Abstract

We report on a diode-end-pumped high-power and high-energy Nd:YAG single-crystal fiber laser at 1834 nm. Two 808 nm diodes injecting about 58 W pump power into the Nd:YAG fiber have generated 3.28 W continuous-wave and 1.66 W Cr:ZnSe-based passively Q-switched lasers. Slope efficiencies with respect to pump powers are 8.7% for the continuous-wave laser and 4.9% for the Q-switched laser. The extracted maximum pulse energy is about 266.9 μJ, and the corresponding maximum pulse peak power is 2.54 kW. These performances greatly surpass previous results regarding this specific laser emission because the laser gain medium in the form of fiber can significantly mitigate thermally induced power saturation thanks to its significantly reduced thermal lensing effect. Single-crystal fiber lasers show great potential for high average power, pulse energy, and peak power.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nd:YAG single-crystal fiber as high peak power amplifier of pulses below one nanosecond

Igor Martial, François Balembois, Julien Didierjean, and Patrick Georges
Opt. Express 19(12) 11667-11679 (2011)

High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique

Julien Didierjean, Marc Castaing, François Balembois, Patrick Georges, Didier Perrodin, Jean Marie Fourmigué, Kherreddine Lebbou, Alain Brenier, and Olivier Tillement
Opt. Lett. 31(23) 3468-3470 (2006)

High-power diode-end-pumped laser with multi-segmented Nd-doped yttrium vanadate

Y. J. Huang and Y. F. Chen
Opt. Express 21(13) 16063-16068 (2013)

References

  • View by:
  • |
  • |
  • |

  1. F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
    [Crossref]
  2. W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
    [Crossref]
  3. P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06  μm,” Appl. Phys. B 109, 327–331 (2012).
    [Crossref]
  4. R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YAlO laser,” IEEE. J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
    [Crossref]
  5. R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
    [Crossref]
  6. S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
    [Crossref]
  7. H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
    [Crossref]
  8. X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
    [Crossref]
  9. R. W. Wallace, “Oscillation of the 1.833-μ line in Nd3+:YAG,” IEEE J. Quantum Electron. 7, 203–204 (1971).
    [Crossref]
  10. T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
    [Crossref]
  11. J. I. Mackenzie, C. Li, and D. P. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39, 493–500 (2003).
    [Crossref]
  12. J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
    [Crossref]
  13. B. Xu, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834  nm,” Opt. Express 24, 3601–3606 (2016).
    [Crossref]
  14. M. Frede, R. Wilhelm, and D. Kracht, “250  W end-pumped Nd:YAG laser with direct pumping into the upper laser level,” Opt. Lett. 31, 3618–3619 (2006).
    [Crossref]
  15. X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
    [Crossref]
  16. D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938  nm,” Opt. Express 17, 10091–10097 (2009).
    [Crossref]
  17. K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
    [Crossref]
  18. J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
    [Crossref]
  19. X. Délen, S. Piehler, J. Didierjean, N. Aubry, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250  W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37, 2898–2900 (2012).
    [Crossref]
  20. D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
    [Crossref]
  21. A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38, 938–940 (2013).
    [Crossref]
  22. H. Kim, R. S. Hay, S. A. McDaniel, G. Cook, N. G. Usechak, A. M. Urbas, K. N. Shugart, H. Lee, A. H. Kadhim, D. P. Brown, B. Griffin, G. E. Fair, R. G. Corns, S. A. Potticary, F. K. Hopkins, K. L. Averett, D. E. Zelmon, T. A. Parthasarathy, and K. A. Keller, “Lasing of surface-polished polycrystalline Ho:YAG (yttrium aluminum garnet) fiber,” Opt. Express 25, 6725–6731 (2017).
    [Crossref]
  23. P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
    [Crossref]
  24. J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
    [Crossref]
  25. L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
    [Crossref]
  26. H. C. Lee, S. U. Byeon, and A. Lukashev, “Diode-pumped continuous-wave eye-safe Nd:YAG laser at 1415  nm,” Opt. Lett. 37, 1160–1162 (2012).
    [Crossref]
  27. J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
    [Crossref]

2017 (3)

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

H. Kim, R. S. Hay, S. A. McDaniel, G. Cook, N. G. Usechak, A. M. Urbas, K. N. Shugart, H. Lee, A. H. Kadhim, D. P. Brown, B. Griffin, G. E. Fair, R. G. Corns, S. A. Potticary, F. K. Hopkins, K. L. Averett, D. E. Zelmon, T. A. Parthasarathy, and K. A. Keller, “Lasing of surface-polished polycrystalline Ho:YAG (yttrium aluminum garnet) fiber,” Opt. Express 25, 6725–6731 (2017).
[Crossref]

