Abstract

Vertical-cavity surface-emitting lasers (VCSELs) are the ideal optical sources for data communication and sensing. In data communication, large data rates combined with excellent energy efficiency and temperature stability have been achieved based on advanced device design and modulation formats. VCSELs are also promising sources for photonic integrated circuits due to their small footprint and low power consumption. Also, VCSELs are commonly used for a wide variety of applications in the consumer electronics market. These applications range from laser mice to three-dimensional (3D) sensing and imaging, including various 3D movement detections, such as gesture recognition or face recognition. Novel VCSEL types will include metastructures, exhibiting additional unique properties, of largest importance for next-generation data communication, sensing, and photonic integrated circuits.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High-contrast gratings for integrated optoelectronics

Connie J. Chang-Hasnain and Weijian Yang
Adv. Opt. Photon. 4(3) 379-440 (2012)

Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate

James Ferrara, Weijian Yang, Li Zhu, Pengfei Qiao, and Connie J. Chang-Hasnain
Opt. Express 23(3) 2512-2523 (2015)

Silicon-integrated short-wavelength hybrid-cavity VCSEL

Emanuel P. Haglund, Sulakshna Kumari, Petter Westbergh, Johan S. Gustavsson, Gunther Roelkens, Roel Baets, and Anders Larsson
Opt. Express 23(26) 33634-33640 (2015)

References

  • View by:
  • |
  • |
  • |

  1. I. Melngailis, “Longitudinal injection plasma laser of InSb,” Appl. Phys. Lett. 6, 59–60 (1965).
    [Crossref]
  2. H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
    [Crossref]
  3. J. P. van der Ziel and M. Ilegems, “Multilayer GaAs-A10.3Ga0.7As dielectric quarter wave stacks grown by molecular beam epitaxy,” Appl. Opt. 14, 2627–2630 (1975).
    [Crossref]
  4. M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
    [Crossref]
  5. M. Ogura, T. Hata, and T. Yao, “Distributed feedback surface emitting laser diode with multilayered heterostructure,” Jpn. J. Appl. Phys. 23, L512–L514 (1984).
    [Crossref]
  6. M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure,” J. Vac. Sci. Technol. B 3, 784–787 (1985).
    [Crossref]
  7. K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA,” Electron. Lett. 23, 134–136 (1987).
    [Crossref]
  8. T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett. 24, 928–929 (1988).
    [Crossref]
  9. P. L. Gourley and T. J. Drummond, “Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,” Appl. Phys. Lett. 50, 1225–1227 (1987).
    [Crossref]
  10. J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
    [Crossref]
  11. Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
    [Crossref]
  12. Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
    [Crossref]
  13. R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
    [Crossref]
  14. J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
    [Crossref]
  15. D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
    [Crossref]
  16. K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
    [Crossref]
  17. M. Dallesasse and N. Holonyak, “Oxidation of Al-bearing III-V materials: a review of key progress,” J. Appl. Phys. 113, 051101 (2013).
    [Crossref]
  18. F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
    [Crossref]
  19. H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.
  20. A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
    [Crossref]
  21. R. Michalzik, VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer Series in Optical Sciences (Springer, 2013), Vol. 166.
  22. J. A. Tatum, “VCSEL proliferation,” Proc. SPIE 6484, 648403 (2014).
    [Crossref]
  23. M. Grabherr, “New applications boost VCSEL quantities: recent developments at Philips,” Proc. SPIE 9381, 938102 (2015).
    [Crossref]
  24. C. Wilmsen, H. Temkin, and L. A. Coldren, eds., Vertical Cavity Surface Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999).
  25. H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics (Springer, 2003), Vol. 6.
  26. J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
    [Crossref]
  27. N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
    [Crossref]
  28. D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
    [Crossref]
  29. H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
    [Crossref]
  30. M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
    [Crossref]
  31. S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
    [Crossref]
  32. A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
    [Crossref]
  33. T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
    [Crossref]
  34. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).
  35. I. Suemune, “Theoretical study of differential gain in strained quantum well structures,” IEEE J. Quantum Electron. 27, 1149–1159 (1991).
    [Crossref]
  36. P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
    [Crossref]
  37. S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
    [Crossref]
  38. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
    [Crossref]
  39. G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
    [Crossref]
  40. W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.
  41. P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
    [Crossref]
  42. H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
    [Crossref]
  43. P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
    [Crossref]
  44. M. A. Afromowitz, “Thermal conductivity of Ga1-xAlxAs alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
    [Crossref]
  45. K. Lascola, W. Yuen, and C. Chang-Hasnain, “Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,” in IEEE/LEOS Summer Topical Meeting (1997), pp. 79–80.
  46. A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
    [Crossref]
  47. R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
    [Crossref]
  48. E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
    [Crossref]
  49. A. N. AL-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
    [Crossref]
  50. Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
    [Crossref]
  51. M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.
  52. Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
    [Crossref]
  53. N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
    [Crossref]
  54. D. M. Kuchta, P. Pepeljugoski, and Y. Kwark, “VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC,” in Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo (2001), pp. 49–50.
  55. R. H. Johnson and D. M. Kuchta, “30  Gb/s directly modulated 850  nm datacom VCSELs,” in Conference on Lasers and Electro-Optics (2008), paper CPDB2.
  56. P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
    [Crossref]
  57. P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
    [Crossref]
  58. P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
    [Crossref]
  59. P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
    [Crossref]
  60. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
    [Crossref]
  61. A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
    [Crossref]
  62. S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
    [Crossref]
  63. F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
    [Crossref]
  64. M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.
  65. J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
    [Crossref]
  66. K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
    [Crossref]
  67. Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 704–715 (2009).
    [Crossref]
  68. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
    [Crossref]
  69. N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.
  70. E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
    [Crossref]
  71. K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
    [Crossref]
  72. T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.
  73. D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
    [Crossref]
  74. E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
    [Crossref]
  75. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.
  76. D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.
  77. M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.
  78. H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16, 1337–1346 (2010).
    [Crossref]
  79. P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
    [Crossref]
  80. P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
    [Crossref]
  81. R. Rosales, M. Zorn, and J. A. Lott, “30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs,” IEEE Photon. Technol. Lett. 29, 2107–2110 (2017).
    [Crossref]
  82. N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
    [Crossref]
  83. N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.
  84. D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34, 233–242 (2016).
    [Crossref]
  85. H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in IEEE Symposium on High Performance Interconnects (2010), pp. 113–116.
  86. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
    [Crossref]
  87. R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
    [Crossref]
  88. H. Dalir and F. Koyama, “29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103, 091109 (2013).
    [Crossref]
  89. S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
    [Crossref]
  90. B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
    [Crossref]
  91. L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
    [Crossref]
  92. C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
    [Crossref]
  93. P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
    [Crossref]
  94. D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
    [Crossref]
  95. N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
    [Crossref]
  96. P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
    [Crossref]
  97. A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
    [Crossref]
  98. H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
    [Crossref]
  99. H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
    [Crossref]
  100. D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
    [Crossref]
  101. P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
    [Crossref]
  102. F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
    [Crossref]
  103. C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
    [Crossref]
  104. P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
    [Crossref]
  105. J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.
  106. H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
    [Crossref]
  107. S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
    [Crossref]
  108. T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
    [Crossref]
  109. J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.
  110. J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.
  111. P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
    [Crossref]
  112. K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
    [Crossref]
  113. S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.
  114. P. Kolesar, , IEEE 802.3 50G & NGOATH Study Groups, “Wideband MMF standardization and S-WDM technology,” 2016, http://www.ieee802.org/3/50G/public/Jan16/kolesar_50GE_NGOATH_01a_0116.pdf .
  115. T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
    [Crossref]
  116. P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.
  117. Y. W. Xu, A. Michael, and C. Y. Kwok, “Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon,” Proc. SPIE 6800, 68001W (2008).
    [Crossref]
  118. R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.
  119. Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
    [Crossref]
  120. D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
    [Crossref]
  121. J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
    [Crossref]
  122. K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
    [Crossref]
  123. H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
    [Crossref]
  124. H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, and C. Tang, “Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing,” Opt. Lett. 41, 4158–4161 (2016).
    [Crossref]
  125. Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25, 5758–5771 (2017).
    [Crossref]
  126. N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
    [Crossref]
  127. M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5, 876–883 (2018).
    [Crossref]
  128. G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
    [Crossref]
  129. M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
    [Crossref]
  130. A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
    [Crossref]
  131. D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
    [Crossref]
  132. M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
    [Crossref]
  133. M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
    [Crossref]
  134. P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
    [Crossref]
  135. D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
    [Crossref]
  136. K.-H. Lee, J.-H. Baek, I.-K. Hwang, Y.-H. Lee, G.-H. Lee, J.-H. Ser, H.-D. Kim, and H.-E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12, 4136–4143 (2004).
    [Crossref]
  137. P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
    [Crossref]
  138. T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
    [Crossref]
  139. K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
    [Crossref]
  140. O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
    [Crossref]
  141. K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
    [Crossref]
  142. B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
    [Crossref]
  143. P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
    [Crossref]
  144. H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
    [Crossref]
  145. L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
    [Crossref]
  146. https://www.finisar.com/sites/default/files/downloads/application_note_vcsels_in_various_sensor_applications.pdf .
  147. G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4, 441–471 (2012).
    [Crossref]
  148. M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
    [Crossref]
  149. H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
    [Crossref]
  150. https://www.finisar.com/sites/default/files/downloads/application_note_pulsed_operation_of_vcsels_for_high_peak_powers.pdf .
  151. R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
    [Crossref]
  152. M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
    [Crossref]
  153. J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
    [Crossref]
  154. P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photon. 10, 180–245 (2018).
    [Crossref]
  155. W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
    [Crossref]
  156. C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
    [Crossref]
  157. S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter,” Opt. Express 14, 3129–3137 (2006).
    [Crossref]
  158. R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
    [Crossref]
  159. V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
    [Crossref]
  160. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
    [Crossref]
  161. S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
    [Crossref]
  162. T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
    [Crossref]
  163. S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
    [Crossref]
  164. M. G. Moharam and T. K. Gaylord, “Rigorous coupled-wave analysis of planar grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [Crossref]
  165. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett. 92, 171108 (2008).
    [Crossref]
  166. A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22, 11804–11811 (2014).
    [Crossref]
  167. A. Liu, W. Hofmann, and D. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51, 6600108 (2015).
    [Crossref]
  168. A. Liu, W. Zheng, and D. Bimberg, “Unidirectional transmission in finite-size high-contrast gratings,” in Asia Communications and Photonics Conference (2016), paper AF2A.52.
  169. D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158 (2010).
    [Crossref]
  170. I.-S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
    [Crossref]
  171. S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
    [Crossref]
  172. R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
    [Crossref]
  173. J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17, 22535–22542 (2009).
    [Crossref]
  174. M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23, 11674–11686 (2015).
    [Crossref]
  175. A. Liu, W. Zheng, and D. Bimberg, “Comparison between high- and zero-contrast gratings as VCSEL mirrors,” Opt. Commun. 389, 35–41 (2017).
    [Crossref]
  176. W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
    [Crossref]
  177. K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5, 10–13 (2018).
    [Crossref]
  178. P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
    [Crossref]
  179. A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
    [Crossref]
  180. M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
    [Crossref]
  181. Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
    [Crossref]
  182. V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
    [Crossref]
  183. C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
    [Crossref]
  184. A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
    [Crossref]
  185. A. Liu, W. Zheng, and D. Bimberg, “VCSEL with finite-size high-contrast metastructure,” Proc. SPIE 10812, 1081202 (2018).
    [Crossref]
  186. E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
    [Crossref]
  187. L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, “3D integration of photonic crystal devices: vertical coupling with a silicon waveguide,” Opt. Express 18, 16162–16174 (2010).
    [Crossref]
  188. J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
    [Crossref]
  189. I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
    [Crossref]
  190. G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
    [Crossref]
  191. G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
    [Crossref]
  192. S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
    [Crossref]
  193. M. Gębski, T. Czyszanowski, and J. A. Lott, “Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper TuP38.
  194. N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
    [Crossref]
  195. G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
    [Crossref]
  196. A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
    [Crossref]
  197. A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
    [Crossref]
  198. A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
    [Crossref]
  199. R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
    [Crossref]
  200. I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
    [Crossref]
  201. H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2, 547–552 (2015).
    [Crossref]
  202. S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
    [Crossref]

2018 (11)

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “VCSEL with finite-size high-contrast metastructure,” Proc. SPIE 10812, 1081202 (2018).
[Crossref]

