Abstract

We report bound states of solitons from a harmonic mode-locked fiber laser based on a solution-processed graphene saturable absorber. Stable soliton pairs, 26.2 ps apart, are generated with 720 fs duration. By simply increasing the pump power, the laser can also generate harmonic mode-locking with harmonics up to the 26th order (409.6 MHz repetition rate). This is a simple, low-cost, all-fiber, versatile multifunction ultrafast laser that could be used for many applications.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber

Junqing Zhao, Yonggang Wang, Shuangchen Ruan, Peiguang Yan, Han Zhang, Yuen H. Tsang, Jinhui Yang, and Guoxi Huang
J. Opt. Soc. Am. B 31(4) 716-722 (2014)

168 fs pulse generation from graphene-chitosan mode-locked fiber laser

Jan Tarka, Grzegorz Sobon, Jakub Boguslawski, Jaroslaw Sotor, Joanna Jagiello, Magdalena Aksienionek, Ludwika Lipinska, Mariusz Zdrojek, Jaroslaw Judek, and Krzysztof M. Abramski
Opt. Mater. Express 4(10) 1981-1986 (2014)

References

  • View by:
  • |
  • |
  • |

  1. M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
    [Crossref]
  2. I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
    [Crossref]
  3. J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191, 28–38 (1998).
    [Crossref]
  4. S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
    [Crossref]
  5. H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
    [Crossref]
  6. G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Elsevier Academic, 2008), pp. 1–508.
  7. A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
    [Crossref]
  8. L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
    [Crossref]
  9. B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).
    [Crossref]
  10. A. Komarov, K. Komarov, and F. Sanchez, “Harmonic passive mode locking of bound-soliton structures in fiber lasers,” Opt. Commun. 354, 158–162 (2015).
    [Crossref]
  11. D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
    [Crossref]
  12. P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
    [Crossref]
  13. G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
    [Crossref]
  14. H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43, 1982–1985 (2018).
    [Crossref]
  15. P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
    [Crossref]
  16. N. H. Seong and D. Y. Kim, “Experimental observation of stable bound solitons in a figure-eight fiber laser,” Opt. Lett. 27, 1321–1323 (2002).
    [Crossref]
  17. B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35, 1578–1580 (2010).
    [Crossref]
  18. X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
    [Crossref]
  19. L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
    [Crossref]
  20. P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
    [Crossref]
  21. X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
    [Crossref]
  22. Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, and J. Zhao, “Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber,” Opt. Express 23, 205–210 (2015).
    [Crossref]
  23. A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
    [Crossref]
  24. Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
    [Crossref]
  25. R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
    [Crossref]
  26. R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
    [Crossref]
  27. K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16, 11453–11458 (2008).
    [Crossref]
  28. C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37, 1862–1864 (2012).
    [Crossref]
  29. L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30, 158–164 (2013).
    [Crossref]
  30. R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
    [Crossref]
  31. Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
    [Crossref]
  32. D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
    [Crossref]
  33. D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
    [Crossref]
  34. G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
    [Crossref]
  35. B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
    [Crossref]
  36. I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
    [Crossref]
  37. M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
    [Crossref]
  38. G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
    [Crossref]
  39. C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
    [Crossref]
  40. F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
    [Crossref]
  41. Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010).
    [Crossref]
  42. A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
    [Crossref]
  43. D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
    [Crossref]
  44. F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
    [Crossref]
  45. D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.
  46. L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode-locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
    [Crossref]
  47. T. Wu, K. Chen, H. Zhao, W. Zhang, Y. Li, and H. Wei, “Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 26, 22001–22010 (2018).
    [Crossref]
  48. W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
    [Crossref]
  49. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
    [Crossref]
  50. K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17, 5711–5715 (2009).
    [Crossref]
  51. J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15, 9176–9183 (2007).
    [Crossref]
  52. A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
    [Crossref]
  53. H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
    [Crossref]
  54. A. Cabasse, G. Martel, and J. Oudar, “High power dissipative soliton in an erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17, 9537–9542 (2009).
    [Crossref]
  55. W. Koechner, Solid-State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).
  56. S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
    [Crossref]
  57. D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
    [Crossref]
  58. R. Iegorov, T. Teamir, G. Makey, and F. O. Ilday, “Direct control of mode-locking states of a fiber laser,” Optica 3, 1312–1315 (2016).
    [Crossref]
  59. A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
    [Crossref]

