagopal, and J. G. Lu, “β-Ga2O3 nanowires: synthesis, characterization, and p-channel field-effect transistor,” Appl. Phys. Lett. 87, 222102 (2005).
[Crossref]

Lu, T.-Y.

L.-W. Chang, T.-Y. Lu, Y.-L. Chen, J.-W. Yeh, and H. C. Shih, “Effect of the doped nitrogen on the optical properties of β-Ga2O3 nanowires,” Mater. Lett. 65, 2281–2283 (2011).
[Crossref]

Lu, Y.-J.

Y.-C. Chen, Y.-J. Lu, C.-N. Lin, Y.-Z. Tian, C.-J. Gao, L. Dong, and C.-X. Shan, “Self-powered diamond/β-Ga2O3 photodetectors for solar-blind imaging,” J. Mater. Chem. C 6, 5727–5732 (2018).
[Crossref]

Lueangchaichaweng, W.

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

Lugstein, A.

L. Li, E. Auer, M. Liao, X. Fang, T. Zhai, U. K. Gautam, A. Lugstein, Y. Koide, Y. Bando, and D. Golberg, “Deep-ultraviolet solar-blind photoconductivity of individual gallium oxide nanobelts,” Nanoscale 3, 1120–1126 (2011).
[Crossref]

E. Auer, A. Lugstein, S. Loffler, Y. J. Hyun, W. Brezna, E. Bertagnolli, and P. Pongratz, “Ultrafast VLS growth of epitaxial β-Ga2O3 nanowires,” Nanotechnology 20, 434017 (2009).
[Crossref]

Luo, L. B.

W. Y. Kong, G. A. Wu, K. Y. Wang, T. F. Zhang, Y. F. Zou, D. D. Wang, and L. B. Luo, “Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application,” Adv. Mater. 28, 10725–10731 (2016).
[Crossref]

Luo, T.

N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett. 109, 212101 (2016).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

Luo, W. J.

Z. G. Shao, D. J. Chen, H. Lu, R. Zhang, D. P. Cao, W. J. Luo, Y. D. Zheng, L. Li, and Z. H. Li, “High-gain AlGaN solar-blind avalanche photodiodes,” IEEE Electron Device Lett. 35, 372–374 (2014).
[Crossref]

Luo, Y.

C. Yang, H. Liang, Z. Zhang, X. Xia, P. Tao, Y. Chen, H. Zhang, R. Shen, Y. Luo, and G. Du, “Self-powered SBD solar-blind photodetector fabricated on the single crystal of β-Ga2O3,” RSC Adv. 8, 6341–6345 (2018).
[Crossref]

Y. Luo, Z. Hou, J. Gao, D. Jin, and X. Zheng, “Synthesis of high crystallization β-Ga2O3 micron rods with tunable morphologies and intensive blue emission via solution route,” Mater. Sci. Eng. B 140, 123–127 (2007).
[Crossref]

Lupan, O.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Lv, H.

Q. He, W. Mu, H. Dong, S. Long, Z. Jia, H. Lv, Q. Liu, M. Tang, X. Tao, and M. Liu, “Schottky barrier diode based on β-Ga2O3 (100) single crystal substrate and its temperature-dependent electrical characteristics,” Appl. Phys. Lett. 110, 093503 (2017).
[Crossref]

Lv, M.

D. Y. Guo, H. Z. Shi, Y. P. Qian, M. Lv, P. G. Li, Y. L. Su, Q. Liu, K. Chen, S. L. Wang, C. Cui, C. R. Li, and W. H. Tang, “Fabrication of β-Ga2O3/ZnO heterojunction for solar-blind deep ultraviolet photodetection,” Semicond. Sci. Technol. 32, 03lt01 (2017).
[Crossref]

Lyons, J. L.

J. L. Lyons, “A survey of acceptor dopants for β-Ga2O3,” Semicond. Sci. Technol. 33, 05LT02 (2018).
[Crossref]

Ma, N.

