Abstract

An on-chip, high extinction ratio transverse electric (TE)-pass polarizer using a silicon hybrid plasmonic grating is proposed and experimentally demonstrated. Utilizing plasmonics to manipulate the effective index and mode distribution, the transverse magnetic mode is reflected and absorbed, while the TE mode passes through with relatively low propagation loss. For a 6-μm-long device, the measurement result shows that the extinction ratio in the wavelength range of 1.52 to 1.58 μm varies from 24 to 33.7 dB and the insertion loss is 2.8–4.9 dB. Moreover, the structure exhibits large alignment tolerance and is compatible with silicon-on-insulator fabrication technology.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Broadband TE-pass slot waveguide polarizer using an asymmetrical directional coupler

Bin Ni and Jinbiao Xiao
Appl. Opt. 57(15) 4032-4038 (2018)

References

  • View by:
  • |
  • |
  • |

  1. Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, and Z. Zhou, “Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Express 24, 7347–7355 (2016).
    [Crossref]
  2. L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41, 1648–1651 (2016).
    [Crossref]
  3. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
    [Crossref]
  4. B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
    [Crossref]
  5. L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
    [Crossref]
  6. L. Liu, Q. Deng, and Z. Zhou, “Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Lett. 41, 5126–5129 (2016).
    [Crossref]
  7. L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
    [Crossref]
  8. L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
    [Crossref]
  9. B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
    [Crossref]
  10. S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
    [Crossref]
  11. D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
    [Crossref]
  12. X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
    [Crossref]
  13. Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
    [Crossref]
  14. S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
    [Crossref]
  15. H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
    [Crossref]
  16. D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
    [Crossref]
  17. Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
    [Crossref]
  18. T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett. 24, 724–726 (2012).
    [Crossref]
  19. Y. Huang, S. Zhu, H. Zhang, T. Liow, and G. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21, 12790–12796 (2013).
    [Crossref]
  20. B. Ni and J. Xiao, “Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 30, 463–466 (2018).
    [Crossref]
  21. B. Ni and J. Xiao, “A compact silicon-based TE-pass polarizer using three-guide directional couplers,” IEEE Photon. Technol. Lett. 29, 1631–1634 (2017).
    [Crossref]
  22. X. Sun, M. Mojahedi, and J. S. Aitchison, “Hybrid plasmonic waveguide-based ultra-low insertion loss transverse electric-pass polarizer,” Opt. Lett. 41, 4020–4023 (2016).
    [Crossref]
  23. Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 27, 2071–2074 (2015).
    [Crossref]
  24. M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
    [Crossref]
  25. X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37, 4814–4816 (2012).
    [Crossref]
  26. M. Alam, J. S. Aitchison, and M. Mojahedi, “Compact hybrid TM-pass polarizer for silicon-on-insulator platform,” Appl. Opt. 50, 2294–2298 (2011).
    [Crossref]
  27. B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
    [Crossref]
  28. B. Bai, X. Li, and Z. Zhou, “Fabrication tolerant TE-pass polarizer based on hybrid plasmonic Bragg grating,” in 13th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2016), paper ThP26.
  29. X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), paper ATh4A.2.
  30. X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
    [Crossref]
  31. J. Buus, M. Amann, D. J. Blumenthal, and M. Amann, Tunable Laser Diodes and Related Optical Sources (Wiley, 2005).
  32. D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25, 25574–25587 (2017).
    [Crossref]
  33. W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
    [Crossref]

2018 (1)

B. Ni and J. Xiao, “Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 30, 463–466 (2018).
[Crossref]

2017 (6)

B. Ni and J. Xiao, “A compact silicon-based TE-pass polarizer using three-guide directional couplers,” IEEE Photon. Technol. Lett. 29, 1631–1634 (2017).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

D. I. Yakubovsky, A. V. Arsenin, Y. V. Stebunov, D. Y. Fedyanin, and V. S. Volkov, “Optical constants and structural properties of thin gold films,” Opt. Express 25, 25574–25587 (2017).
[Crossref]

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

2016 (4)

2015 (5)

S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
[Crossref]

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 27, 2071–2074 (2015).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

2014 (3)

X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
[Crossref]

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

2013 (3)

Y. Huang, S. Zhu, H. Zhang, T. Liow, and G. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21, 12790–12796 (2013).
[Crossref]

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
[Crossref]

2012 (3)

2011 (1)

2010 (2)

2007 (1)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

1979 (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
[Crossref]

Abd-Elrazzak, M. M.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Aitchison, J. S.

