Abstract

A depletion layer played by aqueous organic liquids flowing in a platform of microfluidic integrated metamaterials is experimentally used to actively modulate terahertz (THz) waves. The polar configuration of water molecules in a depletion layer gives rise to a damping of THz waves. The parallel coupling of the damping effect induced by a depletion layer with the resonant response by metamaterials leads to an excellent modulation depth approaching 90% in intensity and a great difference over 210° in phase shift. Also, a tunability of slow-light effect is displayed. Joint time-frequency analysis performed by the continuous wavelet transforms reveals the consumed energy with varying water content, indicating a smaller moment of inertia related to a shortened relaxation time of the depletion layer. This work, as part of THz aqueous photonics, diametrically highlights the availability of water in THz devices, paving an alternative way of studying THz wave–liquid interactions and developing active THz photonics.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
High performance metamaterials-high electron mobility transistors integrated terahertz modulator

Zhen Zhou, Siqi Wang, Yue Yu, Yongli Chen, and Lishuang Feng
Opt. Express 25(15) 17832-17840 (2017)

Terahertz saturable absorption in superconducting metamaterials

George R. Keiser, Jingdi Zhang, Xiaoguang Zhao, Xin Zhang, and Richard D. Averitt
J. Opt. Soc. Am. B 33(12) 2649-2655 (2016)

Active graphene metamaterial absorber for terahertz absorption bandwidth, intensity and frequency control

Xunjun He, Yuan Yao, Zhihan Zhu, Minghua Chen, Lei Zhu, Wenlong Yang, Yuqiang Yang, Fengmin Wu, and Jiuxing Jiang
Opt. Mater. Express 8(4) 1031-1042 (2018)

References

  • View by:
  • |
  • |
  • |

  1. D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
    [Crossref]
  2. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
    [Crossref]
  3. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
    [Crossref]
  4. J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
    [Crossref]
  5. K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
    [Crossref]
  6. X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
    [Crossref]
  7. Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
    [Crossref]
  8. G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
    [Crossref]
  9. B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
    [Crossref]
  10. Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
    [Crossref]
  11. M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
    [Crossref]
  12. A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
    [Crossref]
  13. L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
    [Crossref]
  14. O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107, 162603 (2015).
    [Crossref]
  15. T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
    [Crossref]
  16. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
    [Crossref]
  17. L. Valzania, P. Zolliker, and E. Hack, “Coherent reconstruction of a textile and a hidden object with terahertz radiation,” Optica 6, 518–523 (2019).
    [Crossref]
  18. W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
    [Crossref]
  19. M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
    [Crossref]
  20. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
    [Crossref]
  21. Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
    [Crossref]
  22. T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
    [Crossref]
  23. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  24. C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
    [Crossref]
  25. K. Han, J. H. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
    [Crossref]
  26. Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
    [Crossref]
  27. H. A. Rizk and I. M. Elanwa, “Dipole moments of glycerol, isopropyl alcohol, and isobutyl alcohol,” Can. J. Chem. 46, 507–513 (1968).
    [Crossref]
  28. J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
    [Crossref]
  29. A. Teolis, Computational Signal Processing with Wavelets (Birkhauser, 1998).
  30. H. Liu, Y.-X. Fan, L. Li, H.-G. Chen, P.-F. Wang, and Z.-Y. Tao, “Self-adaptive terahertz spectroscopy from atmospheric vapor based on Hilbert–Huang transform,” Opt. Express 26, 27279–27293 (2018).
    [Crossref]
  31. M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
    [Crossref]
  32. D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
    [Crossref]
  33. I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
    [Crossref]
  34. P. U. Jepsen, J. K. Jensen, and U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express 16, 9318–9331 (2008).
    [Crossref]
  35. J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
    [Crossref]
  36. Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
    [Crossref]
  37. Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
    [Crossref]

2019 (3)

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

L. Valzania, P. Zolliker, and E. Hack, “Coherent reconstruction of a textile and a hidden object with terahertz radiation,” Optica 6, 518–523 (2019).
[Crossref]

2018 (9)

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

A. V. Diebold, M. F. Imani, T. Sleasman, and D. R. Smith, “Phaseless coherent and incoherent microwave ghost imaging with dynamic metasurface apertures,” Optica 5, 1529–1541 (2018).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

H. Liu, Y.-X. Fan, L. Li, H.-G. Chen, P.-F. Wang, and Z.-Y. Tao, “Self-adaptive terahertz spectroscopy from atmospheric vapor based on Hilbert–Huang transform,” Opt. Express 26, 27279–27293 (2018).
[Crossref]

Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

2017 (4)

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

2016 (5)

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

K. Han, J. H. Kim, and G. Bahl, “High-throughput sensing of freely flowing particles with optomechanofluidics,” Optica 3, 585–591 (2016).
[Crossref]

I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
[Crossref]

J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
[Crossref]

2015 (2)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107, 162603 (2015).
[Crossref]

2014 (1)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

2012 (1)

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

2011 (3)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

2008 (2)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

P. U. Jepsen, J. K. Jensen, and U. Møller, “Characterization of aqueous alcohol solutions in bottles with THz reflection spectroscopy,” Opt. Express 16, 9318–9331 (2008).
[Crossref]

2007 (1)

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

2006 (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

2004 (1)

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

1998 (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

1968 (1)

H. A. Rizk and I. M. Elanwa, “Dipole moments of glycerol, isopropyl alcohol, and isobutyl alcohol,” Can. J. Chem. 46, 507–513 (1968).
[Crossref]

1950 (1)

M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
[Crossref]

Aieta, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Alapan, Y.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Atwater, H. A.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Averitt, R. D.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

Azad, A. K.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Bahl, G.

Baraniuk, R. G.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

Baron, C. A.

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

Bechtel, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Binion, J. D.

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

Brar, V. W.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Capasso, F.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Chen, H.-G.

Chen, H.-T.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Chen, X.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

Chen, Y.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

Cheng, Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Chow, K. H.

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

Chu, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Chung, D. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Cong, L.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

Cui, T. J.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Dai, J.

Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Diebold, A. V.

Ding, J.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Dobrovolskiy, O. V.

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107, 162603 (2015).
[Crossref]

Dong, B.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

Dong, J.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

Egilmez, M.

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

Elanwa, I. M.

H. A. Rizk and I. M. Elanwa, “Dipole moments of glycerol, isopropyl alcohol, and isobutyl alcohol,” Can. J. Chem. 46, 507–513 (1968).
[Crossref]

Elezzabi, A. Y.

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

ElKabbash, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Fan, Y.-X.

Feldman, Y.

I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
[Crossref]

Fountaine, K. T.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Gaburro, Z.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Gao, J.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
[Crossref]

Garcia, J. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Genevet, P.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Gordy, W.

M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
[Crossref]

Gu, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Gurkan, U. A.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Ha, T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Hack, E.

Han, J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Han, K.

Hand, T. H.

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Highstrete, C.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

Hinczewski, M.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Hon, P. W. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Hu, Y.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Huang, J.

J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
[Crossref]

Huang, W.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Huth, M.

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107, 162603 (2015).
[Crossref]

Ilker, E.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Imani, M. F.

Ishai, P. B.

I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
[Crossref]

Jacobsen, R. H.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

Jensen, J. K.

Jepsen, P. U.

Ji, W.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jiang, M.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Jiang, Z. H.

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

Jin, Q.

Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Jung, J.

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

Kats, M. A.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Kenney, M.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Kessler, M.

M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
[Crossref]

Khamzin, A.

I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
[Crossref]

Kim, H.-D.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kim, J. H.

Kim, T.-T.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Kou, W.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Kumar, A.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Lee, M.

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

Lee, Y. H.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Li, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Li, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Li, L.

H. Liu, Y.-X. Fan, L. Li, H.-G. Chen, P.-F. Wang, and Z.-Y. Tao, “Self-adaptive terahertz spectroscopy from atmospheric vapor based on Hilbert–Huang transform,” Opt. Express 26, 27279–27293 (2018).
[Crossref]

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Li, Y. B.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Liang, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Liang, S.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Lier, E.

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

Lim, W. X.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

Liu, H.

Liu, L.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Liu, S.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Liu, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Luca, A. D.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Ma, Y.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

MacDonald, K. F.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

Maier, S. A.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Manjappa, M.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Min, B.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Mittleman, D. M.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

Møller, U.

Mühlenbernd, H.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Neelamani, R.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

Ni, J.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Nuss, M. C.

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

O’Hara, J. F.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Oh, S. S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Padilla, W. J.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

Pendry, J. B.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Ponti, S. M.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Popov, I.

I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
[Crossref]

Qi, M. Q.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Qiu, C.-W.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

Qiu, W.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Rao, S.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Ring, H.

M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
[Crossref]

Rizk, H. A.