2018 (5)

H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43, 1982–1985 (2018).
[Crossref]

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode-locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

T. Wu, K. Chen, H. Zhao, W. Zhang, Y. Li, and H. Wei, “Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 26, 22001–22010 (2018).
[Crossref]

2017 (3)

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

2016 (4)

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

R. Iegorov, T. Teamir, G. Makey, and F. O. Ilday, “Direct control of mode-locking states of a fiber laser,” Optica 3, 1312–1315 (2016).
[Crossref]

2015 (4)

A. Komarov, K. Komarov, and F. Sanchez, “Harmonic passive mode locking of bound-soliton structures in fiber lasers,” Opt. Commun. 354, 158–162 (2015).
[Crossref]

Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, and J. Zhao, “Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber,” Opt. Express 23, 205–210 (2015).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

2014 (2)

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

2013 (7)

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30, 158–164 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
[Crossref]

2012 (5)

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37, 1862–1864 (2012).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

2010 (6)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35, 1578–1580 (2010).
[Crossref]

Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

2009 (2)

2008 (1)

2007 (2)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15, 9176–9183 (2007).
[Crossref]

2006 (1)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

2002 (2)

2001 (1)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
[Crossref]

1998 (1)

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191, 28–38 (1998).
[Crossref]

1997 (2)

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
[Crossref]

1996 (1)

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
[Crossref]

1993 (1)

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[Crossref]

1992 (1)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

1991 (2)

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[Crossref]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).
[Crossref]

1986 (1)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[Crossref]

1975 (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

1958 (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[Crossref]

Abramski, K. M.

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Elsevier Academic, 2008), pp. 1–508.

Ahn, J. H.

Ahn, Y. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Anissimova, S.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Bae, S.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Baek, I. H.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Balakrishnan, K.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Bao, C.

Basko, D. M.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Beecher, S. J.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

Belhache, F.

Bewersdorf, J.

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191, 28–38 (1998).
[Crossref]

Blake, P.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Bonacchini, G.

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

Bonacchini, G. E.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

Bonaccorso, F.

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Brown, G.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

Cabasse, A.

Cai, Z.

Casiraghi, C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Cerullo, G.

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Chen, K.

Choi, S. Y.

Cizmeciyan, M. N.

Colombo, L.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

Cui, Y.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Dai, S.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Diddams, S. A.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

DiGiovanni, D. J.

Drummond, P. D.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
[Crossref]

Duling, I. N.

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[Crossref]

Egorov, O.

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Ferrari, A. C.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Fu, B.

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Fuse, K.

Gan, X.

Geim, A. K.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Going, R.

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

Golling, M.

Gray, S.

Grelu, P.

Grigorenko, A. N.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Grudinin, A. B.

A. B. Grudinin and S. Gray, “Passive harmonic mode locking in soliton fiber lasers,” J. Opt. Soc. Am. B 14, 144–154 (1997).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[Crossref]

Gui, L.

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode-locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30, 158–164 (2013).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

Guo, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Gutty, F.

Han, L.

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Hasan, T.

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Haus, H.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Haus, H. A.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
[Crossref]

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

Hell, S. W.

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191, 28–38 (1998).
[Crossref]

Herink, G.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Hodge, S.

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Hollberg, L.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Hong, B. H.

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Hua, S.

Hua, Y.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

Huang, G.

Hummers, W. S.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[Crossref]

Iegorov, R.

Ilday, F. O.

R. Iegorov, T. Teamir, G. Makey, and F. O. Ilday, “Direct control of mode-locking states of a fiber laser,” Optica 3, 1312–1315 (2016).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

Iliew, R.