Alam, M.

Alam, M. Z.

Al-Jabr, A.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett. 24, 724–726 (2012).
[Crossref]

Amann, M.

J. Buus, M. Amann, D. J. Blumenthal, and M. Amann, Tunable Laser Diodes and Related Optical Sources (Wiley, 2005).

J. Buus, M. Amann, D. J. Blumenthal, and M. Amann, Tunable Laser Diodes and Related Optical Sources (Wiley, 2005).

Areed, N. F. F.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Arsenin, A. V.

Azzam, S. I.

Azzam, S. I. H.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Bai, B.

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

B. Bai, X. Li, and Z. Zhou, “Fabrication tolerant TE-pass polarizer based on hybrid plasmonic Bragg grating,” in 13th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2016), paper ThP26.

Barwicz, T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Blumenthal, D. J.

J. Buus, M. Amann, D. J. Blumenthal, and M. Amann, Tunable Laser Diodes and Related Optical Sources (Wiley, 2005).

Bowers, J. E.

Bozhevolnyi, S. I.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Buus, J.

J. Buus, M. Amann, D. J. Blumenthal, and M. Amann, Tunable Laser Diodes and Related Optical Sources (Wiley, 2005).

Cheben, P.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Chen, P.

Chen, R.

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

Chen, S.

Chen, Y.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Cleveland, W. S.

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
[Crossref]

Dai, D.

X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
[Crossref]

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

D. Dai, Z. Wang, N. Julian, and J. E. Bowers, “Compact broadband polarizer based on shallowly-etched silicon-on-insulator ridge optical waveguides,” Opt. Express 18, 27404–27415 (2010).
[Crossref]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), paper ATh4A.2.

Deng, Q.

El-Mikaty, H. A.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Fedyanin, D. Y.

Gao, L.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
[Crossref]

Gaun, X.

X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
[Crossref]

Gramotnev, D. K.

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Guan, X.

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), paper ATh4A.2.

Hameed, M. F. O.

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Harris, J. S.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
[Crossref]

Ho, H.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Hu, F.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Huang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Y. Huang, S. Zhu, H. Zhang, T. Liow, and G. Lo, “CMOS compatible horizontal nanoplasmonic slot waveguides TE-pass polarizer on silicon-on-insulator platform,” Opt. Express 21, 12790–12796 (2013).
[Crossref]

Huo, Y.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
[Crossref]

Ippen, E. P.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Julian, N.

Kärtner, F. X.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Khan, M. Z. M.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett. 24, 724–726 (2012).
[Crossref]

Li, X.

Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, and Z. Zhou, “Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Express 24, 7347–7355 (2016).
[Crossref]

B. Bai, X. Li, and Z. Zhou, “Fabrication tolerant TE-pass polarizer based on hybrid plasmonic Bragg grating,” in 13th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2016), paper ThP26.

Liow, T.

Liu, L.

Lo, G.

Michel, J.

Mojahedi, M.

Ng, T. K.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett. 24, 724–726 (2012).
[Crossref]

Ni, B.

B. Ni and J. Xiao, “Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 30, 463–466 (2018).
[Crossref]

B. Ni and J. Xiao, “A compact silicon-based TE-pass polarizer using three-guide directional couplers,” IEEE Photon. Technol. Lett. 29, 1631–1634 (2017).
[Crossref]

Obayya, S. S. A.

S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
[Crossref]

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

Ooi, B. S.

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett. 24, 724–726 (2012).
[Crossref]

Paik, S.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Popovic, M. A.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Rakich, P. T.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Schmid, J. H.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Shi, Y.

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
[Crossref]

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), paper ATh4A.2.

Smith, H. I.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Socci, L.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Stebunov, Y. V.

Sun, X.

Tang, L.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Volkov, V. S.

Wagner, S. J.

Wang, G.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Wang, X.

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

Wang, Z.

Watts, M. R.

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

Xiao, J.

B. Ni and J. Xiao, “Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 30, 463–466 (2018).
[Crossref]

B. Ni and J. Xiao, “A compact silicon-based TE-pass polarizer using three-guide directional couplers,” IEEE Photon. Technol. Lett. 29, 1631–1634 (2017).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 27, 2071–2074 (2015).
[Crossref]

Xiong, Y.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Xu, D. X.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Xu, H.

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

Xu, P.

X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
[Crossref]

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), paper ATh4A.2.

Xu, Y.

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 27, 2071–2074 (2015).
[Crossref]

Yakubovsky, D. I.