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5, 10–13 (2018).
[Crossref]

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photon. 10, 180–245 (2018).
[Crossref]

M. R. Billah, M. Blaicher, T. Hoose, P.-I. Dietrich, P. Marin-Palomo, N. Lindenmann, A. Nesic, A. Hofmann, U. Troppenz, M. Moehrle, S. Randel, W. Freude, and C. Koos, “Hybrid integration of silicon photonics circuits and InP lasers by photonic wire bonding,” Optica 5, 876–883 (2018).
[Crossref]

2017 (7)

Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25, 5758–5771 (2017).
[Crossref]

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “Comparison between high- and zero-contrast gratings as VCSEL mirrors,” Opt. Commun. 389, 35–41 (2017).
[Crossref]

R. Rosales, M. Zorn, and J. A. Lott, “30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs,” IEEE Photon. Technol. Lett. 29, 2107–2110 (2017).
[Crossref]

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

2016 (13)

G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
[Crossref]

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
[Crossref]

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34, 233–242 (2016).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, and C. Tang, “Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing,” Opt. Lett. 41, 4158–4161 (2016).
[Crossref]

2015 (17)

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23, 11674–11686 (2015).
[Crossref]

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2, 547–552 (2015).
[Crossref]

K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51, 6600108 (2015).
[Crossref]

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

M. Grabherr, “New applications boost VCSEL quantities: recent developments at Philips,” Proc. SPIE 9381, 938102 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

2014 (11)

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

J. A. Tatum, “VCSEL proliferation,” Proc. SPIE 6484, 648403 (2014).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22, 11804–11811 (2014).
[Crossref]

R. Magnusson, “Wideband reflectors with zero-contrast gratings,” Opt. Lett. 39, 4337–4340 (2014).
[Crossref]

2013 (14)

I.-S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
[Crossref]

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
[Crossref]

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

H. Dalir and F. Koyama, “29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103, 091109 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

M. Dallesasse and N. Holonyak, “Oxidation of Al-bearing III-V materials: a review of key progress,” J. Appl. Phys. 113, 051101 (2013).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

2012 (8)

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

G. Berkovic and E. Shafir, “Optical methods for distance and displacement measurements,” Adv. Opt. Photon. 4, 441–471 (2012).
[Crossref]

2011 (9)

J. Geng, “Structured-light 3D surface imaging: a tutorial,” Adv. Opt. Photon. 3, 128–160 (2011).
[Crossref]

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

2010 (13)

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
[Crossref]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref]

D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158 (2010).
[Crossref]

L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, “3D integration of photonic crystal devices: vertical coupling with a silicon waveguide,” Opt. Express 18, 16162–16174 (2010).
[Crossref]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
[Crossref]

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16, 1337–1346 (2010).
[Crossref]

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

2009 (8)

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 704–715 (2009).
[Crossref]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17, 22535–22542 (2009).
[Crossref]

2008 (9)

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
[Crossref]

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Y. W. Xu, A. Michael, and C. Y. Kwok, “Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon,” Proc. SPIE 6800, 68001W (2008).
[Crossref]

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett. 92, 171108 (2008).
[Crossref]

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

2007 (5)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[Crossref]

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

2006 (5)

Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter,” Opt. Express 14, 3129–3137 (2006).
[Crossref]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
[Crossref]

D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
[Crossref]

2005 (2)

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

2004 (5)

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

A. N. AL-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[Crossref]

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

K.-H. Lee, J.-H. Baek, I.-K. Hwang, Y.-H. Lee, G.-H. Lee, J.-H. Ser, H.-D. Kim, and H.-E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12, 4136–4143 (2004).
[Crossref]

2003 (2)

D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

2002 (2)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

2001 (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

2000 (1)

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

1999 (1)

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

1998 (2)

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

1997 (4)

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

1994 (3)

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
[Crossref]

1992 (2)

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

1991 (2)

I. Suemune, “Theoretical study of differential gain in strained quantum well structures,” IEEE J. Quantum Electron. 27, 1149–1159 (1991).
[Crossref]

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

1990 (3)

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

1989 (2)

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

1988 (1)

T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett. 24, 928–929 (1988).
[Crossref]

1987 (2)

P. L. Gourley and T. J. Drummond, “Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,” Appl. Phys. Lett. 50, 1225–1227 (1987).
[Crossref]

K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA,” Electron. Lett. 23, 134–136 (1987).
[Crossref]

1985 (1)

M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure,” J. Vac. Sci. Technol. B 3, 784–787 (1985).
[Crossref]

1984 (1)

M. Ogura, T. Hata, and T. Yao, “Distributed feedback surface emitting laser diode with multilayered heterostructure,” Jpn. J. Appl. Phys. 23, L512–L514 (1984).
[Crossref]

1983 (1)

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
[Crossref]

1981 (1)

1979 (1)

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

1975 (1)

1973 (1)

M. A. Afromowitz, “Thermal conductivity of Ga1-xAlxAs alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
[Crossref]

1965 (1)

I. Melngailis, “Longitudinal injection plasma laser of InSb,” Appl. Phys. Lett. 6, 59–60 (1965).
[Crossref]

Aalto, T.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Ababneh, A.

A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
[Crossref]

Achten, F.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Afromowitz, M. A.

M. A. Afromowitz, “Thermal conductivity of Ga1-xAlxAs alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
[Crossref]

Agustin, M.

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Ahn, S.

Akagawa, T.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

Alias, M. S.

A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
[Crossref]

Allen, G. C.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

AL-Omari, A. N.

A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
[Crossref]

A. N. AL-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[Crossref]

Amann, M.-C.

S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
[Crossref]

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Amano, C.

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

Amezcua-Correa, A.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Ami, M.

M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

Anan, T.

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

Andrejew, A.

Andrekson, P. A.

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

Ansbæk, T.

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
[Crossref]

Armour, E.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Arsenijevic, D.

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Ashby, C. I. H.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Azuchi, M.

M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

Baek, J.-H.

Baets, R.

K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
[Crossref]

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

Baets, R. G.

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

Baez, F. M.

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

Bakir, B. B.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

Baks, C.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Baks, C. W.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

Balemarthy, K.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

Balthasar, G.

Bauwelinck, J.

Bava, G. P.

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

Ben Bakir, B.

Benbakir, B.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
[Crossref]

Bengtsson, J.

Benvenuti, A.

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

Berkovic, G.

Bigot-Astruc, M.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Billah, M. R.

Bimberg, D.

A. Liu, W. Zheng, and D. Bimberg, “VCSEL with finite-size high-contrast metastructure,” Proc. SPIE 10812, 1081202 (2018).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “Comparison between high- and zero-contrast gratings as VCSEL mirrors,” Opt. Commun. 389, 35–41 (2017).
[Crossref]

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51, 6600108 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22, 11804–11811 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

A. Liu, W. Zheng, and D. Bimberg, “Unidirectional transmission in finite-size high-contrast gratings,” in Asia Communications and Photonics Conference (2016), paper AF2A.52.

Blaicher, M.

Block, M. K.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Blokhin, S. A.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

Blum, O.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Boehm, G.

Böhm, G.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

Boons, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

Bordel, D.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

Bosch, T.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Boutami, S.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
[Crossref]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter,” Opt. Express 14, 3129–3137 (2006).
[Crossref]

Brinker, W.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Brown-Goebeler, K.

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

Brown-Goebeler, K. F.

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

Bugajski, M.

Caekebeke, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

Cai, X.

Caliman, A.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

Cardile, P.

Carpaij, M.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Carroll, L.

Carson, R. F.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Chadha, A.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Chang, C.-C.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Chang, C.-H.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Chang, H.

Chang, Y.-C.

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 704–715 (2009).
[Crossref]

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[Crossref]

Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
[Crossref]

Chang-Hasnain, C.

K. Lascola, W. Yuen, and C. Chang-Hasnain, “Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,” in IEEE/LEOS Summer Topical Meeting (1997), pp. 79–80.

Chang-Hasnain, C. J.

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5, 10–13 (2018).
[Crossref]

P. Qiao, W. Yang, and C. J. Chang-Hasnain, “Recent advances in high-contrast metastructures, metasurfaces, and photonic crystals,” Adv. Opt. Photon. 10, 180–245 (2018).
[Crossref]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett. 92, 171108 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Chase, C.

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5, 10–13 (2018).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref]

Chen, C.-T.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Chen, H.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Chen, H.-Y.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Chen, J.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

Chen, K.-Z.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Chen, L.

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2, 547–552 (2015).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Chen, T.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

Chen, W.

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

Cheng, J.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Cherchi, M.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Chi, K. L.

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

Chi, K.-L.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Chitgarha, M. R.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Chiu, C.-Y.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Chiu, S.-W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Choi, H.-W.

D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]

Choquette, K. D.

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

Chorchos, L.

Chung, I.-S.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

I.-S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

Chuwongin, S.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Chyi, J.-I.

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Coldren, L. A.

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 704–715 (2009).
[Crossref]

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[Crossref]

Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
[Crossref]

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

Cole, C.

Conrads, R.

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Corzine, S. W.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

Cruel, J.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Czyszanowski, T.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23, 11674–11686 (2015).
[Crossref]

M. Gębski, T. Czyszanowski, and J. A. Lott, “Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper TuP38.

D’Agostino, D.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

Dacha, P.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Daghighian, H.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Dalir, H.

H. Dalir and F. Koyama, “29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103, 091109 (2013).
[Crossref]

Dallesasse, J. M.

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

Dallesasse, M.

M. Dallesasse and N. Holonyak, “Oxidation of Al-bearing III-V materials: a review of key progress,” J. Appl. Phys. 113, 051101 (2013).
[Crossref]

Daly, A.

Day, J. C. C.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Debernardi, P.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
[Crossref]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

Dems, M.

Denoyer, G.

Deppe, D. G.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[Crossref]

Dhoedt, B.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

Dietrich, P.-I.

Djogo, G.

Doany, F. E.

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Donati, S.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

Dowd, P.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Drouard, E.

Drummond, T. J.

P. L. Gourley and T. J. Drummond, “Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,” Appl. Phys. Lett. 50, 1225–1227 (1987).
[Crossref]

Duckeck, D.

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

Duijve, R.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Ebeling, K. J.

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

El-Zein, N.

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

Fan, S.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Fattal, D.

Feneberg, M.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

Feng, M.

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
[Crossref]

C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
[Crossref]

H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
[Crossref]

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.

Ferrara, J.

Ferrier, L.

Fiol, G.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Fish, M. A.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

Florez, L. T.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Follstaedt, D. M.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Frasunkiewicz, L.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

Freude, W.

Fryslie, S. T. M.

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Fu, F.

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
[Crossref]

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

Fukatsu, K.

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

Funabashi, M.

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

Garrigues, M.

Gaylord, T. K.

Gazula, D.

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Gebski, M.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23, 11674–11686 (2015).
[Crossref]

M. Gębski, T. Czyszanowski, and J. A. Lott, “Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper TuP38.

Geels, R. S.

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

Geen, M.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Geib, K. M.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Geng, J.

Gerlach, P.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

Ghosh, C.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Giuliani, G.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

Goeman, S.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

Görblich, M.

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

Gourley, P. L.

P. L. Gourley and T. J. Drummond, “Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,” Appl. Phys. Lett. 50, 1225–1227 (1987).
[Crossref]

Grabherr, M.

M. Grabherr, “New applications boost VCSEL quantities: recent developments at Philips,” Proc. SPIE 9381, 938102 (2015).
[Crossref]

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

Graham, L.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Graham, L. A.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Grasse, C.

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

Gray, T.

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Gronenborn, S.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Grote, N.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Gründl, T.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

Gu, X.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Gudde, R.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Guenter, J.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Guenter, J. K.

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Guilfoyle, P.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

Guilfoyle, P. S.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

Guo, B.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

Gustavsson, J. S.

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Haghighi, N.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

Haglund, Å.

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Haglund, E.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Haglund, E. P.

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

Hains, C.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Hamel-Bissell, B. H.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Hammons, B. E.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Haque, M.

Harbison, J. P.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Harjanne, M.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Hata, T.

M. Ogura, T. Hata, and T. Yao, “Distributed feedback surface emitting laser diode with multilayered heterostructure,” Jpn. J. Appl. Phys. 23, L512–L514 (1984).
[Crossref]

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
[Crossref]

Hatakeyama, H.