N. Ma, N. Tanen, A. Verma, Z. Guo, T. Luo, H. Xing, and D. Jena, “Intrinsic electron mobility limits in β-Ga2O3,” Appl. Phys. Lett. 109, 212101 (2016).
[Crossref]

Ma, T.

J. Li, X. Chen, T. Ma, X. Cui, F.-F. Ren, S. Gu, R. Zhang, Y. Zheng, S. P. Ringer, L. Fu, H. H. Tan, C. Jagadish, and J. Ye, “Identification and modulation of electronic band structures of single-phase β-(AlxGa1−x)2O3 alloys grown by laser molecular beam epitaxy,” Appl. Phys. Lett. 113, 041901 (2018).
[Crossref]

Ma, Z.

M. Kim, J.-H. Seo, U. Singisetti, and Z. Ma, “Recent advances in free-standing single crystalline wide band-gap semiconductors and their applications: GaN, SiC, ZnO, β-Ga2O3, and diamond,” J. Mater. Chem. C 5, 8338–8354 (2017).
[Crossref]

Maensiri, S.

S. Phumying, S. Labauyai, W. Chareonboon, S. Phokha, and S. Maensiri, “Optical properties of β-Ga2O3 nanorods synthesized by a simple and cost-effective method using egg white solution,” Jpn. J. Appl. Phys. 54, 06fj13 (2015).
[Crossref]

Mahadik, N. A.

S. Rafique, L. Han, M. J. Tadjer, J. A. Freitas, N. A. Mahadik, and H. Zhao, “Homoepitaxial growth of β-Ga2O3 thin films by low pressure chemical vapor deposition,” Appl. Phys. Lett. 108, 182105 (2016).
[Crossref]

Mahmoud, W. E.

W. E. Mahmoud, “Solar blind avalanche photodetector based on the cation exchange growth of β-Ga2O3/SnO2 bilayer heterostructure thin film,” Sol. Energy Mater. Sol. Cells 152, 65–72 (2016).
[Crossref]

Maize, K.

H. Zhou, K. Maize, G. Qiu, A. Shakouri, and P. D. Ye, “β-Ga2O3 on insulator field-effect transistors with drain currents exceeding 1.5 A/mm and their self-heating effect,” Appl. Phys. Lett. 111, 092102 (2017).
[Crossref]

Makino, T.

M. H. Wong, A. Takeyama, T. Makino, T. Ohshima, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Radiation hardness of β-Ga2O3 metal-oxide-semiconductor field-effect transistors against gamma-ray irradiation,” Appl. Phys. Lett. 112, 023503 (2018).
[Crossref]

Makinudin, A. H. A.

A. H. A. Makinudin, T. M. Bawazeer, N. Alsenany, M. S. Alsoufi, and A. Supangat, “Gallium oxide nanospheres: effect of the post-annealing treatment,” Mater. Lett. 194, 53–57 (2017).
[Crossref]

Malmstrom, J.

C. Persson, C. Platzer-Bjorkman, J. Malmstrom, T. Torndahl, and M. Edoff, “Strong valence-band offset bowing of ZnO1−xSx enhances p-type nitrogen doping of ZnO-like alloys,” Phys. Rev. Lett. 97, 146403 (2006).
[Crossref]

Manzke, R.

M. Mohamed, K. Irmscher, C. Janowitz, Z. Galazka, R. Manzke, and R. Fornari, “Schottky barrier height of Au on the transparent semiconducting oxide β-Ga2O3,” Appl. Phys. Lett. 101, 132106 (2012).
[Crossref]

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

M. Mohamed, C. Janowitz, I. Unger, R. Manzke, Z. Galazka, R. Uecker, R. Fornari, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “The electronic structure of β-Ga2O3,” Appl. Phys. Lett. 97, 211903 (2010).
[Crossref]

Marezio, M.