Yan, Q.

Ye, W. N.

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

Ying, Z.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Zang, K.

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Zhang, H.

Zhang, X.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Zhang, Y.

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

Zhou, Z.

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

Q. Deng, Q. Yan, L. Liu, X. Li, J. Michel, and Z. Zhou, “Robust polarization-insensitive strip-slot waveguide mode converter based on symmetric multimode interference,” Opt. Express 24, 7347–7355 (2016).
[Crossref]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41, 1648–1651 (2016).
[Crossref]

L. Liu, Q. Deng, and Z. Zhou, “Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Lett. 41, 5126–5129 (2016).
[Crossref]

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
[Crossref]

B. Bai, X. Li, and Z. Zhou, “Fabrication tolerant TE-pass polarizer based on hybrid plasmonic Bragg grating,” in 13th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2016), paper ThP26.

Zhu, S.

Appl. Opt. (1)

Appl. Phys. B (1)

L. Gao, F. Hu, X. Wang, L. Tang, and Z. Zhou, “Ultracompact and silicon-on-insulator-compatible polarization splitter based on asymmetric plasmonic-dielectric coupling,” Appl. Phys. B 113, 199–203 (2013).
[Crossref]

IEEE Photon. J. (1)

Y. Xiong, D. X. Xu, J. H. Schmid, P. Cheben, and W. N. Ye, “High extinction ratio and broadband silicon TE-pass polarizer using subwavelength grating index engineering,” IEEE Photon. J. 7, 7802107 (2015).
[Crossref]

IEEE Photon. Technol. Lett. (10)

S. I. H. Azzam, M. F. O. Hameed, N. F. F. Areed, M. M. Abd-Elrazzak, H. A. El-Mikaty, and S. S. A. Obayya, “Proposal of an ultracompact CMOS-compatible TE-/TM-pass polarizer based on SOI platform,” IEEE Photon. Technol. Lett. 26, 1633–1636 (2014).
[Crossref]

H. Xu and Y. Shi, “On-chip silicon TE-pass polarizer based on asymmetrical directional couplers,” IEEE Photon. Technol. Lett. 29, 861–864 (2017).
[Crossref]

Z. Ying, G. Wang, X. Zhang, Y. Huang, H. Ho, and Y. Zhang, “Ultracompact TE-pass polarizer based on a hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 27, 201–204 (2015).
[Crossref]

T. K. Ng, M. Z. M. Khan, A. Al-Jabr, and B. S. Ooi, “Analysis of CMOS compatible Cu-based TM-pass optical polarizer,” IEEE Photon. Technol. Lett. 24, 724–726 (2012).
[Crossref]

L. Gao, Y. Huo, J. S. Harris, and Z. Zhou, “Ultra-compact and low-loss polarization rotator based on asymmetric hybrid plasmonic waveguide,” IEEE Photon. Technol. Lett. 25, 2081–2084 (2013).
[Crossref]

B. Bai, Q. Deng, and Z. Zhou, “Plasmonic-assisted polarization beam splitter based on bent directional coupling,” IEEE Photon. Technol. Lett. 29, 599–602 (2017).
[Crossref]

B. Bai, L. Liu, R. Chen, and Z. Zhou, “Low loss, compact TM-pass polarizer based on hybrid plasmonic grating,” IEEE Photon. Technol. Lett. 29, 607–610 (2017).
[Crossref]

B. Ni and J. Xiao, “Plasmonic-assisted TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 30, 463–466 (2018).
[Crossref]

B. Ni and J. Xiao, “A compact silicon-based TE-pass polarizer using three-guide directional couplers,” IEEE Photon. Technol. Lett. 29, 1631–1634 (2017).
[Crossref]

Y. Xu and J. Xiao, “A compact TE-pass polarizer for silicon-based slot waveguides,” IEEE Photon. Technol. Lett. 27, 2071–2074 (2015).
[Crossref]

J. Am. Stat. Assoc. (1)

W. S. Cleveland, “Robust locally weighted regression and smoothing scatterplots,” J. Am. Stat. Assoc. 74, 829–836 (1979).
[Crossref]

Nat. Photonics (2)

T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, and H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2007).
[Crossref]

D. K. Gramotnev and S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4, 83–91 (2010).
[Crossref]

Opt. Express (4)

Opt. Lett. (8)

B. Bai, L. Liu, and Z. Zhou, “Ultracompact, high extinction ratio polarization beam splitter-rotator based on hybrid plasmonic-dielectric directional coupling,” Opt. Lett. 42, 4752–4755 (2017).
[Crossref]