2016 (1)

2015 (1)

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

2014 (2)

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

2013 (1)

2012 (3)

2011 (1)

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

2010 (1)

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

2009 (4)

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938  nm,” Opt. Express 17, 10091–10097 (2009).
[Crossref]

2007 (1)

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

2006 (2)

2003 (1)

J. I. Mackenzie, C. Li, and D. P. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39, 493–500 (2003).
[Crossref]

1997 (1)

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

1996 (1)

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

1995 (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YAlO laser,” IEEE. J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[Crossref]

1992 (2)

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[Crossref]

1971 (1)

R. W. Wallace, “Oscillation of the 1.833-μ line in Nd3+:YAG,” IEEE J. Quantum Electron. 7, 203–204 (1971).
[Crossref]

Aggarwal, I.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Ahmed, M. A.

Aubourg, A.

Aubry, N.

Averett, K. L.

Badikov, V. V.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Baker, C.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Balembois, F.

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38, 938–940 (2013).
[Crossref]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250  W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37, 2898–2900 (2012).
[Crossref]

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938  nm,” Opt. Express 17, 10091–10097 (2009).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
[Crossref]

Basiev, T. T.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Beecher, S. J.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

Bowman, S. R.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Brenier, A.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
[Crossref]

Brown, D. P.

Byeon, S. U.

Cai, Z. P.

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

B. Xu, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834  nm,” Opt. Express 24, 3601–3606 (2016).
[Crossref]

Cenac, C.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Chambon, B.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Chase, L. L.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Cheng, S. S.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Cheng, Y.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Cook, G.

Corns, R. G.

Délen, X.

X. Délen, S. Piehler, J. Didierjean, N. Aubry, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250  W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37, 2898–2900 (2012).
[Crossref]

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

DeLoach, L. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Descroix, E.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Didierjean, J.

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38, 938–940 (2013).
[Crossref]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250  W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37, 2898–2900 (2012).
[Crossref]

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
[Crossref]

Doroshenko, M.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Eason, R. W.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

Edouart, D.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Esterowitz, L.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YAlO laser,” IEEE. J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[Crossref]

Fair, G. E.

Fourmigue, J. M.

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

Fourmigué, J.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

Frede, M.

Gao, C. Q.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Gao, M. W.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Garnier, N.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Georges, P.

A. Aubourg, J. Didierjean, N. Aubry, F. Balembois, and P. Georges, “Passively Q-switched diode-pumped Er:YAG solid-state laser,” Opt. Lett. 38, 938–940 (2013).
[Crossref]

X. Délen, S. Piehler, J. Didierjean, N. Aubry, M. A. Ahmed, T. Graf, F. Balembois, and P. Georges, “250  W single-crystal fiber Yb:YAG laser,” Opt. Lett. 37, 2898–2900 (2012).
[Crossref]

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938  nm,” Opt. Express 17, 10091–10097 (2009).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
[Crossref]

Gibert, F.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Graf, T.

Griffin, B.

Guan, X. F.

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

Guillet, H.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Hay, R. S.

Hopkins, F. K.

Hunt, M.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Jelínková, H.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Kadhim, A. H.

Kane, T. J.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[Crossref]

Keller, K. A.

Kim, H.

Kim, W.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Koranda, P.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Kracht, D.

Krupke, W. F.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Kubo, T. S.

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[Crossref]

Kuo, C. C.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06  μm,” Appl. Phys. B 109, 327–331 (2012).
[Crossref]

Kway, W. L.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Lan, J. L.

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

Laporte, P.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Le Mounier, F.

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

Lebbou, K.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
[Crossref]

Lee, C. C.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06  μm,” Appl. Phys. B 109, 327–331 (2012).
[Crossref]

Lee, H.

Lee, H. C.

Li, C.

J. I. Mackenzie, C. Li, and D. P. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39, 493–500 (2003).
[Crossref]

Li, D. Z.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Lin, Z. F.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Lukashev, A.

Luo, P. L.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06  μm,” Appl. Phys. B 109, 327–331 (2012).
[Crossref]

Ma, X.

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

Mackenzie, J. I.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

J. I. Mackenzie, C. Li, and D. P. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39, 493–500 (2003).
[Crossref]

Mareschal, J.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Martial, I.

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

McDaniel, S. A.

Moncorgé, R.

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

B. Xu, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834  nm,” Opt. Express 24, 3601–3606 (2016).
[Crossref]

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Osiko, V.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Page, R. H.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Parsonage, T. L.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

Parthasarathy, T. A.