Ippen, E.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jalali, B.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Jiang, D.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Jiang, Z.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

Jones, D.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Jun, C. S.

Kar, A. K.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

Kashiwagi, K.

Kelleher, E. J. R.

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

Keller, U.

Kelly, S. M. J.

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

Kieu, K.

Kim, B. Y.

Kim, D. Y.

Kim, J. W.

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).

Komarov, A.

A. Komarov, K. Komarov, and F. Sanchez, “Harmonic passive mode locking of bound-soliton structures in fiber lasers,” Opt. Commun. 354, 158–162 (2015).
[Crossref]

Komarov, K.

A. Komarov, K. Komarov, and F. Sanchez, “Harmonic passive mode locking of bound-soliton structures in fiber lasers,” Opt. Commun. 354, 158–162 (2015).
[Crossref]

Kravets, V. G.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Kulmala, T. S.

Kurtz, F.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Lazzeri, M.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Lederer, F.

Lee, H. W.

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Lee, Y.

Li, X.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

Li, Y.

T. Wu, K. Chen, H. Zhao, W. Zhang, Y. Li, and H. Wei, “Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 26, 22001–22010 (2018).
[Crossref]

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Lidorikis, E.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

Limpert, J.

Liu, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Lombardi, L.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Lombardo, A.

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

Luo, Z.

Ma, C.

Makey, G.

Malomed, B. A.

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).
[Crossref]

Man, W. S.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
[Crossref]

Mangold, M.

Mao, D.

Martel, G.

Martinez, A.

Mary, R.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

Mauri, F.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Mbele, V.

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Meyer, J. C.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Milana, S.

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

Nair, R. R.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Nelson, L.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Nicholson, J. W.

Nie, Q.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Nielsen, C. K.

Norwood, R. A.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Novoselov, K. S.

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Offeman, R. E.

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[Crossref]

Ortaç, B.

Ott, A. K.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

Oudar, J.

Payne, D. N.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[Crossref]

Peyghambarian, N.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Piscanec, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Polli, D.

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Popa, D.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Popov, S. V.

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

Privitera, G.

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Purdie, D. G.

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

Qin, H.

Richardson, D. J.

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[Crossref]

Ropers, C.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Rotermund, F.

Roth, S.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Sanchez, F.

A. Komarov, K. Komarov, and F. Sanchez, “Harmonic passive mode locking of bound-soliton structures in fiber lasers,” Opt. Commun. 354, 158–162 (2015).
[Crossref]

Scardaci, V.

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

Scopigno, T.

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Sennaroglu, A.

Seong, N. H.

Set, S. Y.

Shang, W.

Sieber, O. D.

Soavi, G.

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Sobon, G.

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Solli, D. R.

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Soto-Crespo, J. M.

Sotor, J.

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Sun, Z.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Sundaram, R. S.

Tam, H. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
[Crossref]

Tamura, K.

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Tang, D. Y.

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
[Crossref]

Taylor, J. R.

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

Teamir, T.

Thomson, R. R.

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

Torrisi, F.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Tünnermann, A.

Viola, D.

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

von der Linde, D.

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[Crossref]

Wang, F.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

Wang, P.

Wang, Y.

Wei, H.

Weng, J.

Windeler, R. S.

Wise, F. W.

Wittwer, V. J.

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

Wong, W. S.

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
[Crossref]

Woodward, R. I.

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

Wu, D.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Wu, T.

Xi, T.

Xia, K.

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

Xiao, X.

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43, 1982–1985 (2018).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30, 158–164 (2013).
[Crossref]

Xu, B.

Xu, H.

Xu, S.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Yamashita, S.

Yang, C.

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode-locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43, 1982–1985 (2018).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

L. Gui, X. Xiao, and C. Yang, “Observation of various bound solitons in a carbon-nanotube-based erbium fiber laser,” J. Opt. Soc. Am. B 30, 158–164 (2013).
[Crossref]

Yao, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Ye, C.

Yeom, D.-I.