M. Marezio and J. P. Remeika, “Bond lengths in the α-Ga2O3 structure and the high-pressure phase of Ga2–xFexO3,” J. Chem. Phys. 46, 1862–1865 (1967).
[Crossref]

Marinelli, M.

A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005).
[Crossref]

Markurt, T.

R. Schewski, G. Wagner, M. Baldini, D. Gogova, Z. Galazka, T. Schulz, T. Remmele, T. Markurt, H. von Wenckstern, M. Grundmann, O. Bierwagen, P. Vogt, and M. Albrecht, “Epitaxial stabilization of pseudomorphic α-Ga2O3 on sapphire (0001),” Appl. Phys. Express 8, 011101 (2015).
[Crossref]

Martinez-Criado, G.

G. Martinez-Criado, J. Segura-Ruiz, M. H. Chu, R. Tucoulou, I. Lopez, E. Nogales, B. Mendez, and J. Piqueras, “Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution,” Nano Lett. 14, 5479–5487 (2014).
[Crossref]

Mastro, M. A.

S. J. Pearton, J. Yang, P. H. Cary, F. Ren, J. Kim, M. J. Tadjer, and M. A. Mastro, “A review of Ga2O3 materials, processing, and devices,” Appl. Phys. Rev. 5, 011301 (2018).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Heterostructure WSe2–Ga2O3 junction field-effect transistor for low-dimensional high-power electronics,” ACS Appl. Mater. Interfaces 10, 29724–29729 (2018).
[Crossref]

S. Oh, M. A. Mastro, M. J. Tadjer, and J. Kim, “Solar-blind metal-semiconductor-metal photodetectors based on an exfoliated β-Ga2O3 micro-flake,” ECS J. Solid State Sci. Technol. 6, Q79–Q83 (2017).
[Crossref]

J. Kim, M. A. Mastro, M. J. Tadjer, and J. Kim, “Quasi-two-dimensional h-BN/β-Ga2O3 heterostructure metal–insulator–semiconductor field-effect transistor,” ACS Appl. Mater. Interfaces 9, 21322–21327 (2017).
[Crossref]

S. Ahn, F. Ren, J. Kim, S. Oh, J. Kim, M. A. Mastro, and S. J. Pearton, “Effect of front and back gates on β-Ga2O3 nano-belt field-effect transistors,” Appl. Phys. Lett. 109, 062102 (2016).
[Crossref]

Masui, T.

T. Onuma, Y. Nakata, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, A. Kuramata, S. Yamakoshi, and M. Higashiwaki, “Modeling and interpretation of UV and blue luminescence intensity in β-Ga2O3 by silicon and nitrogen doping,” J. Appl. Phys. 124, 075103 (2018).
[Crossref]

K. Zeng, J. S. Wallace, C. Heimburger, K. Sasaki, A. Kuramata, T. Masui, J. A. Gardella, and U. Singisetti, “Ga2O3 MOSFETs using spin-on-glass source/drain doping technology,” IEEE Electron Device Lett. 38, 513–516 (2017).
[Crossref]

A. Kuramata, K. Koshi, S. Watanabe, Y. Yamaoka, T. Masui, and S. Yamakoshi, “High-quality β-Ga2O3 single crystals grown by edge-defined film-fed growth,” Jpn. J. Appl. Phys. 55, 1202a2 (2016).
[Crossref]

T. Oshima, R. Wakabayashi, M. Hattori, A. Hashiguchi, N. Kawano, K. Sasaki, T. Masui, A. Kuramata, S. Yamakoshi, K. Yoshimatsu, A. Ohtomo, T. Oishi, and M. Kasu, “Formation of indium–tin oxide ohmic contacts for β-Ga2O3,” Jpn. J. Appl. Phys. 55, 1202b7 (2016).
[Crossref]