Payne, S. A.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Perrodin, D.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

J. Didierjean, F. Balembois, P. Georges, D. Perrodin, K. Lebbou, A. Brenier, and O. Tillemen, “High-power laser with Nd:YAG single-crystal fiber grown by the micro-pulling-down technique,” Opt. Lett. 31, 3468–3470 (2006).
[Crossref]

Piehler, S.

Potticary, S. A.

Rivoire, J. Y.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Roy, S.

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Sadowski, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Sanghera, J.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Sangla, D.

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

D. Sangla, F. Balembois, and P. Georges, “Nd:YAG laser diode-pumped directly into the emitting level at 938  nm,” Opt. Express 17, 10091–10097 (2009).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

Shaw, B.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Shepherd, D. P.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

J. I. Mackenzie, C. Li, and D. P. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39, 493–500 (2003).
[Crossref]

Shugart, K. N.

Shy, J. T.

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06  μm,” Appl. Phys. B 109, 327–331 (2012).
[Crossref]

Smith, L. K.

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

Stoneman, R. C.

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YAlO laser,” IEEE. J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[Crossref]

Šulc, J.

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Szela, J. W.

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

Tillemen, O.

Tillement, O.

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

Tu, C. Y.

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

Urbas, A. M.

Usechak, N. G.

Villalobos, G.

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

Wallace, R. W.

R. W. Wallace, “Oscillation of the 1.833-μ line in Nd3+:YAG,” IEEE J. Quantum Electron. 7, 203–204 (1971).
[Crossref]

Wang, X. D.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Wang, Y.

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

Wilhelm, R.

Wilke, G. D.

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

Wu, F.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Xu, B.

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

B. Xu, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834  nm,” Opt. Express 24, 3601–3606 (2016).
[Crossref]

Xu, H. Y.

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

B. Xu, H. Y. Xu, Z. P. Cai, and R. Moncorgé, “Watt-level narrow-linewidth Nd:YAG laser operating on 4F3/2→4I15/2 transition at 1834  nm,” Opt. Express 24, 3601–3606 (2016).
[Crossref]

Xu, J.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Xu, X. D.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

You, Z. Y.

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

Zelmon, D. E.

Zhao, Z. W.

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Zhou, H.

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

Zhou, Z. Y.

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

Appl. Phys. B (4)

F. Gibert, D. Edouart, C. Cenac, and F. Le Mounier, “2-μm high-power multiple-frequency single-mode Q-switched Ho:YLF laser for DIAL application,” Appl. Phys. B 116, 967–976 (2014).
[Crossref]

P. L. Luo, C. C. Kuo, C. C. Lee, and J. T. Shy, “Frequency stabilization of a single-frequency volume Bragg grating-based short-cavity Tm:Ho:YLF laser to a CO2 line at 2.06  μm,” Appl. Phys. B 109, 327–331 (2012).
[Crossref]

X. Délen, I. Martial, J. Didierjean, D. Sangla, F. Balembois, and P. Georges, “34  W continuous wave Nd:YAG single crystal fiber laser emitting at 946  nm,” Appl. Phys. B 104, 1–4 (2011).
[Crossref]

D. Sangla, I. Martial, N. Aubry, J. Didierjean, D. Perrodin, F. Balembois, K. Lebbou, A. Brenier, P. Georges, O. Tillement, and J. Fourmigué, “High power laser operation with crystal fibers,” Appl. Phys. B 97, 263–273 (2009).
[Crossref]

IEEE J. Quantum Electron. (5)

S. A. Payne, L. L. Chase, L. K. Smith, and W. L. Kway, “Infrared cross section measurements for crystals doped with Er3+, Tm3+, and Ho3+,” IEEE J. Quantum Electron. 28, 2619–2630 (1992).
[Crossref]

R. W. Wallace, “Oscillation of the 1.833-μ line in Nd3+:YAG,” IEEE J. Quantum Electron. 7, 203–204 (1971).
[Crossref]

T. S. Kubo and T. J. Kane, “Diode-pumped lasers at five eye-safe wavelengths,” IEEE J. Quantum Electron. 28, 1033–1040 (1992).
[Crossref]

J. I. Mackenzie, C. Li, and D. P. Shepherd, “Multi-watt, high efficiency, diffraction-limited Nd:YAG planar waveguide laser,” IEEE J. Quantum Electron. 39, 493–500 (2003).
[Crossref]