C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37, 1862–1864 (2012).
[Crossref]

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Zaugg, C. A.

Zaviyalov, A.

Zhang, W.

Zhang, Y.

Zhang, Z.

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

Zhao, H.

Zhao, J.

Zhao, K.

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

Zhao, Z.

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

Zhou, M.

Zhu, G.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

Zhu, H.

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

Zhu, X.

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

ACS Nano (1)

Z. Sun, T. Hasan, F. Torrisi, D. Popa, G. Privitera, F. Wang, F. Bonaccorso, D. M. Basko, and A. C. Ferrari, “Graphene mode-locked ultrafast laser,” ACS Nano 4, 803–810 (2010).
[Crossref]

Adv. Opt. Mater. (1)

F. Torrisi, D. Popa, S. Milana, Z. Jiang, T. Hasan, E. Lidorikis, and A. C. Ferrari, “Stable, surfactant-free graphene-styrene methylmethacrylate composite for ultrafast lasers,” Adv. Opt. Mater. 4, 1088–1097 (2016).
[Crossref]

Appl. Phys. B (2)

D. von der Linde, “Characterization of the noise in continuously operating mode-locked lasers,” Appl. Phys. B 39, 201–217 (1986).
[Crossref]

L. Nelson, D. Jones, K. Tamura, H. Haus, and E. Ippen, “Ultrashort-pulse fiber ring lasers,” Appl. Phys. B 65, 277–294 (1997).
[Crossref]

Appl. Phys. Express (1)

I. H. Baek, H. W. Lee, S. Bae, B. H. Hong, Y. H. Ahn, D.-I. Yeom, and F. Rotermund, “Efficient mode-locking of sub-70-fs Ti:sapphire laser by graphene saturable absorber,” Appl. Phys. Express 5, 032701 (2012).
[Crossref]

Appl. Phys. Lett. (6)

D. G. Purdie, D. Popa, V. J. Wittwer, Z. Jiang, G. Bonacchini, F. Torrisi, S. Milana, E. Lidorikis, and A. C. Ferrari, “Few-cycle pulses from a graphene mode-locked all-fiber laser,” Appl. Phys. Lett. 106, 253101 (2015).
[Crossref]

D. Popa, Z. Sun, F. Torrisi, T. Hasan, F. Wang, and A. C. Ferrari, “Sub 200  fs pulse generation from a graphene mode-locked fiber laser,” Appl. Phys. Lett. 97, 203106 (2010).
[Crossref]

G. Sobon, J. Sotor, and K. M. Abramski, “Passive harmonic mode-locking in Er-doped fiber laser based on graphene saturable absorber with repetition rates scalable to 2.22  GHz,” Appl. Phys. Lett. 100, 161109 (2012).
[Crossref]

Z. Zhang, D. Popa, V. J. Wittwer, S. Milana, T. Hasan, Z. Jiang, A. C. Ferrari, and F. O. Ilday, “All-fiber nonlinearity- and dispersion-managed dissipative soliton nanotube mode-locked laser,” Appl. Phys. Lett. 107, 241107 (2015).
[Crossref]

R. Mary, G. Brown, S. J. Beecher, R. R. Thomson, D. Popa, Z. Sun, F. Torrisi, T. Hasan, S. Milana, F. Bonaccorso, A. C. Ferrari, and A. K. Kar, “Evanescent-wave coupled right angled buried waveguide: applications in carbon nanotube mode-locking,” Appl. Phys. Lett. 103, 221117 (2013).
[Crossref]

D. Popa, Z. Jiang, G. E. Bonacchini, Z. Zhao, L. Lombardi, F. Torrisi, A. K. Ott, E. Lidorikis, and A. C. Ferrari, “A stable, power scaling, graphene-mode-locked all-fiber oscillator,” Appl. Phys. Lett. 110, 243102 (2017).
[Crossref]

Electron. Lett. (3)

S. M. J. Kelly, “Characteristic sideband instability of periodically amplified average soliton,” Electron. Lett. 28, 806–807 (1992).
[Crossref]