H. A. Rizk and I. M. Elanwa, “Dipole moments of glycerol, isopropyl alcohol, and isobutyl alcohol,” Can. J. Chem. 46, 507–513 (1968).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Sherrott, M. C.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Shi, Q.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Shklovskij, V. A.

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107, 162603 (2015).
[Crossref]

Shrekenhamer, D. B.

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

Singh, R.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Sleasman, T.

Smith, D. R.

Solanki, A.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Sreekanth, K. V.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Srivastava, Y. K.

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Straatsma, C. J. E.

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

Strangi, G.

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Sugioka, K.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Sum, T. C.

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Sun, C.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

Sweatlock, L. A.

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Tao, Z.-Y.

Taylor, A. J.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

Teolis, A.

A. Teolis, Computational Signal Processing with Wavelets (Birkhauser, 1998).

Tetienne, J.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Tian, Z.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Tonouchi, M.

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Trambarulo, R.

M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
[Crossref]

Valzania, L.

Wan, X.

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Wang, C.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Wang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

Wang, P.-F.

Wang, T.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Wang, Z.

J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
[Crossref]

Wei, D.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Wei, P.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Werner, D. H.

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

Williams, K.

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Wiltshire, M. C. K.

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Wu, D.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Wu, S.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Wu, Z.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

Xie, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Xu, B.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Yan, X.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Yang, L.

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Yang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Yang, X.

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

Yang, Z.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Yao, J.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Yiwen, E.

Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Yu, B.

J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
[Crossref]

Yu, N.

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

Zentgraf, T.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Zhang, H. F.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

Zhang, M.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Zhang, S.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, W.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, X.

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Zhang, X.-C.

Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Zhang, Y.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Zhang, Z.

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Zhao, J.

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Zhao, R.

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Zhao, Y.

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

Zheng, G.

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

Zheng, Y.

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

Zhou, F.

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

Zolliker, P.

ACS Nano (1)

Z. Wu, X. Chen, M. Wang, J. Dong, and Y. Zheng, “High-performance ultrathin active chiral metamaterials,” ACS Nano 12, 5030–5041 (2018).
[Crossref]

ACS Photon. (2)

Y. Zhao, Y. Zhang, Q. Shi, S. Liang, W. Huang, W. Kou, and Z. Yang, “Dynamic photoinduced controlling of the large phase shift of terahertz waves via vanadium dioxide coupling nanostructures,” ACS Photon. 5, 3040–3050 (2018).
[Crossref]

T.-T. Kim, H.-D. Kim, R. Zhao, S. S. Oh, T. Ha, D. S. Chung, Y. H. Lee, B. Min, and S. Zhang, “Electrically tunable slow light using graphene metamaterials,” ACS Photon. 5, 1800–1807 (2018).
[Crossref]

Adv. Mater. (2)

W. X. Lim, M. Manjappa, Y. K. Srivastava, L. Cong, A. Kumar, K. F. MacDonald, and R. Singh, “Ultrafast all-optical switching of germanium-based flexible metaphotonic devices,” Adv. Mater. 30, 1705331 (2018).
[Crossref]

M. Manjappa, Y. K. Srivastava, A. Solanki, A. Kumar, T. C. Sum, and R. Singh, “Hybrid lead halide perovskites for ultrasensitive photoactive switching in terahertz metamaterial devices,” Adv. Mater. 29, 1605881 (2017).
[Crossref]

Adv. Opt. Mater. (1)

Y. Hu, S. Rao, S. Wu, P. Wei, W. Qiu, D. Wu, B. Xu, J. Ni, L. Yang, J. Li, J. Chu, and K. Sugioka, “All-glass 3D optofluidic microchip with built-in tunable microlens fabricated by femtosecond laser-assisted etching,” Adv. Opt. Mater. 6, 1701299 (2018).
[Crossref]

Appl. Phys. B (1)

D. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, “Gas sensing using terahertz time-domain spectroscopy,” Appl. Phys. B 67, 379–390 (1998).
[Crossref]

Appl. Phys. Lett. (4)

O. V. Dobrovolskiy, M. Huth, and V. A. Shklovskij, “Alternating current-driven microwave loss modulation in a fluxonic metamaterial,” Appl. Phys. Lett. 107, 162603 (2015).
[Crossref]

Q. Jin, E. Yiwen, K. Williams, J. Dai, and X.-C. Zhang, “Observation of broadband terahertz wave generation from liquid water,” Appl. Phys. Lett. 111, 071103 (2017).
[Crossref]

Q. Jin, J. Dai, E. Yiwen, and X.-C. Zhang, “Terahertz wave emission from a liquid water film under the excitation of asymmetric optical fields,” Appl. Phys. Lett. 113, 261101 (2018).
[Crossref]