Z. Guo, A. Verma, X. Wu, F. Sun, A. Hickman, T. Masui, A. Kuramata, M. Higashiwaki, D. Jena, and T. Luo, “Anisotropic thermal conductivity in single crystal β-gallium oxide,” Appl. Phys. Lett. 106, 111909 (2015).
[Crossref]

T. Onuma, S. Saito, K. Sasaki, T. Masui, T. Yamaguchi, T. Honda, and M. Higashiwaki, “Valence band ordering in β-Ga2O3 studied by polarized transmittance and reflectance spectroscopy,” Jpn. J. Appl. Phys. 54, 112601 (2015).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Growth temperature dependences of structural and electrical properties of Ga2O3 epitaxial films grown on β-Ga2O3 (010) substrates by molecular beam epitaxy,” J. Cryst. Growth 392, 30–33 (2014).
[Crossref]

T. Onuma, S. Fujioka, T. Yamaguchi, M. Higashiwaki, K. Sasaki, T. Masui, and T. Honda, “Correlation between blue luminescence intensity and resistivity in β-Ga2O3 single crystals,” Appl. Phys. Lett. 103, 041910 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Ga2O3 Schottky barrier diodes fabricated by using single-crystal β–Ga2O3 (010) substrates,” IEEE Electron Device Lett. 34, 493–495 (2013).
[Crossref]

K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Si-ion implantation doping in β-Ga2O3 and its application to fabrication of low-resistance ohmic contacts,” Appl. Phys. Express 6, 086502 (2013).
[Crossref]

K. Sasaki, A. Kuramata, T. Masui, E. G. Víllora, K. Shimamura, and S. Yamakoshi, “Device-quality β-Ga2O3 epitaxial films fabricated by ozone molecular beam epitaxy,” Appl. Phys. Express 5, 035502 (2012).
[Crossref]

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi, “Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates,” Appl. Phys. Lett. 100, 013504 (2012).
[Crossref]

M. Higashiwaki, K. Sasaki, M. H. Wong, T. Kamimura, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi, “Depletion-mode Ga2O3 MOSFETs on β-Ga2O3 (010) substrates with Si-ion-implanted channel and contacts,” in IEEE International Electron Devices Meeting (2013).

Masui, Y.

E. G. Víllora, M. Yamaga, T. Inoue, S. Yabasi, Y. Masui, T. Sugawara, and T. Fukuda, “Optical spectroscopy study on β-Ga2O3,” Jpn. J. Appl. Phys. 41, L622–L625 (2002).
[Crossref]

Mates, T.

S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, “n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 33, 045001 (2018).
[Crossref]

Matsubara, M.

A. Kyrtsos, M. Matsubara, and E. Bellotti, “On the feasibility of p-type Ga2O3,” Appl. Phys. Lett. 112, 032108 (2018).
[Crossref]

Matsumoto, T.

T. Matsumoto, M. Aoki, A. Kinoshita, and T. Aono, “Absorption and reflection of vapor grown single crystal platelets of β-Ga2O3,” Jpn. J. Appl. Phys. 13, 1578–1582 (1974).
[Crossref]

Matsunaga, K.

S. Yoshioka, H. Hayashi, A. Kuwabara, F. Oba, K. Matsunaga, and I. Tanaka, “Structures and energetics of Ga2O3 polymorphs,” J. Phys. Condens. Matter 19, 346211 (2007).
[Crossref]

Matsushita, Y.

Y. Oshima, E. G. Víllora, Y. Matsushita, S. Yamamoto, and K. Shimamura, “Epitaxial growth of phase-pure ε-Ga2O3 by halide vapor phase epitaxy,” J. Appl. Phys. 118, 085301 (2015).
[Crossref]

Matsuyama, K.

T. Oshima, K. Matsuyama, K. Yoshimatsu, and A. Ohtomo, “Conducting Si-doped γ-Ga2O3 epitaxial films grown by pulsed-laser deposition,” J. Cryst. Growth 421, 23–26 (2015).
[Crossref]

Mauze, A.