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

Hawkins, B.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Hawthorne, B.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Healy, S. B.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

Heard, P. J.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Heinks, C.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Hellmig, J.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

Helms, C. J.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Henker, R.

Herman, P. R.

Herper, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

Hillerkuss, D.

Hindi, J. J.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

Hiraiwa, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Ho, Y.-L. D.

Hofmann, A.

Hofmann, W.

A. Liu, W. Hofmann, and D. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51, 6600108 (2015).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22, 11804–11811 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

Hollberg, L.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Holonyak, N.

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

M. Dallesasse and N. Holonyak, “Oxidation of Al-bearing III-V materials: a review of key progress,” J. Appl. Phys. 113, 051101 (2013).
[Crossref]

F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
[Crossref]

C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
[Crossref]

H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
[Crossref]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.

Hoose, T.

Hopfer, F.

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Horn, M.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

Hou, H. Q.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Hove, J. V.

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

Hsieh, D.-H.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Hsin, W.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Huang, C.-H.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Huang, G.-S.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Huang, M. C. Y.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett. 92, 171108 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Huang, S.

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

Huffaker, D. L.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[Crossref]

Hull, R.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Hwang, I.-K.

Iakovlev, V.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

Iga, K.

T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett. 24, 928–929 (1988).
[Crossref]

K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA,” Electron. Lett. 23, 134–136 (1987).
[Crossref]

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics (Springer, 2003), Vol. 6.

Ilegems, M.

Imai, S.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Inoue, S.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

Ishikawa, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Iwai, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Jackson, K. P.

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

Jäger, R.

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

Jalics, C.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

Jeon, H.

Jewell, J. L.

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Jiang, B.

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
[Crossref]

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Jiang, J.-W.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

Jikutani, N.

M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

Joel, A.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Johansson, L. A.

Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
[Crossref]

Johnson, C.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in IEEE Symposium on High Performance Interconnects (2010), pp. 113–116.

Johnson, M. T.

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Johnson, R.

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

Johnson, R. H.

R. H. Johnson and D. M. Kuchta, “30  Gb/s directly modulated 850  nm datacom VCSELs,” in Conference on Lasers and Electro-Optics (2008), paper CPDB2.

Jordan, M.

Jung, C.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

Kagawa, T.

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

Kalosha, V. P.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

Kamiya, S.

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Kao, C.-C.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Kapon, E.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

Karagodsky, V.

Karlsson, M.

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

Karppinen, M.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Kashino, J.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

Kasukawa, A.

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Kaur, K. S.

Kawai, N. J.

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
[Crossref]

Kawakita, Y.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Keil, N.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Kelly, D. Q.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Khaleghi, S.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Khan, Z.

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

Kim, H.-D.

Kim, J.

King, R.

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
[Crossref]

Kinoshita, S.

K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA,” Electron. Lett. 23, 134–136 (1987).
[Crossref]

Kitahara, C.

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Kitching, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Knappe, S.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Kocot, C.

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34, 233–242 (2016).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Kögel, B.

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Kolb, J.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

Kondo, T.

M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

Koos, C.

Kopf, R. F.

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

Kostamovaara, J.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

Kovsh, A.

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Kovsh, A. R.

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Koyama, F.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

H. Dalir and F. Koyama, “29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103, 091109 (2013).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref]

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
[Crossref]

T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett. 24, 928–929 (1988).
[Crossref]

K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA,” Electron. Lett. 23, 134–136 (1987).
[Crossref]

M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

Krestnikov, I. L.

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Kroh, M.

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

Kropp, J. R.

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Kropp, J.-R.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

Kruszka, R.

Kuchta, D. M.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

R. H. Johnson and D. M. Kuchta, “30  Gb/s directly modulated 850  nm datacom VCSELs,” in Conference on Lasers and Electro-Optics (2008), paper CPDB2.

D. M. Kuchta, P. Pepeljugoski, and Y. Kwark, “VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC,” in Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo (2001), pp. 49–50.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Kumar, K.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[Crossref]

Kumari, S.

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

Kuo, F.-M.

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Kuo, H.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Kuroda, T.

T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
[Crossref]

Kurokawa, T.

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

Kwark, Y.

D. M. Kuchta, P. Pepeljugoski, and Y. Kwark, “VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC,” in Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo (2001), pp. 49–50.

Kwok, C. Y.

Y. W. Xu, A. Michael, and C. Y. Kwok, “Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon,” Proc. SPIE 6800, 68001W (2008).
[Crossref]

Lai, F.-I.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Lam, C. F.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in IEEE Symposium on High Performance Interconnects (2010), pp. 113–116.

Lan, H.-C.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Landry, G.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

Landry, G. D.

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Larisch, G.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

Larsson, A.

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Lascola, K.

K. Lascola, W. Yuen, and C. Chang-Hasnain, “Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,” in IEEE/LEOS Summer Topical Meeting (1997), pp. 79–80.

Lavrencik, J.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

Lawrence, R.

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Lear, K. L.

A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
[Crossref]

A. N. AL-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[Crossref]

Leclercq, J.-L.

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
[Crossref]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter,” Opt. Express 14, 3129–3137 (2006).
[Crossref]

Ledentsov, N.

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Ledentsov, N. N.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Lee, G.-H.

Lee, J.

Lee, J. S.

Lee, K.-H.

Lee, Y. H.

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Lee, Y.-C.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Lee, Y.-H.

K.-H. Lee, J.-H. Baek, I.-K. Hwang, Y.-H. Lee, G.-H. Lee, J.-H. Ser, H.-D. Kim, and H.-E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12, 4136–4143 (2004).
[Crossref]

D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]

Lee, Y.-J.

D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]

Leeuwen, R. V.

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Legratiet, L.

Leibenguth, R. E.

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

Leijtens, X. J. M.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

Lengyel, T.

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

Lescure, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Letartre, X.

Leuthold, J.

Lewandowski, A.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Li, D.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

Li, E.

Li, H.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, and C. Tang, “Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing,” Opt. Lett. 41, 4158–4161 (2016).
[Crossref]

H. Li, D. B. Phillips, X. Wang, Y.-L. D. Ho, L. Chen, X. Zhou, J. Zhu, S. Yu, and X. Cai, “Orbital angular momentum vertical-cavity surface-emitting lasers,” Optica 2, 547–552 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

Li, H. E.

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics (Springer, 2003), Vol. 6.

Li, K.

Li, N.

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

Liess, M.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Liew, L.-A.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Lin, H. C.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

Lin, W.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Lindenmann, N.

Liu, A.

A. Liu, W. Zheng, and D. Bimberg, “VCSEL with finite-size high-contrast metastructure,” Proc. SPIE 10812, 1081202 (2018).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “Comparison between high- and zero-contrast gratings as VCSEL mirrors,” Opt. Commun. 389, 35–41 (2017).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51, 6600108 (2015).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22, 11804–11811 (2014).
[Crossref]

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
[Crossref]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “Unidirectional transmission in finite-size high-contrast gratings,” in Asia Communications and Photonics Conference (2016), paper AF2A.52.

Liu, A. J.

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Liu, A.-J.

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

Liu, C.

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

Liu, H.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in IEEE Symposium on High Performance Interconnects (2010), pp. 113–116.

Liu, M.

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.

Liu, V.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Livshits, D. A.

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Lott, J. A.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

R. Rosales, M. Zorn, and J. A. Lott, “30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs,” IEEE Photon. Technol. Lett. 29, 2107–2110 (2017).
[Crossref]

G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

M. Gębski, T. Czyszanowski, and J. A. Lott, “Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper TuP38.

Louderback, D.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

Louderback, D. A.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

Lu, H.

Lu, I.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

Lu, T.-C.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Lyubomirsky, I.

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34, 233–242 (2016).
[Crossref]

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Ma, X.

Ma, Z.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158 (2010).
[Crossref]

MacInnes, A.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

MacInnes, A. N.

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Maehnss, J.

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

Magnusson, R.

Mahgerefteh, D.

Malacarne, A.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Mäntyniemi, A.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

Marin-Palomo, P.

Marona, L.

Marszalec, J.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

Martinez, M.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Mašanovic, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

Mateus, C. F. R.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Mathai, S.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Mathes, D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Matsutani, A.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

Maximov, M. V.

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

Maynard, J.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

McCall, S. L.

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Melgar, A.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

Melngailis, I.

I. Melngailis, “Longitudinal injection plasma laser of InSb,” Appl. Phys. Lett. 6, 59–60 (1965).
[Crossref]

Menezo, S.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

Mereuta, A.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

Mettbach, N.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Meyer, R.

Michael, A.

Y. W. Xu, A. Michael, and C. Y. Kwok, “Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon,” Proc. SPIE 6800, 68001W (2008).
[Crossref]

Michalzik, R.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

R. Michalzik, VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer Series in Optical Sciences (Springer, 2013), Vol. 166.

Miglo, A.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Mikhrin, S. S.

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Miller, D. A. B.

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Miller, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Mimnagh, G.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Miyashita, T.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

Moehrle, M.

Moench, H.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

Moharam, M. G.

Molin, D.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Monroy, I. T.

Moreland, J.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Mørk, J.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

I.-S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

Moser, P.

G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

Motaghiannezam, S. M. R.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Motyka, M.

Mukoyama, N.

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

Müller, M.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

Mutig, A.

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

Myers, D. R.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Myllylä, R.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

Nadtochiy, A.

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

Nadtochiy, A. M.

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

Nagashima, K.

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

Nagel, R. D.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

Nakayama, H.

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

Nasu, H.

H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16, 1337–1346 (2010).
[Crossref]

Nesic, A.

Neumeyr, C.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Nguyen, T.

Nicholson, J. A.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Niwa, A.

T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
[Crossref]

Norgia, M.

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

O’Brien, P.

O’Reilly, E. P.

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

Ogura, M.

M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure,” J. Vac. Sci. Technol. B 3, 784–787 (1985).
[Crossref]

M. Ogura, T. Hata, and T. Yao, “Distributed feedback surface emitting laser diode with multilayered heterostructure,” Jpn. J. Appl. Phys. 23, L512–L514 (1984).
[Crossref]

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
[Crossref]

Ohiso, Y.

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

Ohtoshi, T.

T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
[Crossref]

Ohtsuki, H.

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

Ollila, J.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Olmos, J. J. V.

Orta, R.

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
[Crossref]

Ortsiefer, M.

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

Ostermann, J. M.

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

Otoma, H.

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

Palka, N.

Pankert, J.

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

Park, G. C.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

Park, Y.

Payusov, A.

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

Pekarski, P.

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Penty, R. V.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Pepeljugoski, P.

D. M. Kuchta, P. Pepeljugoski, and Y. Kwark, “VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC,” in Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo (2001), pp. 49–50.

Pesala, B.

Phillips, D. B.

Pickrell, G.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

Pickrell, G. W.

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

Piels, M.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

Pinches, S.

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Pinto, M. R.

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

Podva, D.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Pollman-Retsch, J.

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Poon, J. K. S.

Proesel, J. E.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Pruijmboom, A.

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

Pu, R.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

Puerta, R.

Qiao, P.

Qu, H.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

Qu, H. W.

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Qu, H.-W.

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

Rabbani Haghighi, H.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

Raddatz, L.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Ralph, S. E.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

Randel, S.

Rao, Y.

K. Li, Y. Rao, C. Chase, W. Yang, and C. J. Chang-Hasnain, “Monolithic high-contrast metastructure for beam-shaping VCSELs,” Optica 5, 10–13 (2018).
[Crossref]

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

Reiner, G.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

Richard, T. A.

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

Rioux, M.

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Roelkens, G.

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

Rogers, T. J.

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[Crossref]

Rojo Romeo, P.

Rojo-Romeo, P.

Rommers, A.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Rönneberg, E.

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

Rosales, R.

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

R. Rosales, M. Zorn, and J. A. Lott, “30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs,” IEEE Photon. Technol. Lett. 29, 2107–2110 (2017).
[Crossref]

N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

Rosskopf, J.

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

Rylyakov, A. V.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Safaisini, R.

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

Sagnes, I.

Sakaguchi, T.

T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett. 24, 928–929 (1988).
[Crossref]

Sakurai, J.

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

Santos, R.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

Scarcella, C.

Schaefer, G.

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Schaus, C. F.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Schell, M.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Schemmann, M.

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

Scherer, A.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Schmidt, D.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Schmogrow, R.

Schoke, D. M.

Schow, C. L.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

Schubert, E. F.

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

Schulze, J.-H.

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
[Crossref]

Schutte, J.