C. A. Baron, M. Egilmez, C. J. E. Straatsma, K. H. Chow, J. Jung, and A. Y. Elezzabi, “The effect of a semiconductor-metal interface on localized terahertz plasmons,” Appl. Phys. Lett. 98, 111106 (2011).
[Crossref]

Biosens. Bioelectron. (1)

X. Yan, M. Yang, Z. Zhang, L. Liang, D. Wei, M. Wang, M. Zhang, T. Wang, L. Liu, J. Xie, and J. Yao, “The terahertz electromagnetically induced transparency-like metamaterials for sensitive biosensors in the detection of cancer cells,” Biosens. Bioelectron. 126, 485–492 (2019).
[Crossref]

Can. J. Chem. (1)

H. A. Rizk and I. M. Elanwa, “Dipole moments of glycerol, isopropyl alcohol, and isobutyl alcohol,” Can. J. Chem. 46, 507–513 (1968).
[Crossref]

Light Sci. Appl. (2)

T. J. Cui, M. Q. Qi, X. Wan, J. Zhao, and Q. Cheng, “Coding metamaterials, digital metamaterials and programmable metamaterials,” Light Sci. Appl. 3, e218 (2014).
[Crossref]

Y. Chen, X. Yang, and J. Gao, “Spin-controlled wavefront shaping with plasmonic chiral geometric metasurfaces,” Light Sci. Appl. 7, 84 (2018).
[Crossref]

Nano Lett. (2)

B. Dong, X. Chen, F. Zhou, C. Wang, H. F. Zhang, and C. Sun, “Gigahertz all-optical modulation using reconfigurable nanophotonic metamolecules,” Nano Lett. 16, 7690–7695 (2016).
[Crossref]

M. C. Sherrott, P. W. C. Hon, K. T. Fountaine, J. C. Garcia, S. M. Ponti, V. W. Brar, L. A. Sweatlock, and H. A. Atwater, “Experimental demonstration of >230° phase modulation in gate-tunable graphene–gold reconfigurable mid-infrared metasurfaces,” Nano Lett. 17, 3027–3034 (2017).
[Crossref]

Nat. Commun. (3)

L. Li, T. J. Cui, W. Ji, S. Liu, J. Ding, X. Wan, Y. B. Li, M. Jiang, C.-W. Qiu, and S. Zhang, “Electromagnetic reprogrammable coding-metasurface holograms,” Nat. Commun. 8, 197 (2017).
[Crossref]

J. D. Binion, E. Lier, T. H. Hand, Z. H. Jiang, and D. H. Werner, “A metamaterial-enabled design enhancing decades-old short backfire antenna technology for space applications,” Nat. Commun. 10, 108 (2019).
[Crossref]

J. Gu, R. Singh, X. Liu, X. Zhang, Y. Ma, S. Zhang, S. A. Maier, Z. Tian, A. K. Azad, H.-T. Chen, A. J. Taylor, J. Han, and W. Zhang, “Active control of electromagnetically induced transparency analogue in terahertz metamaterials,” Nat. Commun. 3, 1151 (2012).
[Crossref]

Nat. Mater. (1)

K. V. Sreekanth, Y. Alapan, M. ElKabbash, E. Ilker, M. Hinczewski, U. A. Gurkan, A. D. Luca, and G. Strangi, “Extreme sensitivity biosensing platform based on hyperbolic metamaterials,” Nat. Mater. 15, 621–627 (2016).
[Crossref]

Nat. Nanotechnol. (2)

G. Zheng, H. Mühlenbernd, M. Kenney, G. Li, T. Zentgraf, and S. Zhang, “Metasurface holograms reaching 80% efficiency,” Nat. Nanotechnol. 10, 308–312 (2015).
[Crossref]

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Nat. Photonics (2)

H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, and W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008).
[Crossref]

M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1, 97–105 (2007).
[Crossref]

Opt. Express (2)

Optica (3)

Phys. Chem. Chem. Phys. (1)

I. Popov, P. B. Ishai, A. Khamzin, and Y. Feldman, “The mechanism of the dielectric relaxation in water,” Phys. Chem. Chem. Phys. 18, 13941–13953 (2016).
[Crossref]

Phys. Rev. (1)

M. Kessler, H. Ring, R. Trambarulo, and W. Gordy, “Microwave spectra and molecular structures of methyl cyanide and methyl isocyanide,” Phys. Rev. 79, 54–56 (1950).
[Crossref]