S.-H. Han, A. Mauze, E. Ahmadi, T. Mates, Y. Oshima, and J. S. Speck, “n-type dopants in (001) β-Ga2O3 grown on (001) β-Ga2O3 substrates by plasma-assisted molecular beam epitaxy,” Semicond. Sci. Technol. 33, 045001 (2018).
[Crossref]

Maximenko, S. I.

L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K. Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, and S. M. Prokes, “Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications,” Cryst. Growth Des. 9, 4471–4479 (2009).
[Crossref]

Mazeina, L.

L. Mazeina, F. K. Perkins, V. M. Bermudez, S. P. Arnold, and S. M. Prokes, “Functionalized Ga2O3 nanowires as active material in room temperature capacitance-based gas sensors,” Langmuir 26, 13722–13726 (2010).
[Crossref]

L. Mazeina, Y. N. Picard, S. I. Maximenko, F. K. Perkins, E. R. Glaser, M. E. Twigg, J. A. Freitas, and S. M. Prokes, “Growth of Sn-doped β-Ga2O3 nanowires and Ga2O3–SnO2 heterostructures for gas sensing applications,” Cryst. Growth Des. 9, 4471–4479 (2009).
[Crossref]

L. Mazeina, Y. N. Picard, and S. M. Prokes, “Controlled growth of parallel oriented ZnO nanostructural arrays on Ga2O3 nanowires,” Cryst. Growth Des. 9, 1164–1169 (2009).
[Crossref]

Mazur, P.

M. Grodzicki, P. Mazur, S. Zuber, J. Brona, and A. Ciszewski, “Oxidation of GaN(0001) by low-energy ion bombardment,” Appl. Surf. Sci. 304, 20–23 (2014).
[Crossref]

McCandless, J.

A. J. Green, K. D. Chabak, M. Baldini, N. Moser, R. Gilbert, R. C. Fitch, G. Wagner, Z. Galazka, J. McCandless, A. Crespo, K. Leedy, and G. H. Jessen, “β-Ga2O3 MOSFETs for radio frequency operation,” IEEE Electron Device Lett. 38, 790–793 (2017).
[Crossref]

K. Chabak, A. Green, N. Moser, S. Tetlak, J. McCandless, K. Leedy, R. Fitch, A. Crespo, and G. Jessen, “Gate-recessed, laterally-scaled β-Ga2O3 MOSFETs with high-voltage enhancement-mode operation,” in 2017 75th Annual Device Research Conference (DRC) (2017), pp. 1–2.

McCandless, J. P.

N. A. Moser, J. P. McCandless, A. Crespo, K. D. Leedy, A. J. Green, E. R. Heller, K. D. Chabak, N. Peixoto, and G. H. Jessen, “High pulsed current density β-Ga2O3 MOSFETs verified by an analytical model corrected for interface charge,” Appl. Phys. Lett. 110, 143505 (2017).
[Crossref]

K. D. Leedy, K. D. Chabak, V. Vasilyev, D. C. Look, J. J. Boeckl, J. L. Brown, S. E. Tetlak, A. J. Green, N. A. Moser, A. Crespo, D. B. Thomson, R. C. Fitch, J. P. McCandless, and G. H. Jessen, “Highly conductive homoepitaxial Si-doped Ga2O3 films on (010) β-Ga2O3 by pulsed laser deposition,” Appl. Phys. Lett. 111, 012103 (2017).
[Crossref]

McCready, D. E.

M. C. Johnson, S. Aloni, D. E. McCready, and E. D. Bourret-Courchesne, “Controlled vapor–liquid–solid growth of indium, gallium, and tin oxide nanowires via chemical vapor transport,” Cryst. Growth Des. 6, 1936–1941 (2006).
[Crossref]

McGlone, J.

S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A. R. Arehart, J. Hwang, S. Lodha, and S. Rajan, “Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor,” Appl. Phys. Lett. 111, 023502 (2017).
[Crossref]

Mei, Z.