A. B. Grudinin, D. J. Richardson, and D. N. Payne, “Passive harmonic modelocking of a fibre soliton ring laser,” Electron. Lett. 29, 1860–1861 (1993).
[Crossref]

I. N. Duling, “Subpicosecond all-fibre erbium laser,” Electron. Lett. 27, 544–545 (1991).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

B. Fu, Y. Hua, X. Xiao, H. Zhu, Z. Sun, and C. Yang, “Broadband graphene saturable absorber for pulsed fiber lasers at 1, 1.5, and 2-μm,” IEEE J. Sel. Top. Quantum Electron. 20, 411–415 (2014).
[Crossref]

IEEE Photon. J. (1)

L. Gui and C. Yang, “Soliton molecules with ±π/2, 0, and π phase differences in a graphene-based mode-locked erbium-doped fiber laser,” IEEE Photon. J. 10, 1502609 (2018).
[Crossref]

IEEE Photon. Technol. Lett. (5)

G. Zhu, X. Zhu, F. Wang, S. Xu, Y. Li, X. Guo, K. Balakrishnan, R. A. Norwood, and N. Peyghambarian, “Graphene mode-locked fiber laser at 2.8  μm,” IEEE Photon. Technol. Lett. 28, 7–10 (2016).
[Crossref]

R. I. Woodward, E. J. R. Kelleher, D. Popa, T. Hasan, F. Bonaccorso, A. C. Ferrari, S. V. Popov, and J. R. Taylor, “Scalar nanosecond pulse generation in a nanotube mode-locked environmentally stable fiber laser,” IEEE Photon. Technol. Lett. 26, 1672–1675 (2014).
[Crossref]

L. Gui, X. Li, X. Xiao, H. Zhu, and C. Yang, “Widely spaced bound states in a soliton fiber laser with graphene saturable absorber,” IEEE Photon. Technol. Lett. 25, 1184–1187 (2013).
[Crossref]

P. Wang, K. Zhao, L. Gui, X. Xiao, and C. Yang, “Self-organized structures of soliton molecules in 2-μm fiber laser based on MoS2 saturable absorber,” IEEE Photon. Technol. Lett. 30, 1210–1213 (2018).
[Crossref]

X. Li, K. Xia, D. Wu, Q. Nie, and S. Dai, “Bound states of solitons in a fiber laser with a microfiber-based WS2 saturable absorber,” IEEE Photon. Technol. Lett. 29, 2071–2074 (2017).
[Crossref]

J. Am. Chem. Soc. (1)

W. S. Hummers and R. E. Offeman, “Preparation of graphitic oxide,” J. Am. Chem. Soc. 80, 1339 (1958).
[Crossref]

J. Appl. Phys. (1)

H. A. Haus, “Theory of mode locking with a fast saturable absorber,” J. Appl. Phys. 46, 3049–3058 (1975).
[Crossref]

J. Microsc. (1)

J. Bewersdorf and S. W. Hell, “Picosecond pulsed two-photon imaging with repetition rates of 200 and 400 MHz,” J. Microsc. 191, 28–38 (1998).
[Crossref]

J. Opt. Soc. Am. B (2)

Mater. Today (1)

F. Bonaccorso, A. Lombardo, T. Hasan, Z. Sun, L. Colombo, and A. C. Ferrari, “Production and processing of graphene and 2d crystals,” Mater. Today 15, 564–589 (2012).
[Crossref]

Nat. Photonics (2)

A. Martinez and Z. Sun, “Nanotube and graphene saturable absorbers for fibre lasers,” Nat. Photonics 7, 842–845 (2013).
[Crossref]

M. E. Fermann and I. Hartl, “Ultrafast fibre lasers,” Nat. Photonics 7, 868–874 (2013).
[Crossref]

Nature (1)

S. A. Diddams, L. Hollberg, and V. Mbele, “Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb,” Nature 445, 627–630 (2007).
[Crossref]

Opt. Commun. (1)