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

Schwindt, P. D. D.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Sciancalepore, C.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

Scott, J. W.

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

Sedgwick, F. G.

Semenova, E.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

Semenova, E. S.

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
[Crossref]

Seo, J.-H.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Ser, J.-H.

Seurin, J.-F.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Shafir, E.

Shah, V.

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Shau, R.

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

Shaw, E.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

Shchukin, V. A.

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

Shen, P.-K.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Shi, J. W.

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

Shi, J.-W.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Shimizu, H.

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Shin, H.-E.

Shokooh-Saremi, M.

Shuai, Y.-C.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Shubochkin, R.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

Sillard, P.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Simpanen, E.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Sirbu, A.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

Siriani, D. F.

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Sitomaniemi, A.

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

Sköld, M.

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

Smeets, M.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

Smit, M. K.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

Soares, F. M.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

Soda, H.

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Soenen, W.

Song, D.-S.

D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]

Sorin, W.

Sorin, W. V.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Sowada, D.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

Spiga, S.

Stepniak, G.

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

Strassner, M.

Subramanian, A. Z.

Suematsu, Y.

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

Suemune, I.

I. Suemune, “Theoretical study of differential gain in strained quantum well structures,” IEEE J. Quantum Electron. 27, 1149–1159 (1991).
[Crossref]

Sugg, A. R.

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

Sun, S. Z.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Sun, Y.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

Suzuki, N.

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

Suzuki, T.

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Suzuki, Y.

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

Szczerba, K.

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

Szerling, A.

Tadanaga, O.

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

Taghizadeh, A.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

Takagi, T.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Takaki, K.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Tan, F.

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
[Crossref]

C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
[Crossref]

Tan, M.

Tan, M. P.

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

Tan, M. R.

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

Tan, M. R. T.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Tang, C.

Tateno, K.

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

Tatum, J.

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34, 233–242 (2016).
[Crossref]

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

Tatum, J. A.

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

J. A. Tatum, “VCSEL proliferation,” Proc. SPIE 6484, 648403 (2014).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

Tell, B.

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

Then, H. W.

H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
[Crossref]

Thomas, V. A.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

Thompson, C.

Tokutome, K.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

Tonski, J.

Troppenz, U.

Tsuji, M.

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

Tsuji, S.

T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
[Crossref]

Tsukiji, N.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Tu, L. W.

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

Turkiewicz, J. P.

Twesten, R. D.

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

Ueki, N.

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

Uenohara, H.

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

Ulbrich, G.-J.

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

Unold, H. J.

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

Unrau, W.

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

Urbanczyk, D.

Van Daele, P.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

van der Horst, A.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

van der Lee, A.

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

van der Ziel, J. P.

Van Kerrebrouck, J.

Van Steenberge, G.

Vandeputte, K.

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

Varughese, S.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

Vawter, G. A.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Verplancke, R.

Viktorovitch, P.

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, “3D integration of photonic crystal devices: vertical coupling with a silicon waveguide,” Opt. Express 18, 16162–16174 (2010).
[Crossref]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
[Crossref]

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter,” Opt. Express 14, 3129–3137 (2006).
[Crossref]

Wakatsuki, A.

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

Walczakowski, M.

Walker, S.

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Wang, C. S.

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[Crossref]

Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
[Crossref]

Wang, C. Y.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.

Wang, J.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Wang, K. X.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Wang, L.

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

Wang, Q.

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Wang, Q. J.

Wang, S.-C.

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

Wang, X.

Wang, Y.

Warren, M. E.

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Wasiak, M.

Wei, C.-C.

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

Weichmann, U.

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

Weigl, A.

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

Weigl, B.

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

Weijers, G.

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Weng, W.-C.

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Westbergh, P.

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

White, I. H.

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

Wiedenmann, D.

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
[Crossref]

Willner, A. E.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Wilmsen, C. W.

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

Wimmer, C.

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

Witzens, J.

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

Wójcik-Jedlinska, A.

Wolf, P.

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

Worland, D. P.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Wu, C. H.

F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
[Crossref]

C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
[Crossref]

H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
[Crossref]

Wu, M.-K.

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

Wu, M.-L.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

Wun, J.-M.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

Xie, C.

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

Xing, M.

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

Xing, M. X.

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Xu, G.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Xu, Y.

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

Xu, Y. W.

Y. W. Xu, A. Michael, and C. Y. Kwok, “Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon,” Proc. SPIE 6800, 68001W (2008).
[Crossref]

Xue, W.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

Yan, J.-C.

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

Yang, H.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Yang, W.

Yang, Y.

Yang, Y.-J.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

Yao, T.

M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure,” J. Vac. Sci. Technol. B 3, 784–787 (1985).
[Crossref]

M. Ogura, T. Hata, and T. Yao, “Distributed feedback surface emitting laser diode with multilayered heterostructure,” Jpn. J. Appl. Phys. 23, L512–L514 (1984).
[Crossref]

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
[Crossref]

Yashiki, K.

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

Yen, J.-L.

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

Yin, X.

Yoshida, J.

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

Young, D. B.

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

Yu, S.

Yuan, D.

Yuen, W.

K. Lascola, W. Yuen, and C. Chang-Hasnain, “Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,” in IEEE/LEOS Summer Topical Meeting (1997), pp. 79–80.

Yvind, K.

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
[Crossref]

Zawadzki, C.

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Zhang, D. H.

Zhang, Z.

H. Li, X. Ma, D. Yuan, Z. Zhang, E. Li, and C. Tang, “Heterogeneous integration of a III-V VCSEL light source for optical fiber sensing,” Opt. Lett. 41, 4158–4161 (2016).
[Crossref]

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

Zhao, D.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158 (2010).
[Crossref]

Zhao, Y.

Zheng, K.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Zheng, W.

A. Liu, W. Zheng, and D. Bimberg, “VCSEL with finite-size high-contrast metastructure,” Proc. SPIE 10812, 1081202 (2018).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “Comparison between high- and zero-contrast gratings as VCSEL mirrors,” Opt. Commun. 389, 35–41 (2017).
[Crossref]

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
[Crossref]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “Unidirectional transmission in finite-size high-contrast gratings,” in Asia Communications and Photonics Conference (2016), paper AF2A.52.

Zheng, W. H.

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Zheng, W.-H.

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

Zhou, D.

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

Zhou, P.

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

Zhou, W.

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158 (2010).
[Crossref]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

Zhou, W. J.

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Zhou, W.-J.

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

Zhou, X.

Zhou, Y.

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett. 92, 171108 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

Zhu, J.

Zhu, L.

Zibar, D.

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

Ziyadi, M.

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

Zorn, M.

R. Rosales, M. Zorn, and J. A. Lott, “30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs,” IEEE Photon. Technol. Lett. 29, 2107–2110 (2017).
[Crossref]

N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

Zydzik, G. J.

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

ACS Photon. (1)

P. Wolf, H. Li, A. Caliman, A. Mereuta, V. Iakovlev, A. Sirbu, E. Kapon, and D. Bimberg, “Spectral efficiency and energy efficiency of pulse-amplitude modulation using 1.3  μm wafer-fusion VCSELs for optical interconnects,” ACS Photon. 4, 2018–2024 (2017).
[Crossref]

Adv. Opt. Photon. (3)

Appl. Opt. (1)

Appl. Phys. Lett. (23)

I. Melngailis, “Longitudinal injection plasma laser of InSb,” Appl. Phys. Lett. 6, 59–60 (1965).
[Crossref]

P. L. Gourley and T. J. Drummond, “Visible, room temperature, surface emitting laser using an epitaxial Fabry–Perot resonator with AlGaAs/AlAs quarter-wave high reflectors and AlGaAs/GaAs multiple quantum wells,” Appl. Phys. Lett. 50, 1225–1227 (1987).
[Crossref]

J. M. Dallesasse, N. Holonyak, A. R. Sugg, T. A. Richard, and N. El-Zein, “Hydrolyzation oxidation of AlxGa1-xAs-AlAs-GaAs quantum well heterostructures and superlattices,” Appl. Phys. Lett. 57, 2844–2846 (1990).
[Crossref]

D. L. Huffaker, D. G. Deppe, K. Kumar, and T. J. Rogers, “Native-oxide defined ring contact for low threshold vertical-cavity lasers,” Appl. Phys. Lett. 65, 97–99 (1994).
[Crossref]

T.-C. Lu, C.-C. Kao, H.-C. Kuo, G.-S. Huang, and S.-C. Wang, “CW lasing of current injection blue GaN-based vertical cavity surface emitting laser,” Appl. Phys. Lett. 92, 141102 (2008).
[Crossref]

P. Moser, P. Wolf, A. Mutig, G. Larisch, W. Unrau, W. Hofmann, and D. Bimberg, “85°C error-free operation at 38  Gb/s of oxide-confined 980-nm vertical-cavity surface-emitting lasers,” Appl. Phys. Lett. 100, 081103 (2012).
[Crossref]

H. W. Then, C. H. Wu, M. Feng, and N. Holonyak, “Microwave characterization of Purcell enhancement in a microcavity laser,” Appl. Phys. Lett. 96, 131107 (2010).
[Crossref]

E. F. Schubert, L. W. Tu, G. J. Zydzik, R. F. Kopf, A. Benvenuti, and M. R. Pinto, “Elimination of heterojunction band discontinuities by modulation doping,” Appl. Phys. Lett. 60, 466–468 (1992).
[Crossref]

A. Mutig, S. A. Blokhin, A. M. Nadtochiy, G. Fiol, J. A. Lott, V. A. Shchukin, N. N. Ledentsov, and D. Bimberg, “Frequency response of large aperture oxide-confined 850  nm vertical cavity surface emitting lasers,” Appl. Phys. Lett. 95, 131101 (2009).
[Crossref]

P. Moser, W. Hofmann, P. Wolf, J. A. Lott, G. Larisch, A. Payusov, N. N. Ledentsov, and D. Bimberg, “81  fJ/bit energy-to-data ratio of 850  nm vertical-cavity surface-emitting lasers for optical interconnects,” Appl. Phys. Lett. 98, 231106 (2011).
[Crossref]

F. Tan, C. H. Wu, M. Feng, and N. Holonyak, “Energy efficient microcavity lasers with 20 and 40  Gb/s data transmission,” Appl. Phys. Lett. 98, 191107 (2011).
[Crossref]

C. H. Wu, F. Tan, M. Feng, and N. Holonyak, “The effect of mode spacing on the speed of quantum-well microcavity lasers,” Appl. Phys. Lett. 97, 091103 (2010).
[Crossref]

H. Dalir and F. Koyama, “29  GHz directly modulated 980  nm vertical-cavity surface emitting lasers with bow-tie shape transverse coupled cavity,” Appl. Phys. Lett. 103, 091109 (2013).
[Crossref]

B. Tell, K. F. Brown-Goebeler, R. E. Leibenguth, F. M. Baez, and Y. H. Lee, “Temperature dependence of GaAs-AlGaAs vertical cavity surface emitting lasers,” Appl. Phys. Lett. 60, 683–685 (1992).
[Crossref]

J. Witzens, A. Scherer, G. Pickrell, D. Louderback, and P. Guilfoyle, “Monolithic integration of vertical-cavity surface-emitting lasers with in-plane waveguides,” Appl. Phys. Lett. 86, 101105 (2005).
[Crossref]

T. Ohtoshi, T. Kuroda, A. Niwa, and S. Tsuji, “Dependence of optical gain in crystal orientation in surface-emitting lasers with strained quantum wells,” Appl. Phys. Lett. 65, 1886–1887 (1994).
[Crossref]

K. Tateno, Y. Ohiso, C. Amano, A. Wakatsuki, and T. Kurokawa, “Growth of vertical-cavity surface-emitting laser structures on GaAs (311)B substrates by metalorganic chemical vapor deposition,” Appl. Phys. Lett. 70, 3395–3397 (1997).
[Crossref]

D.-S. Song, Y.-J. Lee, H.-W. Choi, and Y.-H. Lee, “Polarization-controlled, single-transverse-mode, photonic-crystal, vertical-cavity, surface-emitting lasers,” Appl. Phys. Lett. 82, 3182–3184 (2003).
[Crossref]

S. Boutami, B. Benbakir, J.-L. Leclercq, and P. Viktorovitch, “Compact and polarization controlled 1.55  μm vertical-cavity surface emitting laser using single-layer photonic crystal mirror,” Appl. Phys. Lett. 91, 071105 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “Single mode high-contrast subwavelength grating vertical cavity surface emitting lasers,” Appl. Phys. Lett. 92, 171108 (2008).
[Crossref]