M. Z. Alam, J. S. Aitchison, and M. Mojahedi, “Compact and silicon-on-insulator-compatible hybrid plasmonic TE-pass polarizer,” Opt. Lett. 37, 55–57 (2012).
[Crossref]

X. Sun, M. Z. Alam, S. J. Wagner, J. S. Aitchison, and M. Mojahedi, “Experimental demonstration of a hybrid plasmonic transverse electric pass polarizer for a silicon-on-insulator platform,” Opt. Lett. 37, 4814–4816 (2012).
[Crossref]

X. Sun, M. Mojahedi, and J. S. Aitchison, “Hybrid plasmonic waveguide-based ultra-low insertion loss transverse electric-pass polarizer,” Opt. Lett. 41, 4020–4023 (2016).
[Crossref]

L. Liu, Q. Deng, and Z. Zhou, “Subwavelength-grating-assisted broadband polarization-independent directional coupler,” Opt. Lett. 41, 1648–1651 (2016).
[Crossref]

L. Liu, Q. Deng, and Z. Zhou, “Manipulation of beat length and wavelength dependence of a polarization beam splitter using a subwavelength grating,” Opt. Lett. 41, 5126–5129 (2016).
[Crossref]

X. Guan, P. Chen, S. Chen, P. Xu, Y. Shi, and D. Dai, “Low-loss ultracompact transverse-magnetic-pass polarizer with a silicon subwavelength grating waveguide,” Opt. Lett. 39, 4514–4517 (2014).
[Crossref]

S. I. Azzam and S. S. A. Obayya, “Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform,” Opt. Lett. 40, 1061–1064 (2015).
[Crossref]

Proc. SPIE (1)

X. Gaun, P. Xu, Y. Shi, and D. Dai, “Ultra-compact and ultra-broadband TE-pass polarizer with a silicon hybrid plasmonic waveguide,” Proc. SPIE 8988, 89880U (2014).
[Crossref]

Sci. Rep. (1)

L. Gao, Y. Huo, K. Zang, S. Paik, Y. Chen, J. S. Harris, and Z. Zhou, “On-chip plasmonic waveguide optical waveplate,” Sci. Rep. 5, 15794 (2015).
[Crossref]

Other (3)

J. Buus, M. Amann, D. J. Blumenthal, and M. Amann, Tunable Laser Diodes and Related Optical Sources (Wiley, 2005).

B. Bai, X. Li, and Z. Zhou, “Fabrication tolerant TE-pass polarizer based on hybrid plasmonic Bragg grating,” in 13th IEEE International Conference on Group IV Photonics (GFP) (IEEE, 2016), paper ThP26.

X. Guan, P. Xu, Y. Shi, and D. Dai, “Ultra-compact broadband TM-pass polarizer using a silicon hybrid plasmonic waveguide grating,” in Asia Communications and Photonics Conference (Optical Society of America, 2013), paper ATh4A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. 3D schematic of the proposed TE-pass polarizer on an SOI platform.
Fig. 2.
Fig. 2. (a) Real part of neff and (b) absolute value of the real part Δneff in the HPW and DW for TM and TE polarizations as a function of waveguide width W. Here, the gap between the metal strip and the Si waveguide below is g=50  nm.
Fig. 3.
Fig. 3. (a) Mode similarity (between the hybrid plasmonic mode in the HPW and the photonic mode in the DW) and (b) the absolute value of the real part Δneff in the HPW and DW for TM and TE polarizations as a function of insertion layer thickness g. Here, waveguide width W is 450 nm.
Fig. 4.
Fig. 4. (a) ER and (b) IL as a function of metal strip length d with period variation from 730 to 760 nm. Here, N=8, W=450  nm, and g=50  nm.
Fig. 5.
Fig. 5. Optical energy flux density along the propagation direction from the top view when the TM or TE mode is injected. Here, W=450  nm, N=8, d=400  nm, and Λ=750  nm.
Fig. 6.
Fig. 6. SEM image of the fabricated TE-pass polarizer.
Fig. 7.
Fig. 7. (a) Normalized measured spectrum of one polarizer. (b) Corresponding ER and IL of the device. The black lines are trend lines extracted with robust locally weighted regression.

Tables (1)

Tables Icon

Table 1. Summary of Demonstrated TE-Pass Polarizers

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ER=10×log10(PTE/PTM),IL=10×log10(PTE),

Metrics