A. Komarov, K. Komarov, and F. Sanchez, “Harmonic passive mode locking of bound-soliton structures in fiber lasers,” Opt. Commun. 354, 158–162 (2015).
[Crossref]

Opt. Express (8)

Y. Wang, D. Mao, X. Gan, L. Han, C. Ma, T. Xi, Y. Zhang, W. Shang, S. Hua, and J. Zhao, “Harmonic mode locking of bound-state solitons fiber laser based on MoS2 saturable absorber,” Opt. Express 23, 205–210 (2015).
[Crossref]

K. Kieu and F. W. Wise, “All-fiber normal-dispersion femtosecond laser,” Opt. Express 16, 11453–11458 (2008).
[Crossref]

A. Martinez, K. Fuse, B. Xu, and S. Yamashita, “Optical deposition of graphene and carbon nanotubes in a fiber ferrule for passive mode-locked lasing,” Opt. Express 18, 23054–23061 (2010).
[Crossref]

C. A. Zaugg, Z. Sun, V. J. Wittwer, D. Popa, S. Milana, T. S. Kulmala, R. S. Sundaram, M. Mangold, O. D. Sieber, M. Golling, Y. Lee, J. H. Ahn, A. C. Ferrari, and U. Keller, “Ultrafast and widely tuneable vertical-external-cavity surface-emitting laser, mode-locked by a graphene-integrated distributed Bragg reflector,” Opt. Express 21, 31548–31559 (2013).
[Crossref]

A. Cabasse, G. Martel, and J. Oudar, “High power dissipative soliton in an erbium-doped fiber laser mode-locked with a high modulation depth saturable absorber mirror,” Opt. Express 17, 9537–9542 (2009).
[Crossref]

K. Kashiwagi, S. Yamashita, and S. Y. Set, “In-situ monitoring of optical deposition of carbon nanotubes onto fiber end,” Opt. Express 17, 5711–5715 (2009).
[Crossref]

J. W. Nicholson, R. S. Windeler, and D. J. DiGiovanni, “Optically driven deposition of single-walled carbon-nanotube saturable absorbers on optical fiber end-faces,” Opt. Express 15, 9176–9183 (2007).
[Crossref]

T. Wu, K. Chen, H. Zhao, W. Zhang, Y. Li, and H. Wei, “Flexible dual-soliton manipulation for coherent anti-Stokes Raman scattering spectroscopy,” Opt. Express 26, 22001–22010 (2018).
[Crossref]

Opt. Lett. (8)

Z. Luo, M. Zhou, J. Weng, G. Huang, H. Xu, C. Ye, and Z. Cai, “Graphene-based passively Q-switched dual-wavelength erbium-doped fiber laser,” Opt. Lett. 35, 3709–3711 (2010).
[Crossref]

C. S. Jun, S. Y. Choi, F. Rotermund, B. Y. Kim, and D.-I. Yeom, “Toward higher-order passive harmonic mode-locking of a soliton fiber laser,” Opt. Lett. 37, 1862–1864 (2012).
[Crossref]

M. N. Cizmeciyan, J. W. Kim, S. Bae, B. H. Hong, F. Rotermund, and A. Sennaroglu, “Graphene mode-locked femtosecond Cr:ZnSe laser at 2500 nm,” Opt. Lett. 38, 341–343 (2013).
[Crossref]

P. Grelu, F. Belhache, F. Gutty, and J. M. Soto-Crespo, “Phase-locked soliton pairs in a stretched-pulse fiber laser,” Opt. Lett. 27, 966–968 (2002).
[Crossref]

H. Qin, X. Xiao, P. Wang, and C. Yang, “Observation of soliton molecules in a spatiotemporal mode-locked multimode fiber laser,” Opt. Lett. 43, 1982–1985 (2018).
[Crossref]

P. Wang, C. Bao, B. Fu, X. Xiao, P. Grelu, and C. Yang, “Generation of wavelength-tunable soliton molecules in a 2-μm ultrafast all-fiber laser based on nonlinear polarization evolution,” Opt. Lett. 41, 2254–2257 (2016).
[Crossref]