I.-S. Chung and J. Mørk, “Silicon-photonics light source realized by III-V/Si-grating-mirror laser,” Appl. Phys. Lett. 97, 151113 (2010).
[Crossref]

A. Liu, M. Xing, H. Qu, W. Chen, W. Zhou, and W. Zheng, “Reduced divergence angle of photonic crystal vertical-cavity surface-emitting laser,” Appl. Phys. Lett. 94, 191105 (2009).
[Crossref]

S. Knappe, V. Shah, P. D. D. Schwindt, L. Hollberg, J. Kitching, L.-A. Liew, and J. Moreland, “A microfabricated atomic clock,” Appl. Phys. Lett. 85, 1460–1462 (2004).
[Crossref]

Electron. Lett. (24)

G. Stepniak, A. Lewandowski, J. R. Kropp, N. N. Ledentsov, V. A. Shchukin, N. Ledentsov, G. Schaefer, M. Agustin, and J. P. Turkiewicz, “54  Gbit/s OOK transmission using single-mode VCSEL up to 2.2  km MMF,” Electron. Lett. 52, 633–635 (2016).
[Crossref]

P. Dowd, P. J. Heard, J. A. Nicholson, L. Raddatz, I. H. White, R. V. Penty, J. C. C. Day, G. C. Allen, S. W. Corzine, and M. R. T. Tan, “Complete polarisation control of GaAs gain-guided top-surface emitting vertical cavity lasers,” Electron. Lett. 33, 1315–1317 (1997).
[Crossref]

R. Safaisini, E. Haglund, P. Westbergh, J. S. Gustavsson, and A. Larsson, “20  Gbit/s data transmission over 2  km multimode fibre using 850  nm mode filter VCSEL,” Electron. Lett. 50, 40–42 (2014).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, N. N. Ledentsov, and D. Bimberg, “56  fJ dissipated energy per bit of oxide-confined 850  nm VCSELs operating at 25  Gbit/s,” Electron. Lett. 48, 1292–1294 (2012).
[Crossref]

D. A. Louderback, G. W. Pickrell, H. C. Lin, M. A. Fish, J. J. Hindi, and P. S. Guilfoyle, “VCSELs with monolithic coupling to internal horizontal waveguides using integrated diffraction gratings,” Electron. Lett. 40, 1064–1065 (2004).
[Crossref]

E. Simpanen, J. S. Gustavsson, E. Haglund, E. P. Haglund, A. Larsson, W. V. Sorin, S. Mathai, and M. R. Tan, “1060  nm single-mode vertical-cavity surface-emitting laser operating at 50  Gbit/s data rate,” Electron. Lett. 53, 869–871 (2017).
[Crossref]

P. Wolf, P. Moser, G. Larisch, H. Li, J. A. Lott, and D. Bimberg, “Energy efficient 40  Gbit/s transmission with 850  nm VCSELs at 108  fJ/bit dissipated heat,” Electron. Lett. 49, 666–667 (2013).
[Crossref]

A. Mutig, G. Fiol, P. Moser, D. Arsenijevic, V. A. Shchukin, N. N. Ledentsov, S. S. Mikhrin, I. L. Krestnikov, D. A. Livshits, A. R. Kovsh, F. Hopfer, and D. Bimberg, “120°C 20  Gbit/s operation of 980  nm VCSEL,” Electron. Lett. 44, 1305–1306 (2008).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, A. Mutig, J. A. Lott, and D. Bimberg, “Energy-efficient and temperature-stable oxide-confined 980  nm VCSELs operating error-free at 38  Gbit/s at 85°C,” Electron. Lett. 50, 103–105 (2014).
[Crossref]

S. A. Blokhin, J. A. Lott, A. Mutig, G. Fiol, N. N. Ledentsov, M. V. Maximov, A. M. Nadtochiy, V. A. Shchukin, and D. Bimberg, “Oxide-confined 850  nm VCSELs operating at bit rates up to 40  Gbit/s,” Electron. Lett. 45, 501–502 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, A. Larsson, F. Hopfer, G. Fiol, D. Bimberg, and A. Joel, “32  Gbit/s multimode fibre transmission using high-speed, low current density 850  nm VCSEL,” Electron. Lett. 45, 366–368 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, A. Larsson, A. Mutig, A. Nadtochiy, D. Bimberg, and A. Joel, “40  Gbit/s error-free operation of oxide-confined 850  nm VCSEL,” Electron. Lett. 46, 1014–1016 (2010).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, B. Kögel, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed 850  nm VCSELs with 28  GHz modulation bandwidth operating error-free up to 44  Gbit/s,” Electron. Lett. 48, 1145–1147 (2012).
[Crossref]

P. Westbergh, E. P. Haglund, E. Haglund, R. Safaisini, J. S. Gustavsson, and A. Larsson, “High-speed 850  nm VCSELs operating error free up to 57  Gbit/s,” Electron. Lett. 49, 1021–1023 (2013).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, A. Larsson, M. Geen, and A. Joel, “30  GHz bandwidth 850  nm VCSEL with sub-100  fJ/bit energy dissipation at 25-50  Gbit/s,” Electron. Lett. 51, 1096–1098 (2015).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “Error-free 46  Gbit/s operation of oxide-confined 980  nm VCSELs at 85°C,” Electron. Lett. 50, 1369–1371 (2014).
[Crossref]

Y.-C. Chang, C. S. Wang, and L. A. Coldren, “High-efficiency, high-speed VCSELs with 35 Gbit/s error-free operation,” Electron. Lett. 43, 1022–1023 (2007).
[Crossref]

Y.-C. Chang, C. S. Wang, L. A. Johansson, and L. A. Coldren, “High-efficiency, high-speed VCSELs with deep oxidation layers,” Electron. Lett. 42, 1281–1282 (2006).
[Crossref]

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25  Gbit/s operation of InGaAs-based VCSELs,” Electron. Lett. 42, 975–976 (2006).
[Crossref]

K. Iga, S. Kinoshita, and F. Koyama, “Microcavity GaAlAs/GaAs surface-emitting laser with lth = 6  mA,” Electron. Lett. 23, 134–136 (1987).
[Crossref]

T. Sakaguchi, F. Koyama, and K. Iga, “Vertical cavity surface-emitting laser with an AlGaAs/AlAs Bragg reflector,” Electron. Lett. 24, 928–929 (1988).
[Crossref]

J. L. Jewell, A. Scherer, S. L. McCall, Y. H. Lee, S. Walker, J. P. Harbison, and L. T. Florez, “Low-threshold electrically pumped vertical-cavity surface-emitting microlasers,” Electron. Lett. 25, 1123–1134 (1989).
[Crossref]

Y. H. Lee, J. L. Jewell, A. Scherer, S. L. McCall, J. P. Harbison, and L. T. Florez, “Room-temperature continuous-wave vertical-cavity single-quantum-well microlaser diodes,” Electron. Lett. 25, 1377–1378 (1989).
[Crossref]

Y. H. Lee, B. Tell, K. Brown-Goebeler, J. L. Jewell, and J. V. Hove, “Top-surface-emitting GaAs four-quantum-well lasers emitting at 0.85  μm,” Electron. Lett. 26, 710–711 (1990).
[Crossref]

IEEE J. Quantum Electron. (4)

S. B. Healy, E. P. O’Reilly, J. S. Gustavsson, P. Westbergh, Å. Haglund, A. Larsson, and A. Joel, “Active region design for high-speed 850-nm VCSELs,” IEEE J. Quantum Electron. 46, 506–512 (2010).
[Crossref]

I. Suemune, “Theoretical study of differential gain in strained quantum well structures,” IEEE J. Quantum Electron. 27, 1149–1159 (1991).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Integrated high-contrast-grating optical sensor using guided mode,” IEEE J. Quantum Electron. 51, 6600108 (2015).
[Crossref]

P. Debernardi, R. Orta, T. Gründl, and M.-C. Amann, “3-D vectorial optical model for high-contrast grating vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 49, 137–145 (2013).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (17)

Y. Rao, W. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, and C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013).
[Crossref]

I.-C. Lu, C.-C. Wei, H.-Y. Chen, K.-Z. Chen, C.-H. Huang, K.-L. Chi, J.-W. Shi, F.-I. Lai, D.-H. Hsieh, H.-C. Kuo, W. Lin, S.-W. Chiu, and J. Chen, “Very high bit-rate distance product using high-power single-mode 850-nm VCSEL with discrete multitone modulation formats through OM4 multimode fiber,” IEEE J. Sel. Top. Quantum Electron. 21, 444–452 (2015).
[Crossref]

P. Westbergh, J. S. Gustavsson, Å. Haglund, M. Sköld, A. Joel, and A. Larsson, “High-speed, low-current-density 850  nm VCSELs,” IEEE J. Sel. Top. Quantum Electron. 15, 694–703 (2009).
[Crossref]

J.-W. Shi, J.-C. Yan, J.-M. Wun, J. Chen, and Y.-J. Yang, “Oxide-relief and Zn-diffusion 850-nm vertical-cavity surface-emitting lasers with extremely low energy-to-data-rate ratios for 40  Gbit/s operations,” IEEE J. Sel. Top. Quantum Electron. 19, 7900208 (2013).
[Crossref]

K.-L. Chi, J.-L. Yen, J.-M. Wun, J.-W. Jiang, I.-C. Lu, J. Chen, Y.-J. Yang, and J.-W. Shi, “Strong wavelength detuning of 850  nm vertical-cavity surface-emitting lasers for high-speed (>40  Gbit/s) and low-energy consumption operation,” IEEE J. Sel. Top. Quantum Electron. 21, 1701510 (2015).
[Crossref]

Y.-C. Chang and L. A. Coldren, “Efficient, high-data-rate, tapered oxide-aperture vertical-cavity surface-emitting lasers,” IEEE J. Sel. Top. Quantum Electron. 15, 704–715 (2009).
[Crossref]

P. Westbergh, J. S. Gustavsson, B. Kögel, Å. Haglund, and A. Larsson, “Impact of photon lifetime on high-speed VCSEL performance,” IEEE J. Sel. Top. Quantum Electron. 17, 1603–1613 (2011).
[Crossref]

M. Müller, W. Hofmann, T. Gründl, M. Horn, P. Wolf, R. D. Nagel, E. Rönneberg, G. Böhm, D. Bimberg, and M.-C. Amann, “1550-nm high-speed short-cavity VCSELs,” IEEE J. Sel. Top. Quantum Electron. 17, 1158–1166 (2011).
[Crossref]

A. Larsson, “Advances in VCSELs for communication and sensing,” IEEE J. Sel. Top. Quantum Electron. 17, 1552–1567 (2011).
[Crossref]

K. D. Choquette, K. M. Geib, C. I. H. Ashby, R. D. Twesten, O. Blum, H. Q. Hou, D. M. Follstaedt, B. E. Hammons, D. Mathes, and R. Hull, “Advances in selective wet oxidation of AlGaAs alloys,” IEEE J. Sel. Top. Quantum Electron. 3, 916–926 (1997).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable, energy-efficient, and high-bit rate oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 21, 1700409 (2015).
[Crossref]

S. Imai, K. Takaki, S. Kamiya, H. Shimizu, J. Yoshida, Y. Kawakita, T. Takagi, K. Hiraiwa, H. Shimizu, T. Suzuki, N. Iwai, T. Ishikawa, N. Tsukiji, and A. Kasukawa, “Recorded low power dissipation in highly reliable 1060-nm VCSELs for ‘Green’ optical interconnection,” IEEE J. Sel. Top. Quantum Electron. 17, 1614–1620 (2011).
[Crossref]

H. Nasu, “Short-reach optical interconnects employing high-density parallel-optical modules,” IEEE J. Sel. Top. Quantum Electron. 16, 1337–1346 (2010).
[Crossref]

P. Wolf, P. Moser, G. Larisch, W. Hofmann, and D. Bimberg, “High-speed and temperature-stable, oxide-confined 980-nm VCSELs for optical interconnects,” IEEE J. Sel. Top. Quantum Electron. 19, 1701207 (2013).
[Crossref]

P. Debernardi, H. J. Unold, J. Maehnss, R. Michalzik, G. P. Bava, and K. J. Ebeling, “Single-mode, single-polarization VCSELs via elliptical surface etching: experiments and theory,” IEEE J. Sel. Top. Quantum Electron. 9, 1394–1404 (2003).
[Crossref]