S. Cui, Z. Mei, Y. Zhang, H. Liang, and X. Du, “Room-temperature fabricated amorphous Ga2O3 high-response-speed solar-blind photodetector on rigid and flexible substrates,” Adv. Opt. Mater. 5, 1700454 (2017).
[Crossref]

Meixner, H.

M. Fleischer and H. Meixner, “Electron mobility in single- and polycrystalline Ga2O3,” J. Appl. Phys. 74, 300–305 (1993).
[Crossref]

Meligrana, G.

G. Meligrana, W. Lueangchaichaweng, F. Colò, M. Destro, S. Fiorilli, P. P. Pescarmona, and C. Gerbaldi, “Gallium oxide nanorods as novel, safe and durable anode material for Li- and Na-ion batteries,” Electrochim. Acta 235, 143–149 (2017).
[Crossref]

Mendez, B.

G. Martinez-Criado, J. Segura-Ruiz, M. H. Chu, R. Tucoulou, I. Lopez, E. Nogales, B. Mendez, and J. Piqueras, “Crossed Ga2O3/SnO2 multiwire architecture: a local structure study with nanometer resolution,” Nano Lett. 14, 5479–5487 (2014).
[Crossref]

E. Nogales, P. Hidalgo, K. Lorenz, B. Mendez, J. Piqueras, and E. Alves, “Cathodoluminescence of rare earth implanted Ga2O3 and GeO2 nanostructures,” Nanotechnology 22, 285706 (2011).
[Crossref]

E. Nogales, B. Mendez, and J. Piqueras, “Assessment of waveguiding properties of gallium oxide nanostructures by angle resolved cathodoluminescence in a scanning electron microscope,” Ultramicroscopy 111, 1037–1042 (2011).
[Crossref]

E. Nogales, B. Mendez, J. Piqueras, and J. A. Garcia, “Europium doped gallium oxide nanostructures for room temperature luminescent photonic devices,” Nanotechnology 20, 115201 (2009).
[Crossref]

Méndez, B.

I. López, M. Alonso-Orts, E. Nogales, B. Méndez, and J. Piqueras, “Influence of Li doping on the morphology and luminescence of Ga2O3 microrods grown by a vapor-solid method,” Semicond. Sci. Technol. 31, 115003 (2016).
[Crossref]

I. López, A. Castaldini, A. Cavallini, E. Nogales, B. Méndez, and J. Piqueras, “β-Ga2O3 nanowires for an ultraviolet light selective frequency photodetector,” J. Phys. D 47, 415101 (2014).
[Crossref]

I. López, E. Nogales, B. Méndez, J. Piqueras, A. Peche, J. Ramírez-Castellanos, and J. M. González-Calbet, “Influence of Sn and Cr doping on morphology and luminescence of thermally grown Ga2O3 nanowires,” J. Phys. Chem. C 117, 3036–3045 (2013).
[Crossref]

I. López, E. Nogales, B. Méndez, and J. Piqueras, “Resonant cavity modes in gallium oxide microwires,” Appl. Phys. Lett. 100, 261910 (2012).
[Crossref]

E. Nogales, J. A. García, B. Méndez, and J. Piqueras, “Red luminescence of Cr in β-Ga2O3 nanowires,” J. Appl. Phys. 101, 033517 (2007).
[Crossref]

E. Nogales, J. Á. García, B. Méndez, and J. Piqueras, “Doped gallium oxide nanowires with waveguiding behavior,” Appl. Phys. Lett. 91, 133108 (2007).
[Crossref]

Meng, G. W.

C. H. Liang, G. W. Meng, G. Z. Wang, Y. W. Wang, L. D. Zhang, and S. Y. Zhang, “Catalytic synthesis and photoluminescence of β-Ga2O3 nanowires,” Appl. Phys. Lett. 78, 3202–3204 (2001).
[Crossref]

Meng, X.