Phys. Rev. Lett. (1)

W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, “Dynamical electric and magnetic metamaterial response at terahertz frequencies,” Phys. Rev. Lett. 96, 107401 (2006).
[Crossref]

Science (2)

N. Yu, P. Genevet, M. A. Kats, F. Aieta, J. Tetienne, F. Capasso, and Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334, 333–337 (2011).
[Crossref]

D. R. Smith, J. B. Pendry, and M. C. K. Wiltshire, “Metamaterials and negative refractive index,” Science 305, 788–792 (2004).
[Crossref]

Sensors (1)

J. Huang, Z. Wang, J. Gao, and B. Yu, “Modeling and analysis of phase fluctuation in a high-precision roll angle measurement based on a heterodyne interferometer,” Sensors 16, 1214 (2016).
[Crossref]

Other (1)

A. Teolis, Computational Signal Processing with Wavelets (Birkhauser, 1998).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. (a) Schematic of MIMs platform with liquid flowing through from the inlet to the outlet under the irradiation of Ey-polarized THz waves; (b) tri-layer structure of the MIMs platform; (c) photograph of real MIMs device; the clamp and screws are used to package the layer materials and the soft pipes to guide the fluids. (d) Optical microscopy image of fabricated SRRs in a certain region; (e) geometric configuration of SRRs; all of the structural parameters are P=48  μm, l=44  μm, w=5  μm, d=10.25  μm, g1=3  μm, g2=2  μm, s=27  μm, and h=35  μm. (f) Schematic illustration of parallel modulation mechanism.
Fig. 2.
Fig. 2. Schematic of THz–TDS measurement system. Photograph of micropumping system is shown as inset.
Fig. 3.
Fig. 3. (a) Measured THz transmission spectra for the MIMs sample showing the modulation of resonant peaks with varying water content from 0% to 100%; (b) corresponding simulation spectra, whereby the increasing water content levels are represented by an increasing water-layer thickness together with the enhancement of IPA-layer permittivity. (c) Schematic illustration of simulated model, in which the water layer and IPA layer are created to simulate the water effect in reality; (d) parameters extracted from the coupled Lorentz oscillator model by fitting the experiments in the frequency range marked as gray in (a) under different water contents; (e) electric field monitored to SRRs under 0.2 and 2 μm water-layer thickness at three resonant peaks marked as I, II, and III in (b), respectively.
Fig. 4.
Fig. 4. (a)–(f) Electric field distribution of SRRs at 0.91, 1.18, 1.45, 2.21, 2.68, and 3 THz, respectively. (g)–(l) The corresponding surface currents density of SRRs at different frequencies; the red arrows represent the currents’ flowing direction.
Fig. 5.
Fig. 5. (a) Time-frequency joint analysis of MIMs transmission with IPA solution flowing through; (b) comparison of frequency spectrum obtained from CWT and FFT.
Fig. 6.
Fig. 6. (a)–(d) Joint time-frequency analysis of experimental extinction obtained from CWT at water content of (a) 0%, (b) 20%, (c) 60%, and (d) 100%. (e), (f) The dependences of extinction intensity and FWHM of Gaussian curve acquired at 2.21 THz on water content at (e) position 1 and (f) position 2 that have been marked in (a).
Fig. 7.
Fig. 7. (a)–(c) Dependence of measured transmission on frequency and water content in (a) IPA, (b) ethanol, and (c) acetone. (d)–(f) Dependence of measured phase shift on frequency and water content in (d) IPA, (e) ethanol, and (f) acetone. (g)–(i) Group delays under different water contents in (g) IPA, (h) ethanol, and (i) acetone. (j)–(l) Corresponding transmission and phase shift of three peaks labeled as peaks I, II, and III [as shown in Fig. 2(b)] at different water contents in (j) IPA, (k) ethanol, and (l) acetone. (m) Histogram of modulation depth and phase difference of peaks I, II, and III in different organic liquids.
Fig. 8.
Fig. 8. Trace determination of water in IPA solution by using MIMs platforms. (a) Measured transmission of MIMs platform under the trace of water percentage increasing from 0% to 10%. (b) Enlarged version of gray region in (a); the difference of transmission is marked by dark dashed lines.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

x¨1+γ1x˙1+ω02x1+κx2=E,x¨2+γ2x¨2+(ω0+δ)2x2+κx1=0,
Wψf(a,b)=f(t),ψa,b(t).
ψ(t)=1πfb·ej2πfct(t2/fb),