B. Weigl, M. Grabherr, C. Jung, R. Jäger, G. Reiner, R. Michalzik, D. Sowada, and K. J. Ebeling, “High-performance oxide-confined GaAs VCSEL’s,” IEEE J. Sel. Top. Quantum Electron. 3, 409–415 (1997).
[Crossref]

P. Debernardi, J. M. Ostermann, M. Feneberg, C. Jalics, and R. Michalzik, “Reliable polarization control of VCSELs through monolithically integrated surface gratings: a comparative theoretical and experimental study,” IEEE J. Sel. Top. Quantum Electron. 11, 107–116 (2005).
[Crossref]

IEEE Photon. J. (2)

A. Liu, P. Wolf, J.-H. Schulze, and D. Bimberg, “Fabrication and characterization of integrable GaAs-based high-contrast grating reflector and Fabry–Pérot filter array with GaInP sacrificial layer,” IEEE Photon. J. 8, 2700509 (2016).
[Crossref]

W. Hofmann, C. Chase, M. Müller, Y. Rao, C. Grasse, G. Böhm, M.-C. Amann, and C. J. Chang-Hasnain, “Long-wavelength high-contrast grating vertical-cavity surface-emitting laser,” IEEE Photon. J. 2, 415–422 (2010).
[Crossref]

IEEE Photon. Technol. Lett. (21)

S. Goeman, S. Boons, B. Dhoedt, K. Vandeputte, K. Caekebeke, P. Van Daele, and R. Baets, “First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSEL’s,” IEEE Photon. Technol. Lett. 10, 1205–1207 (1998).
[Crossref]

T. Ansbæk, I.-S. Chung, E. S. Semenova, and K. Yvind, “1060-nm tunable monolithic high index contrast subwavelength grating VCSEL,” IEEE Photon. Technol. Lett., 25, 365–367 (2013).
[Crossref]

C. F. R. Mateus, M. C. Y. Huang, L. Chen, C. J. Chang-Hasnain, and Y. Suzuki, “Broad-band mirror (1.12–1.62  μm) using a subwavelength grating,” IEEE Photon. Technol. Lett. 16, 1676–1678 (2004).
[Crossref]

C. Sciancalepore, B. B. Bakir, S. Menezo, X. Letartre, D. Bordel, and P. Viktorovitch, “III-V-on-Si photonic crystal vertical-cavity surface-emitting laser arrays for wavelength division multiplexing,” IEEE Photon. Technol. Lett. 25, 1111–1113 (2013).
[Crossref]

M. Ortsiefer, M. Görblich, Y. Xu, E. Rönneberg, J. Rosskopf, R. Shau, and M.-C. Amann, “Polarization control in buried tunnel junction VCSELs using a birefringent semiconductor/dielectric subwavelength grating,” IEEE Photon. Technol. Lett. 22, 15–17 (2010).
[Crossref]

O. Tadanaga, K. Tateno, H. Uenohara, T. Kagawa, and C. Amano, “An 850-nm InAlGaAs strained quantum-well vertical-cavity surface-emitting laser grown on GaAs (311)B substrate with high-polarization stability,” IEEE Photon. Technol. Lett. 12, 942–944 (2000).
[Crossref]

K. D. Choquette and R. E. Leibenguth, “Control of vertical-cavity laser polarization with anisotropic transverse cavity geometries,” IEEE Photon. Technol. Lett. 6, 40–42 (1994).
[Crossref]

K. Yashiki, N. Suzuki, K. Fukatsu, T. Anan, H. Hatakeyama, and M. Tsuji, “1.1-μm-range high-speed tunnel junction vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 19, 1883–1885 (2007).
[Crossref]

R. Rosales, M. Zorn, and J. A. Lott, “30-GHz bandwidth with directly current-modulated 980-nm oxide-aperture VCSELs,” IEEE Photon. Technol. Lett. 29, 2107–2110 (2017).
[Crossref]

P. Westbergh, R. Safaisini, E. Haglund, J. S. Gustavsson, A. Larsson, M. Geen, R. Lawrence, and A. Joel, “High-speed oxide confined 850-nm VCSELs operating error-free at 40  Gb/s up to 85°C,” IEEE Photon. Technol. Lett. 25, 768–771 (2013).
[Crossref]

S. T. M. Fryslie, M. P. Tan, D. F. Siriani, M. T. Johnson, and K. D. Choquette, “37-GHz modulation via resonance tuning in single-mode coherent vertical-cavity laser arrays,” IEEE Photon. Technol. Lett. 27, 415–418 (2015).
[Crossref]

R. Pu, C. W. Wilmsen, K. M. Geib, and K. D. Choquette, “Thermal resistance of VCSEL’s bonded to integrated circuits,” IEEE Photon. Technol. Lett. 11, 1554–1556 (1999).
[Crossref]

P. Moser, J. A. Lott, P. Wolf, G. Larisch, H. Li, and D. Bimberg, “85-fJ dissipated energy per bit at 30  Gb/s across 500-m multimode fiber using 850-nm VCSELs,” IEEE Photon. Technol. Lett. 25, 1638–1641 (2013).
[Crossref]

K. Szczerba, T. Lengyel, M. Karlsson, P. A. Andrekson, and A. Larsson, “94-Gb/s 4-PAM using an 850-nm VCSEL, pre-emphasis, and receiver equalization,” IEEE Photon. Technol. Lett. 28, 2519–2521 (2016).
[Crossref]

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Temperature-stable 980-nm VCSELs for 35-Gb/s operation at 85°C with 139-fJ/bit dissipated heat,” IEEE Photon. Technol. Lett. 26, 2349–2352 (2014).
[Crossref]

R. S. Geels, S. W. Corzine, J. W. Scott, D. B. Young, and L. A. Coldren, “Low threshold planarized vertical-cavity surface-emitting lasers,” IEEE Photon. Technol. Lett. 2, 234–236 (1990).
[Crossref]

G. Larisch, P. Moser, J. A. Lott, and D. Bimberg, “Impact of photon lifetime on the temperature stability of 50  Gb/s 980  nm VCSELs,” IEEE Photon. Technol. Lett. 28, 2327–2330 (2016).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, F. E. Doany, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 71-Gb/s NRZ modulated 850-nm VCSEL-based optical link,” IEEE Photon. Technol. Lett. 27, 577–580 (2015).
[Crossref]

F. Tan, M.-K. Wu, M. Liu, M. Feng, and N. Holonyak, “850  nm oxide-VCSEL with low relative intensity noise and 40  Gb/s error free data transmission,” IEEE Photon. Technol. Lett. 26, 289–292 (2014).
[Crossref]

P. Zhou, J. Cheng, C. F. Schaus, S. Z. Sun, K. Zheng, E. Armour, C. Hains, W. Hsin, D. R. Myers, and G. A. Vawter, “Low series resistance high-efficiency GaAs/AlGaAs vertical-cavity surface-emitting lasers with continuously graded mirrors grown by MOCVD,” IEEE Photon. Technol. Lett. 3, 591–593 (1991).
[Crossref]

A. N. AL-Omari and K. L. Lear, “Polyimide-planarized vertical-cavity surface-emitting lasers with 17.0-GHz bandwidth,” IEEE Photon. Technol. Lett. 16, 969–971 (2004).
[Crossref]

IET Optoelectron. (1)

Z. Zhang, N. Mettbach, C. Zawadzki, J. Wang, D. Schmidt, W. Brinker, N. Grote, M. Schell, and N. Keil, “Polymer-based photonic toolbox: passive components, hybrid integration and polarisation control,” IET Optoelectron. 5, 226–232 (2011).
[Crossref]

J. Appl. Phys. (2)

M. A. Afromowitz, “Thermal conductivity of Ga1-xAlxAs alloys,” J. Appl. Phys. 44, 1292–1294 (1973).
[Crossref]

M. Dallesasse and N. Holonyak, “Oxidation of Al-bearing III-V materials: a review of key progress,” J. Appl. Phys. 113, 051101 (2013).
[Crossref]

J. Lightwave Technol. (7)

F. Koyama, “Recent advances of VCSEL photonics,” J. Lightwave Technol. 24, 4502–4513 (2006).
[Crossref]

S. Spiga, W. Soenen, A. Andrejew, D. M. Schoke, X. Yin, J. Bauwelinck, G. Boehm, and M.-C. Amann, “Single-mode high-speed 1.5-μm VCSELs,” J. Lightwave Technol. 35, 727–733 (2017).
[Crossref]

E. Haglund, P. Westbergh, J. S. Gustavsson, E. P. Haglund, and A. Larsson, “High-speed VCSELs with strong confinement of optical fields and carriers,” J. Lightwave Technol. 34, 269–277 (2015).
[Crossref]

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. W. Baks, P. Westbergh, J. S. Gustavsson, and A. Larsson, “A 50  Gb/s NRZ modulated 850  nm VCSEL transmitter operating error free to 90°C,” J. Lightwave Technol. 33, 802–810 (2015).
[Crossref]

D. Mahgerefteh, C. Thompson, C. Cole, G. Denoyer, T. Nguyen, I. Lyubomirsky, C. Kocot, and J. Tatum, “Techno-economic comparison of silicon photonics and multimode VCSELs,” J. Lightwave Technol. 34, 233–242 (2016).
[Crossref]

P. Moser, J. A. Lott, G. Larisch, and D. Bimberg, “Impact of the oxide-aperture diameter on the energy efficiency, bandwidth, and temperature stability of 980-nm VCSELs,” J. Lightwave Technol. 33, 825–831 (2015).
[Crossref]

R. Puerta, M. Agustin, Ł. Chorchos, J. Toński, J. R. Kropp, N. Ledentsov, V. A. Shchukin, N. N. Ledentsov, R. Henker, I. T. Monroy, J. J. V. Olmos, and J. P. Turkiewicz, “Effective 100  Gb/s IM/DD 850-nm multi- and single-mode VCSEL transmission through OM4 MMF,” J. Lightwave Technol. 35, 423–429 (2017).
[Crossref]

J. Opt. (1)

R. Myllylä, J. Marszalec, J. Kostamovaara, A. Mäntyniemi, and G.-J. Ulbrich, “Imaging distance measurements using TOF lidar,” J. Opt. 29, 188–193 (1998).
[Crossref]

J. Opt. A (1)

G. Giuliani, M. Norgia, S. Donati, and T. Bosch, “Laser diode self-mixing technique for sensing applications,” J. Opt. A 4, S283–S294 (2002).
[Crossref]

J. Opt. Soc. Am. (1)

J. Phys. D (2)

A.-J. Liu, W. Chen, W.-J. Zhou, B. Jiang, F. Fu, H.-W. Qu, and W.-H. Zheng, “Squeeze effect and coherent coupling behaviour in photonic crystal vertical-cavity surface-emitting lasers,” J. Phys. D 44, 115104 (2011).
[Crossref]

A. N. AL-Omari, M. S. Alias, A. Ababneh, and K. L. Lear, “Improved performance of top-emitting oxide-confined polyimide-planarized 980  nm VCSELs with copper-plated heat sinks,” J. Phys. D 45, 505101 (2012).
[Crossref]

J. Vac. Sci. Technol. B (1)

M. Ogura and T. Yao, “Surface emitting laser diode with AlxGa1-xAs/GaAs multilayered heterostructure,” J. Vac. Sci. Technol. B 3, 784–787 (1985).
[Crossref]

Jpn. J. Appl. Phys. (4)

H. Soda, K. Iga, C. Kitahara, and Y. Suematsu, “GaInAsP/InP surface emitting injection lasers,” Jpn. J. Appl. Phys. 18, 2329–2330 (1979).
[Crossref]

M. Ogura, T. Hata, N. J. Kawai, and T. Yao, “GaAs/AlxGa1-xAs multilayer reflector for surface emitting laser diode,” Jpn. J. Appl. Phys. 22, L112–L114 (1983).
[Crossref]

M. Ogura, T. Hata, and T. Yao, “Distributed feedback surface emitting laser diode with multilayered heterostructure,” Jpn. J. Appl. Phys. 23, L512–L514 (1984).
[Crossref]

S. Inoue, J. Kashino, A. Matsutani, H. Ohtsuki, T. Miyashita, and F. Koyama, “Highly angular dependent high-contrast grating mirror and its application for transverse-mode control of VCSELs,” Jpn. J. Appl. Phys. 53, 090306 (2014).
[Crossref]

Laser Photon. Rev. (2)