M. Zhong, Z. Wei, X. Meng, F. Wu, and J. Li, “High-performance single crystalline UV photodetectors of β-Ga2O3,” J. Alloys Compd. 619, 572–575 (2015).
[Crossref]

Meng, X. M.

J. Q. Hu, Q. Li, X. M. Meng, C. S. Lee, and S. T. Lee, “Synthesis of β-Ga2O3 nanowires by laser ablation,” J. Phys. Chem. B 106, 9536–9539 (2002).
[Crossref]

Mengle, K. A.

K. A. Mengle, G. Shi, D. Bayerl, and E. Kioupakis, “First-principles calculations of the near-edge optical properties of β-Ga2O3,” Appl. Phys. Lett. 109, 212104 (2016).
[Crossref]

Mentruit, M. P.

C. O. Areán, A. L. Bellan, M. P. Mentruit, M. R. G. Delgado, and G. T. Palomino, “Preparation and characterization of mesoporous γ-Ga2O3,” Microporous Mesoporous Mater. 40, 35–42 (2000).
[Crossref]

Meyer, W. E.

D. Splith, S. Müller, F. Schmidt, H. von Wenckstern, J. J. van Rensburg, W. E. Meyer, and M. Grundmann, “Determination of the mean and the homogeneous barrier height of Cu Schottky contacts on heteroepitaxial β-Ga2O3 thin films grown by pulsed laser deposition,” Phys. Status Solidi A 211, 40–47 (2014).
[Crossref]

Meyler, B.

O. Katz, V. Garber, B. Meyler, G. Bahir, and J. Salzman, “Gain mechanism in GaN Schottky ultraviolet detectors,” Appl. Phys. Lett. 79, 1417–1419 (2001).
[Crossref]

Meyyappan, M.

M. Suh, M. Meyyappan, and S. Ju, “The effect of Ga content on In2xGa2−2xO3 nanowire transistor characteristics,” Nanotechnology 23, 305203 (2012).
[Crossref]

Mezzadri, F.

I. Cora, F. Mezzadri, F. Boschi, M. Bosi, M. Čaplovičová, G. Calestani, I. Dódony, B. Pecz, and R. Fornari, “The real structure of ε-Ga2O3 and its relation to κ-phase,” CrystEngComm 19, 1509–1516 (2017).
[Crossref]

F. Mezzadri, G. Calestani, F. Boschi, D. Delmonte, M. Bosi, and R. Fornari, “Crystal structure and ferroelectric properties of ε-Ga2O3 films grown on (0001)-sapphire,” Inorg. Chem. 55, 12079–12084 (2016).
[Crossref]

Michel, F.

M. Kracht, A. Karg, J. Schörmann, M. Weinhold, D. Zink, F. Michel, M. Rohnke, M. Schowalter, B. Gerken, A. Rosenauer, P. J. Klar, J. Janek, and M. Eickhoff, “Tin-assisted synthesis of ε–Ga2O3 by molecular beam epitaxy,” Phys. Rev. Appl. 8, 054002 (2017).
[Crossref]

Michling, M.

C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J. R. Weber, J. B. Varley, and C. G. Van de Walle, “Experimental electronic structure of In2O3 and Ga2O3,” New J. Phys. 13, 085014 (2011).
[Crossref]

Milani, E.

A. Balducci, M. Marinelli, E. Milani, M. E. Morgada, A. Tucciarone, G. Verona-Rinati, M. Angelone, and M. Pillon, “Extreme ultraviolet single-crystal diamond detectors by chemical vapor deposition,” Appl. Phys. Lett. 86, 193509 (2005).
[Crossref]

Miller, E. J.

E. J. Miller, E. T. Yu, P. Waltereit, and J. S. Speck, “Analysis of reverse-bias leakage current mechanisms in GaN grown by molecular-beam epitaxy,” Appl. Phys. Lett. 84, 535–537 (2004).
[Crossref]

Min, B.-K.