N. H. Seong and D. Y. Kim, “Experimental observation of stable bound solitons in a figure-eight fiber laser,” Opt. Lett. 27, 1321–1323 (2002).
[Crossref]

B. Ortaç, A. Zaviyalov, C. K. Nielsen, O. Egorov, R. Iliew, J. Limpert, F. Lederer, and A. Tünnermann, “Observation of soliton molecules with independently evolving phase in a mode-locked fiber laser,” Opt. Lett. 35, 1578–1580 (2010).
[Crossref]

Optica (1)

Phys. E (1)

R. Going, D. Popa, F. Torrisi, Z. Sun, T. Hasan, F. Wang, and A. C. Ferrari, “500  fs wideband tunable fiber laser mode-locked by nanotubes,” Phys. E 44, 1078–1081 (2012).
[Crossref]

Phys. Rev. A (2)

D. Y. Tang, W. S. Man, H. Y. Tam, and P. D. Drummond, “Observation of bound states of solitons in a passively mode-locked fiber laser,” Phys. Rev. A 64, 033814 (2001).
[Crossref]

B. A. Malomed, “Bound solitons in the nonlinear Schrödinger-Ginzburg-Landau equation,” Phys. Rev. A 44, 6954–6957 (1991).
[Crossref]

Phys. Rev. B (1)

V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010).
[Crossref]

Phys. Rev. Lett. (2)

A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett. 97, 187401 (2006).
[Crossref]

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Rev. Mod. Phys. (1)

H. A. Haus and W. S. Wong, “Solitons in optical communications,” Rev. Mod. Phys. 68, 423–444 (1996).
[Crossref]

Science (1)

G. Herink, F. Kurtz, B. Jalali, D. R. Solli, and C. Ropers, “Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules,” Science 356, 50–54 (2017).
[Crossref]

Other (3)

G. P. Agrawal, Applications of Nonlinear Fiber Optics, 2nd ed. (Elsevier Academic, 2008), pp. 1–508.

W. Koechner, Solid-State Laser Engineering, 6th ed., Springer Series in Optical Sciences (Springer, 2006).

D. Popa, D. Viola, G. Soavi, B. Fu, L. Lombardi, S. Hodge, D. Polli, T. Scopigno, G. Cerullo, and A. C. Ferrari, “Coherent Raman spectroscopy with a graphene-synchronized all-fiber laser,” in Conference on Lasers and Electro-Optics (Optical Society of America, 2017), paper JTu5A.2.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Linear absorption of the graphene solution (alcohol contribution subtracted); (b) GSA film optically deposited on fiber tip; (c) Raman spectrum of GSA film on fiber tip; (d) nonlinear transmittance at the laser operating wavelength.
Fig. 2.
Fig. 2. All-fiber laser schematic. LD, laser diode; WDM, wavelength-division multiplexer; EDF, Er-doped fiber; PI-ISO, polarization-insensitive isolator; PC, polarization controller; GSA, graphene saturable absorber; OC, optical coupler.
Fig. 3.
Fig. 3. Fundamental mode-locking experimental results. (a) Optical spectrum; (b) temporal waveform; (c) pulse profile; (d) RF spectrum with 10 Hz resolution (inset, 1000 MHz span).
Fig. 4.
Fig. 4. BS experimental results. (a), (b), and (c) BS spectral modulations as functions of intracavity polarization, with a stable CW-free spectrum shown in (c) (inset, spectral magnification around the central wavelength, 1558 nm); (d) autocorrelation trace of the pulses (inset, pulse profile). The pulse separation Δτ modulates the spectrum with a period of 1/Δτ. (e) Temporal waveform of the intracavity circulating pulses; (f) RF spectrum with 10 Hz resolution (inset, 500 MHz span).
Fig. 5.
Fig. 5. HML experimental results. (a) Optical spectrum (inset, pulse profile); (b) temporal waveform; (c) RF spectrum with 20 kHz resolution (inset, 1500 MHz span); (d) output power and harmonic order as functions of pump power.