S. Kumari, E. P. Haglund, J. S. Gustavsson, A. Larsson, G. Roelkens, and R. G. Baets, “Vertical-cavity silicon-integrated laser with in-plane waveguide emission at 850  nm,” Laser Photon. Rev. 12, 1700206 (2018).
[Crossref]

G. C. Park, W. Xue, A. Taghizadeh, E. Semenova, K. Yvind, J. Mørk, and I.-S. Chung, “Hybrid vertical-cavity laser with lateral emission into a silicon waveguide,” Laser Photon. Rev. 9, L11–L15 (2015).
[Crossref]

Laser Phys. Lett. (1)

A. J. Liu, W. Chen, H. W. Qu, B. Jiang, W. J. Zhou, M. X. Xing, and W. H. Zheng, “Single-mode holey vertical-cavity surface-emitting laser with ultra-narrow beam divergence,” Laser Phys. Lett. 7, 213–217 (2010).
[Crossref]

Meas. Sci. Technol. (1)

M. Liess, G. Weijers, C. Heinks, A. van der Horst, A. Rommers, R. Duijve, and G. Mimnagh, “A miniaturized multidirectional optical motion sensor and input device based on laser self-mixing,” Meas. Sci. Technol. 13, 2001–2006 (2002).
[Crossref]

Nat. Photonics (2)

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007).
[Crossref]

M. C. Y. Huang, Y. Zhou, and C. J. Chang-Hasnain, “A nanoelectromechanical tunable laser,” Nat. Photonics 2, 180–184 (2008).
[Crossref]

Opt. Commun. (1)

A. Liu, W. Zheng, and D. Bimberg, “Comparison between high- and zero-contrast gratings as VCSEL mirrors,” Opt. Commun. 389, 35–41 (2017).
[Crossref]

Opt. Eng. (1)

M.-C. Amann, T. Bosch, M. Lescure, R. Myllylä, and M. Rioux, “Laser ranging: a critical review of usual techniques for distance measurement,” Opt. Eng. 40, 10–19 (2001).
[Crossref]

Opt. Express (19)

S. Boutami, B. Ben Bakir, J.-L. Leclercq, X. Letartre, P. Rojo-Romeo, M. Garrigues, P. Viktorovitch, I. Sagnes, L. Legratiet, and M. Strassner, “Highly selective and compact tunable MOEMS photonic crystal Fabry–Perot filter,” Opt. Express 14, 3129–3137 (2006).
[Crossref]

R. Magnusson and M. Shokooh-Saremi, “Physical basis for wideband resonant reflectors,” Opt. Express 16, 3456–3462 (2008).
[Crossref]

V. Karagodsky, F. G. Sedgwick, and C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010).
[Crossref]

A. Liu, F. Fu, Y. Wang, B. Jiang, and W. Zheng, “Polarization-insensitive subwavelength grating reflector based on a semiconductor-insulator-metal structure,” Opt. Express 20, 14991–15000 (2012).
[Crossref]

J. Lee, S. Ahn, H. Chang, J. Kim, Y. Park, and H. Jeon, “Polarization-dependent GaN surface grating reflector for short wavelength applications,” Opt. Express 17, 22535–22542 (2009).
[Crossref]

M. Gębski, M. Dems, A. Szerling, M. Motyka, L. Marona, R. Kruszka, D. Urbańczyk, M. Walczakowski, N. Pałka, A. Wójcik-Jedlińska, Q. J. Wang, D. H. Zhang, M. Bugajski, M. Wasiak, and T. Czyszanowski, “Monolithic high-index contrast grating: a material independent high-reflectance VCSEL mirror,” Opt. Express 23, 11674–11686 (2015).
[Crossref]

D. Zhao, Z. Ma, and W. Zhou, “Field penetrations in photonic crystal Fano reflectors,” Opt. Express 18, 14152–14158 (2010).
[Crossref]

A. Liu, W. Hofmann, and D. Bimberg, “Two dimensional analysis of finite size high-contrast gratings for applications in VCSELs,” Opt. Express 22, 11804–11811 (2014).
[Crossref]

N. N. Ledentsov, V. A. Shchukin, V. P. Kalosha, N. N. Ledentsov, J.-R. Kropp, M. Agustin, Ł. Chorchos, G. Stępniak, J. P. Turkiewicz, and J.-W. Shi, “Anti-waveguiding vertical-cavity surface-emitting laser at 850  nm: from concept to advances in high-speed data transmission,” Opt. Express 26, 445–453 (2018).
[Crossref]

E. Haglund, J. S. Gustavsson, J. Bengtsson, Å. Haglund, A. Larsson, D. Fattal, W. Sorin, and M. Tan, “Demonstration of post-growth wavelength setting of VCSELs using high-contrast gratings,” Opt. Express 24, 1999–2005 (2016).
[Crossref]

L. Ferrier, P. Rojo Romeo, X. Letartre, E. Drouard, and P. Viktorovitch, “3D integration of photonic crystal devices: vertical coupling with a silicon waveguide,” Opt. Express 18, 16162–16174 (2010).
[Crossref]

J. Ferrara, W. Yang, L. Zhu, P. Qiao, and C. J. Chang-Hasnain, “Heterogeneously integrated long-wavelength VCSEL using silicon high contrast grating on an SOI substrate,” Opt. Express 23, 2512–2523 (2015).
[Crossref]

V. Karagodsky, B. Pesala, C. Chase, W. Hofmann, F. Koyama, and C. J. Chang-Hasnain, “Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings,” Opt. Express 18, 694–699 (2010).
[Crossref]

K. S. Kaur, A. Z. Subramanian, P. Cardile, R. Verplancke, J. Van Kerrebrouck, S. Spiga, R. Meyer, J. Bauwelinck, R. Baets, and G. Van Steenberge, “Flip-chip assembly of VCSELs to silicon grating couplers via laser fabricated SU8 prisms,” Opt. Express 23, 28264–28270 (2015).
[Crossref]

H. Lu, J. S. Lee, Y. Zhao, C. Scarcella, P. Cardile, A. Daly, M. Ortsiefer, L. Carroll, and P. O’Brien, “Flip-chip integration of tilted VCSELs onto a silicon photonic integrated circuit,” Opt. Express 24, 16258–16266 (2016).
[Crossref]

Y. Yang, G. Djogo, M. Haque, P. R. Herman, and J. K. S. Poon, “Integration of an O-band VCSEL on silicon photonics with polarization maintenance and waveguide coupling,” Opt. Express 25, 5758–5771 (2017).
[Crossref]

N. Lindenmann, G. Balthasar, D. Hillerkuss, R. Schmogrow, M. Jordan, J. Leuthold, W. Freude, and C. Koos, “Photonic wire bonding: a novel concept for chip-scale interconnects,” Opt. Express 20, 17667–17677 (2012).
[Crossref]

K.-H. Lee, J.-H. Baek, I.-K. Hwang, Y.-H. Lee, G.-H. Lee, J.-H. Ser, H.-D. Kim, and H.-E. Shin, “Square-lattice photonic-crystal vertical-cavity surface-emitting lasers,” Opt. Express 12, 4136–4143 (2004).
[Crossref]

A. Caliman, A. Mereuta, P. Wolf, A. Sirbu, V. Iakovlev, D. Bimberg, and E. Kapon, “25  Gbps direct modulation and 10  km data transmission with 1310  nm waveband wafer fused VCSELs,” Opt. Express 24, 16329–16335 (2016).
[Crossref]

Opt. Lett. (2)

Optica (3)

Proc. IEEE (1)

D. A. B. Miller, “Device requirements for optical interconnects to silicon chips,” Proc. IEEE 97, 1166–1185 (2009).
[Crossref]

Proc. SPIE (22)

T. Suzuki, M. Funabashi, H. Shimizu, K. Nagashima, S. Kamiya, and A. Kasukawa, “1060  nm 28-Gbps VCSEL developed at Furukawa,” Proc. SPIE 9001, 900104 (2014).
[Crossref]

N. Haghighi, R. Rosales, G. Larisch, M. Gębski, L. Frasunkiewicz, T. Czyszanowski, and J. A. Lott, “Simplicity VCSELs,” Proc. SPIE 10552, 105520N (2018).
[Crossref]

N. Ledentsov, M. Agustin, J.-R. Kropp, V. A. Shchukin, V. P. Kalosha, K. L. Chi, Z. Khan, J. W. Shi, and N. N. Ledentsov, “Temperature stable oxide-confined 850  nm VCSELs operating at bit rates up to 25  Gbit/s at 150°C,” Proc. SPIE 10552, 105520P (2018).
[Crossref]

L. A. Graham, H. Chen, D. Gazula, T. Gray, J. K. Guenter, B. Hawkins, R. Johnson, C. Kocot, A. N. MacInnes, G. D. Landry, and J. A. Tatum, “The next generation of high speed VCSELs at Finisar,” Proc. SPIE 8276, 827602 (2012).
[Crossref]

C. Xie, N. Li, S. Huang, C. Liu, L. Wang, and K. P. Jackson, “The next generation high data rate VCSEL development at SEDU,” Proc. SPIE 8639, 863903 (2013).
[Crossref]

H. Moench, M. Carpaij, P. Gerlach, S. Gronenborn, R. Gudde, J. Hellmig, J. Kolb, and A. van der Lee, “VCSEL based sensors for distance and velocity,” Proc. SPIE 9766, 97660A (2016).
[Crossref]

L. A. Graham, H. Chen, J. Cruel, J. Guenter, B. Hawkins, B. Hawthorne, D. Q. Kelly, A. Melgar, M. Martinez, E. Shaw, and J. A. Tatum, “High power VCSEL arrays for consumer electronics,” Proc. SPIE 9381, 93810A (2015).
[Crossref]

A. Pruijmboom, M. Schemmann, J. Hellmig, J. Schutte, H. Moench, and J. Pankert, “VCSEL-based miniature laser-Doppler interferometer,” Proc. SPIE 6908, 69080I (2008).
[Crossref]

D. Wiedenmann, M. Grabherr, R. Jäger, and R. King, “High volume production of single-mode VCSELs,” Proc. SPIE 6132, 613202 (2006).
[Crossref]

M. Grabherr, R. King, R. Jäger, D. Wiedenmann, P. Gerlach, D. Duckeck, and C. Wimmer, “Volume production of polarization controlled single-mode VCSELs,” Proc. SPIE 6908, 690803 (2008).
[Crossref]

Y. W. Xu, A. Michael, and C. Y. Kwok, “Fabrication of smooth 45° micromirror using TMAH low concentration solution with NCW-601A surfactant on <100> silicon,” Proc. SPIE 6800, 68001W (2008).
[Crossref]

T. Aalto, M. Harjanne, M. Karppinen, M. Cherchi, A. Sitomaniemi, J. Ollila, A. Malacarne, and C. Neumeyr, “Optical interconnects based on VCSELs and low-loss silicon photonics,” Proc. SPIE 10538, 1053816 (2018).
[Crossref]

J. A. Tatum, “VCSEL proliferation,” Proc. SPIE 6484, 648403 (2014).
[Crossref]

M. Grabherr, “New applications boost VCSEL quantities: recent developments at Philips,” Proc. SPIE 9381, 938102 (2015).
[Crossref]

J.-F. Seurin, D. Zhou, G. Xu, A. Miglo, D. Li, T. Chen, B. Guo, and C. Ghosh, “High-efficiency VCSEL arrays for illumination and sensing in consumer applications,” Proc. SPIE 9766, 97660D (2016).
[Crossref]

N. Mukoyama, H. Otoma, J. Sakurai, N. Ueki, and H. Nakayama, “VCSEL array-based light exposure system for laser printing,” Proc. SPIE 6908, 69080H (2008).
[Crossref]

D. Zhou, J.-F. Seurin, G. Xu, R. V. Leeuwen, A. Miglo, Q. Wang, A. Kovsh, and C. Ghosh, “Progress on high-power 808  nm VCSELs and applications,” Proc. SPIE 10122, 1012206 (2007).
[Crossref]

H. Moench, R. Conrads, S. Gronenborn, X. Gu, M. Miller, P. Pekarski, J. Pollman-Retsch, A. Pruijmboom, and U. Weichmann, “Integrated high power VCSEL systems,” Proc. SPIE 9733, 97330V (2016).
[Crossref]

A. Liu, W. Zheng, and D. Bimberg, “VCSEL with finite-size high-contrast metastructure,” Proc. SPIE 10812, 1081202 (2018).
[Crossref]

I.-S. Chung and J. Mørk, “Speed enhancement in VCSELs employing grating mirrors,” Proc. SPIE 8633, 863308 (2013).
[Crossref]

H. Moench, S. Gronenborn, X. Gu, R. Gudde, M. Herper, J. Kolb, M. Miller, M. Smeets, and A. Weigl, “VCSELs in short-pulse operation for time-of-flight applications,” Proc. SPIE 10552, 105520G (2018).
[Crossref]

M. E. Warren, D. Podva, P. Dacha, M. K. Block, C. J. Helms, J. Maynard, and R. F. Carson, “Low-divergence high-power VCSEL arrays for lidar application,” Proc. SPIE 10552, 105520E (2018).
[Crossref]

Prog. Quantum Electron. (1)

W. Zhou, D. Zhao, Y.-C. Shuai, H. Yang, S. Chuwongin, A. Chadha, J.-H. Seo, K. X. Wang, V. Liu, Z. Ma, and S. Fan, “Progress in 2D photonic crystal Fano resonance photonics,” Prog. Quantum Electron. 38, 1–74 (2014).
[Crossref]

Sci. Rep. (1)

G. C. Park, W. Xue, M. Piels, D. Zibar, J. Mørk, E. Semenova, and I.-S. Chung, “Ultrahigh-speed Si-integrated on-chip laser with tailored dynamic characteristics,” Sci. Rep. 6, 38801 (2016).
[Crossref]

Other (29)

M. Gębski, T. Czyszanowski, and J. A. Lott, “Electrically-injected VCSELs with a composite monolithic high contrast grating and distributed Bragg reflector coupling mirror,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper TuP38.

https://www.finisar.com/sites/default/files/downloads/application_note_pulsed_operation_of_vcsels_for_high_peak_powers.pdf .