W.-S. Jung, H. U. Joo, and B.-K. Min, “Growth of β-gallium oxide nanostructures by the thermal annealing of compacted gallium nitride powder,” Phys. E (Amsterdam) 36, 226–230 (2007).
[Crossref]

Mishra, R.

S. B. Cho and R. Mishra, “Epitaxial engineering of polar ε-Ga2O3 for tunable two-dimensional electron gas at the heterointerface,” Appl. Phys. Lett. 112, 162101 (2018).
[Crossref]

Mishra, U. K.

J. Y. Tsao, S. Chowdhury, M. A. Hollis, D. Jena, N. M. Johnson, K. A. Jones, R. J. Kaplar, S. Rajan, C. G. Van de Walle, E. Bellotti, C. L. Chua, R. Collazo, M. E. Coltrin, J. A. Cooper, K. R. Evans, S. Graham, T. A. Grotjohn, E. R. Heller, M. Higashiwaki, M. S. Islam, P. W. Juodawlkis, M. A. Khan, A. D. Koehler, J. H. Leach, U. K. Mishra, R. J. Nemanich, R. C. N. Pilawa-Podgurski, J. B. Shealy, Z. Sitar, M. J. Tadjer, A. F. Witulski, M. Wraback, and J. A. Simmons, “Ultrawide-bandgap semiconductors: research opportunities and challenges,” Adv. Electron. Mater. 4, 1600501 (2018).
[Crossref]

E. Ahmadi, O. S. Koksaldi, S. W. Kaun, Y. Oshima, D. B. Short, U. K. Mishra, and J. S. Speck, “Ge doping of β-Ga2O3 films grown by plasma-assisted molecular beam epitaxy,” Appl. Phys. Express 10, 041102 (2017).
[Crossref]

Mishra, Y. K.

O. Lupan, T. Braniste, M. Deng, L. Ghimpu, I. Paulowicz, Y. K. Mishra, L. Kienle, R. Adelung, and I. Tiginyanu, “Rapid switching and ultra-responsive nanosensors based on individual shell–core Ga2O3/GaN:Ox@SnO2 nanobelt with nanocrystalline shell in mixed phases,” Sens. Actuators B 221, 544–555 (2015).
[Crossref]

Miškovic, Z. L.

B. Fernandes, M. Hegde, P. C. Stanish, Z. L. Mišković, and P. V. Radovanovic, “Photoluminescence decay dynamics in γ-Ga2O3 nanocrystals: the role of exclusion distance at short time scales,” Chem. Phys. Lett. 684, 135–140 (2017).
[Crossref]

Misra, P.

C. Rivera, J. L. Pau, E. Muñoz, P. Misra, O. Brandt, H. T. Grahn, and K. H. Ploog, “Polarization-sensitive ultraviolet photodetectors based on M-plane GaN grown on LiAlO2 substrates,” Appl. Phys. Lett. 88, 213507 (2006).
[Crossref]

Miura, K.

Y. Kokubun, K. Miura, F. Endo, and S. Nakagomi, “Sol-gel prepared β-Ga2O3 thin films for ultraviolet photodetectors,” Appl. Phys. Lett. 90, 031912 (2007).
[Crossref]

Miura, T.

E. G. Víllora, K. Hatanaka, H. Odaka, T. Sugawara, T. Miura, H. Fukumura, and T. Fukuda, “Luminescence of undoped β-Ga2O3 single crystals excited by picosecond x-ray and sub-picosecond UV pulses,” Solid State Commun. 127, 385–388 (2003).
[Crossref]

Miyagawa, C.

K. Hoshikawa, E. Ohba, T. Kobayashi, J. Yanagisawa, C. Miyagawa, and Y. Nakamura, “Growth of β-Ga2O3 single crystals using vertical Bridgman method in ambient air,” J. Cryst. Growth 447, 36–41 (2016).
[Crossref]

Mock, A.