L. D. DeLoach, R. H. Page, G. D. Wilke, S. A. Payne, and W. F. Krupke, “Transition metal-doped zinc chalcogenides: spectroscopy and laser demonstration of a new class of gain media,” IEEE J. Quantum Electron. 32, 885–895 (1996).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

J. I. Mackenzie, J. W. Szela, S. J. Beecher, T. L. Parsonage, R. W. Eason, and D. P. Shepherd, “Crystal planar waveguides, a power scaling architecture for low-gain transitions,” IEEE J. Sel. Top. Quantum Electron. 21, 380–389 (2015).
[Crossref]

IEEE. J. Sel. Top. Quantum Electron. (1)

R. C. Stoneman and L. Esterowitz, “Efficient 1.94-μm Tm:YAlO laser,” IEEE. J. Sel. Top. Quantum Electron. 1, 78–81 (1995).
[Crossref]

J. Alloys Compd. (1)

H. Zhou, X. Ma, Y. Wang, Z. Y. You, and C. Y. Tu, “Tm3+-doped Gd3Ga5O12 crystal: a potential tunable laser crystal at 2.0  μm,” J. Alloys Compd. 475, 555–559 (2009).
[Crossref]

J. Opt. (1)

J. L. Lan, Z. Y. Zhou, X. F. Guan, B. Xu, H. Y. Xu, and Z. P. Cai, “New continuous-wave and Q-switched eye-safe Nd:YAG lasers at 1.4  μm spectral region,” J. Opt. 19, 045504 (2017).
[Crossref]

Laser Phys. (1)

X. D. Xu, X. D. Wang, Z. F. Lin, Y. Cheng, D. Z. Li, S. S. Cheng, F. Wu, Z. W. Zhao, C. Q. Gao, M. W. Gao, and J. Xu, “Crystal growth, spectroscopic and laser properties of Tm:LuAG crystal,” Laser Phys. 19, 2140–2143 (2009).
[Crossref]

Laser Phys. Lett. (1)

J. L. Lan, X. F. Guan, B. Xu, R. Moncorgé, H. Y. Xu, and Z. P. Cai, “A diode-pumped Tm:CaYAlO4 laser at 1851  nm,” Laser Phys. Lett. 14, 075801 (2017).
[Crossref]

Opt. Express (3)

Opt. Lett. (5)

Opt. Mater. (2)

K. Lebbou, A. Brenier, O. Tillement, J. Didierjean, F. Balembois, P. Georges, D. Perrodin, and J. M. Fourmigue, “Long (111)-oriented Y3Al5O12:Nd3+ single crystal fibers grown by modified micro-pulling down technology for optical characterization and laser generation,” Opt. Mater. 30, 82–84 (2007).
[Crossref]

R. Moncorgé, B. Chambon, J. Y. Rivoire, N. Garnier, E. Descroix, P. Laporte, H. Guillet, S. Roy, and J. Mareschal, “Nd-doped crystals for medical laser applications,” Opt. Mater. 8, 109–119 (1997).
[Crossref]

Proc. SPIE (2)

W. Kim, S. R. Bowman, C. Baker, G. Villalobos, B. Shaw, B. Sadowski, M. Hunt, I. Aggarwal, and J. Sanghera, “Holmium doped laser materials for eye-safe solid state laser application,” Proc. SPIE 9081, 908105 (2014).
[Crossref]

P. Koranda, J. Šulc, M. Doroshenko, H. Jelínková, T. T. Basiev, V. Osiko, and V. V. Badikov, “Cr:ZnSe laser pumped with Tm:YAP microchip laser,” Proc. SPIE 7578, 757826 (2010).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. (a) Photograph of the as-grown Nd:YAG single-crystal fiber via the μ-PD technique. (b) Emission spectrum of Nd:YAG single-crystal fiber at around 1.8 μm under 808 nm diode excitation.
Fig. 2.
Fig. 2. Schematic of the diode-pumped Nd:YAG fiber laser experimental setup.
Fig. 3.
Fig. 3. Dependence of output power on pump power of the continuous-wave and Q-switched Nd:YAG fiber lasers.
Fig. 4.
Fig. 4. Typical laser spectrum of the Nd:YAG fiber laser at about 1834 nm.
Fig. 5.
Fig. 5. Typical pulse trains and single-pulse profile at (a), (b) threshold and (c), (d) maximum output power, respectively.
Fig. 6.
Fig. 6. Dependences of (a) pulse width, (b) pulse repetition rate, (c) pulse energy, and (d) pulse peak power on pump powers.
Fig. 7.
Fig. 7. Wavelength tuning of Q-switched Nd:YAG lasers around 1834 nm.

Metrics