A. Liu, W. Zheng, and D. Bimberg, “Unidirectional transmission in finite-size high-contrast gratings,” in Asia Communications and Photonics Conference (2016), paper AF2A.52.

C. Wilmsen, H. Temkin, and L. A. Coldren, eds., Vertical Cavity Surface Emitting Lasers: Design, Fabrication, Characterization and Applications (Cambridge University, 1999).

H. E. Li and K. Iga, Vertical-Cavity Surface-Emitting Laser Devices, Springer Series in Photonics (Springer, 2003), Vol. 6.

L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits, 2nd ed. (Wiley, 2012).

W. Hofmann, P. Moser, P. Wolf, A. Mutig, M. Kroh, and D. Bimberg, “44  Gb/s VCSEL for optical interconnects,” in Optical Fiber Communication Conference (2011), paper PDPC5.

H. Li, P. Wolf, P. Moser, G. Larisch, J. A. Lott, and D. Bimberg, “Vertical-cavity surface-emitting lasers for optical interconnects,” SPIE Newsroom (2014), DOI: 10.1117/2.1201411.005689.

R. Michalzik, VCSELs - Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers, Springer Series in Optical Sciences (Springer, 2013), Vol. 166.

K. Lascola, W. Yuen, and C. Chang-Hasnain, “Structural dependence of the thermal resistance of vertical cavity surface emitting lasers,” in IEEE/LEOS Summer Topical Meeting (1997), pp. 79–80.

M. Azuchi, N. Jikutani, M. Ami, T. Kondo, and F. Koyama, “Multioxide layer vertical-cavity surface-emitting lasers with improved modulation bandwidth,” in 5th Pacific Rim Conference on Lasers and Electro-Optics (2003), Vol. 1, p. 163.

D. M. Kuchta, P. Pepeljugoski, and Y. Kwark, “VCSEL modulation at 20  Gb/s over 200  m of multimode fiber using a 3.3  V SiGe laser driver IC,” in Digest of LEOS Summer Topical Meetings: Advanced Semiconductor Lasers and Applications/Ultraviolet and Blue Lasers and Their Applications/Ultralong Haul DWDM Transmission and Networking/WDM Compo (2001), pp. 49–50.

R. H. Johnson and D. M. Kuchta, “30  Gb/s directly modulated 850  nm datacom VCSELs,” in Conference on Lasers and Electro-Optics (2008), paper CPDB2.

D. M. Kuchta, A. V. Rylyakov, C. L. Schow, J. E. Proesel, C. Baks, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 55  Gb/s directly modulated 850  nm VCSEL-based optical link,” in IEEE Photonics Conference (2012), paper PD1.5.

D. M. Kuchta, C. L. Schow, A. V. Rylyakov, J. E. Proesel, F. E. Doany, C. Baks, B. H. Hamel-Bissell, C. Kocot, L. Graham, R. Johnson, G. Landry, E. Shaw, A. MacInnes, and J. Tatum, “A 56.1  Gb/s NRZ modulated 850  nm VCSEL-based optical link,” in Optical Fiber Communication Conference (2013), paper OW1B.5.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “50  Gb/s error-free data transmission of 850  nm oxide-confined VCSELs,” in Optical Fiber Communication Conference (2016), paper Tu3D.2.

N. Haghighi, G. Larisch, R. Rosales, M. Zorn, and J. A. Lott, “35  GHz bandwidth with directly current modulated 980  nm oxide aperture single cavity VCSELs,” in IEEE International Semiconductor Laser Conference (ISLC) (2018), paper WD4.

M. Liu, C. Y. Wang, M. Feng, and N. Holonyak, “850  nm oxide-confined VCSELs with 50  Gb/s error-free transmission operating up to 85°C,” in Conference on Lasers and Electro-Optics (2016), paper SF1L.6.

P.-K. Shen, C.-T. Chen, C.-H. Chang, C.-Y. Chiu, C.-C. Chang, H.-C. Lan, Y.-C. Lee, and M.-L. Wu, “On-chip optical interconnects integrated with laser and photodetector using three-dimensional silicon waveguides,” in Optical Fiber Communication Conference (2014), paper M2K.6.

R. Santos, D. D’Agostino, F. M. Soares, H. Rabbani Haghighi, M. K. Smit, and X. J. M. Leijtens, “Fabrication and characterization of a wet-etched InP-based vertical coupling mirror,” in 18th Annual Symposium of the IEEE Photonics Benelux (2013), pp. 179–182.

https://www.finisar.com/sites/default/files/downloads/application_note_vcsels_in_various_sensor_applications.pdf .

N. Suzuki, H. Hatakeyama, K. Fukatsu, T. Anan, K. Yashiki, and M. Tsuji, “25-Gbps operation of 1.1-μm-range InGaAs VCSELs for high-speed optical interconnections,” in Optical Fiber Communication Conference (2006), paper OFA4.

H. Liu, C. F. Lam, and C. Johnson, “Scaling optical interconnects in datacenter networks opportunities and challenges for WDM,” in IEEE Symposium on High Performance Interconnects (2010), pp. 113–116.

T. Anan, N. Suzuki, K. Yashiki, K. Fukatsu, H. Hatakeyama, T. Akagawa, K. Tokutome, and M. Tsuji, “High-speed 1.1-μm-range InGaAs VCSELs,” in Optical Fiber Communication Conference (2008), paper OthS5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “100  Gbps PAM-4 transmission over 100  m OM4 and wideband fiber using 850  nm VCSELs,” in European Conference and Exhibition on Optical Communication (ECOC) (2016), paper Th.1.C5.

J. Lavrencik, S. Varughese, V. A. Thomas, G. Landry, Y. Sun, R. Shubochkin, K. Balemarthy, J. Tatum, and S. E. Ralph, “4λ × 100 Gbps VCSEL PAM-4 transmission over 105  m of wide band multimode fiber,” in Optical Fiber Communication Conference (2017), paper Tu2B.6.

S. M. R. Motaghiannezam, I. Lyubomirsky, H. Daghighian, C. Kocot, T. Gray, J. Tatum, A. Amezcua-Correa, M. Bigot-Astruc, D. Molin, F. Achten, and P. Sillard, “180  Gbps PAM4 VCSEL transmission over 300  m wideband OM4 fibre,” in Optical Fiber Communication Conference (2016), paper Th3G.2.

P. Kolesar, , IEEE 802.3 50G & NGOATH Study Groups, “Wideband MMF standardization and S-WDM technology,” 2016, http://www.ieee802.org/3/50G/public/Jan16/kolesar_50GE_NGOATH_01a_0116.pdf .

J.-W. Shi, W.-C. Weng, F.-M. Kuo, J.-I. Chyi, S. Pinches, M. Geen, and A. Joel, “Oxide-relief vertical-cavity surface-emitting lasers with extremely high data-rate/power-dissipation ratios,” in Optical Fiber Communication Conference (2011), paper OthG2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1.
Fig. 1. Schematic of a top-emitting VCSEL [19]. Inset is a scanning electron microscope image of the cross section of a high-speed VCSEL after it is cleaved.
Fig. 2.
Fig. 2. Small-signal model of a VCSEL with the high-frequency driving source.
Fig. 3.
Fig. 3. Schematic of representative optical modes (straight lines) and gain spectra (curves) behavior in a VCSEL as functions of increasing temperature. T0 denotes the typical room temperature.
Fig. 4.
Fig. 4. Simulated PAM4 and on–off keying (OOK) eye diagrams at 40 Gbps with a constant modulation bandwidth of 20 GHz.
Fig. 5.
Fig. 5. (a) End-to-end coupling between a VCSEL and a PIC based on an SOI platform [115]. A spot-size convertor in the PIC side is always adopted for a high coupling efficiency between the VCSEL and the silicon waveguide. (b) VCSEL coupled to a PIC by 45° micro-reflectors [116]. (c) Grating coupler for coupling between a VCSEL and a PIC [123]. (d) Photonic wire bond for integration for a surface-emitting laser and a PIC [127]. The laser can be a VCSEL or a distributed-feedback surface-emitting laser. PWB, photonic wire bond.
Fig. 6.
Fig. 6. Schematic of a tracking system based on SMI [129,130].
Fig. 7.
Fig. 7. Components of a face recognition module in a modern smartphone. (a) VCSELs for time-of-flight (ToF) proximity sensing and IR illumination. (b) VCSEL array for projection of randomly distributed dots to sense object distance information.
Fig. 8.
Fig. 8. (a) Schematic of focal plane scanning [148,151]. (b) Illustration of structured light [153].
Fig. 9.
Fig. 9. (a) Schematic of an HCG. The red arrows show the direction of wave incidence. The black arrows indicate the E-field direction in both TE and TM polarizations of incidence. (b) Double-mode solution exhibiting perfect intensity cancellation at the HCG output plane leading to 100% reflectivity [159].
Fig. 10.
Fig. 10. (a) Schematic of an HCG-VCSEL [160]. (b) HCG-VCSEL array for single-lobe, double-lobe, triple-lobe, “bow-tie,” “sugar cone,” and “doughnut” beam patterns [177]. (c) Schematic of a nanoelectromechanical tunable VCSEL using the highly reflective HCG as its top mirror, instead of conventional DBRs [180]. (d) Schematic of a monolithic HCG-VCSEL array with different HCG parameters.
Fig. 11.
Fig. 11. (a) Schematic of a VCSEL with a silicon HCG as a bottom mirror. An HCG serves as the bottom mirror and potentially serves as a waveguide coupler for an in-plane SOI waveguide, facilitating the integration of a VCSEL with in-plane silicon photonic circuits [188]. (b) Schematic of a vertical-cavity laser with lateral emission into a silicon waveguide via an HCG [189]. (c) Schematic of a vertical-cavity laser with in-plane out-coupling into a SiN waveguide. A subwavelength grating is inserted under a half-VCSEL to redirect the vertical resonance light to the in-plane SiN waveguide [192].

Tables (3)

Tables Icon

Table 1. Modulation Bandwidths and Bit Rates of VCSELs at Room Temperature Using the Standard On–Off Keying in a Back-to-Back Data Transmission Configuration

Tables Icon

Table 2. Selected Results on Bandwidths and Bit Rates of VCSELs at High Temperatures in an On–Off Keying Modulation Format for Back-to-Back Data Transmission Configuration

Tables Icon

Table 3. Energy Efficiencies of High-Speed VCSELs with the On–Off Keying Modulation Format in a Back-to-Back Data Transmission Configuration

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

Hin(f)=A×fr2fr2f2+if2πγ,
fr=DIIth,
D=12πηiΓvgqVa×g/nχ,
γ=Kfr2+γ0,
K=4π2(τp+ϵχvgg/n),
Hp(f)=B×11+i(f/fp),
H(f)=Hin(f)×Hp(f)=C×fr2fr2f2+if2πγ×11+i(ffp),