Abstract

For space missions, there is a need for fiber lasers of minimum power consumption involving stabilized frequency combs. We exploit the extreme sensitivity of the polarization state of circularly polarized light sent through polarization-maintaining (PM) fibers to power and temperature variations. Low-power nonlinear transmission is demonstrated by terminating a PM fiber by an appropriately oriented polarizer. The strong correlation between the power sensitivity of the polarization state and the temperature dependence of the birefringence of the PM fiber can be exploited for optical length stabilization in fiber lasers and interferometers.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Dissipative-soliton generation with nonlinear-polarization-evolution in a polarization maintaining fiber

Jiaqi Zhou, Weiwei Pan, Xijia Gu, Lei Zhang, and Yan Feng
Opt. Express 26(4) 4166-4171 (2018)

Balanced polarization maintaining fiber Sagnac interferometer vibration sensor

Kenji Wada, Hirokazu Narui, Daiki Yamamoto, Tetsuya Matsuyama, and Hiromichi Horinaka
Opt. Express 19(22) 21467-21474 (2011)

References

  • View by:
  • |
  • |
  • |

  1. H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature 173, 39–41 (1954).
    [Crossref]
  2. P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).
  3. R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
    [Crossref]
  4. H. Afkhamiardakani and J.-C. Diels, “Controlling group and phase velocities in bidirectional mode-locked fiber lasers,” Opt. Lett. 44, 2903–2906 (2019).
    [Crossref]
  5. F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
    [Crossref]
  6. L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
    [Crossref]
  7. Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
    [Crossref]
  8. H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
    [Crossref]
  9. P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
    [Crossref]
  10. X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
    [Crossref]
  11. V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
    [Crossref]
  12. H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
    [Crossref]
  13. F. Zhang and J. W. Y. Lit, “Temperature and strain sensitivity measurements of high-birefringent polarization-maintaining fibers,” Appl. Opt. 32, 2213–2218 (1993).
    [Crossref]
  14. W. Eickhoff, “Temperature sensing by mode-mode interference in birefringent optical fibers,” Opt. Lett. 6, 204–206 (1981).
    [Crossref]
  15. A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett. 43, 3337–3340 (2018).
    [Crossref]

2019 (1)

2018 (3)

A. Arora, M. Esmaeelpour, M. Bernier, and M. J. F. Digonnet, “High-resolution slow-light fiber Bragg grating temperature sensor with phase-sensitive detection,” Opt. Lett. 43, 3337–3340 (2018).
[Crossref]

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

2016 (2)

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
[Crossref]

2015 (2)

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

2014 (1)

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

2013 (1)

P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).

2007 (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

1993 (1)

1992 (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

1981 (1)

1954 (1)

H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature 173, 39–41 (1954).
[Crossref]

Afkhamiardakani, H.

H. Afkhamiardakani and J.-C. Diels, “Controlling group and phase velocities in bidirectional mode-locked fiber lasers,” Opt. Lett. 44, 2903–2906 (2019).
[Crossref]

H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
[Crossref]

Arissian, L.

H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
[Crossref]

Arora, A.

Arora, R. K.

P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).

Bernier, M.

Bo, L.

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

Brambilla, G.

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

Correia, R.

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

Diels, J. C.

H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
[Crossref]

Diels, J.-C.

Digonnet, M. J. F.

Ding, H.

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

Dong, X.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Eickhoff, W.

Esmaeelpour, M.

Farrell, G.

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

Han, C.

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

He, H.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Hopkins, H. H.

H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature 173, 39–41 (1954).
[Crossref]

James, S.

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

Kamer, B.

H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
[Crossref]

Kapany, N. S.

H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature 173, 39–41 (1954).
[Crossref]

Korposh, S.

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

Lee, S.-W.

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

Li, X.

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

Li, Z.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Liao, C.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Lit, J. W. Y.

Liu, S.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Liu, Y.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Luo, B.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Luo, Z.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

Lv, F.

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

Ma, J.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

Matsas, V. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Morgan, S. P.

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

Newson, T. P.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Pan, W.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Pardeshi, S. R.

P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).

Payne, D. N.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Richardson, D. J.

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

Semenova, Y.

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

Shao, L.-Y.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Sharma, P.

P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).

Shum, P.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Singh, M. S. J.

P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).

Tam, H. Y.

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Wang, P.

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

Wang, Q.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Wang, Y.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Wu, Z.

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

Yan, L.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Yang, K.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Yin, G.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Yu, H.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

Zhang, F.

Zhang, X.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Zhang, Z.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Zheng, Y.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

Zheng, Z.

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

Zhong, X.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Zhou, J.

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Zou, X.

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

X. Dong, H. Y. Tam, and P. Shum, “Temperature-insensitive strain sensor with polarization-maintaining photonic crystal fiber based Sagnac interferometer,” Appl. Phys. Lett. 90, 151113 (2007).
[Crossref]

Biosensors (1)

P. Wang, L. Bo, Y. Semenova, G. Farrell, and G. Brambilla, “Optical microfibre based photonic components and their applications in label-free biosensing,” Biosensors 5, 471–499 (2015).
[Crossref]

Electron. Lett. (1)

V. J. Matsas, T. P. Newson, D. J. Richardson, and D. N. Payne, “Self-starting passively mode-locked fibre ring soliton laser exploiting nonlinear polarisation rotation,” Electron. Lett. 28, 1391–1393 (1992).
[Crossref]

IEEE Photon. Technol. Lett. (1)

F. Lv, C. Han, H. Ding, Z. Wu, and X. Li, “Magnetic field sensor based on microfiber Sagnac loop interferometer and ferrofluid,” IEEE Photon. Technol. Lett. 27, 2327–2330 (2015).
[Crossref]

Int. J. Emerging Technol. (1)

P. Sharma, S. R. Pardeshi, R. K. Arora, and M. S. J. Singh, “A review of the development in the field of fiber optic communication systems,” Int. J. Emerging Technol. 3, 113–119 (2013).

J. Opt. (1)

R. Correia, S. James, S.-W. Lee, S. P. Morgan, and S. Korposh, “Biomedical application of optical fibre sensors,” J. Opt. 20, 073003 (2018).
[Crossref]

Nature (1)

H. H. Hopkins and N. S. Kapany, “A flexible fibrescope, using static scanning,” Nature 173, 39–41 (1954).
[Crossref]

Opt. Lett. (3)

Proc. SPIE (1)

H. Afkhamiardakani, B. Kamer, J. C. Diels, and L. Arissian, “Carbon nanotubes for mode-locking: polarization study,” Proc. SPIE 9746, 97460K (2016).
[Crossref]

Sens. Actuators B Chem. (1)

Z. Li, Y. Wang, C. Liao, S. Liu, J. Zhou, X. Zhong, Y. Liu, K. Yang, Q. Wang, and G. Yin, “Temperature-insensitive refractive index sensor based on in-fiber Michelson interferometer,” Sens. Actuators B Chem. 199, 31–35 (2014).
[Crossref]

Sensors (2)

H. Yu, Y. Wang, J. Ma, Z. Zheng, Z. Luo, and Y. Zheng, “Fabry–Perot interferometric high-temperature sensing up to 1200°C based on a silica glass photonic crystal fiber,” Sensors 18, 273 (2018).
[Crossref]

L.-Y. Shao, X. Zhang, H. He, Z. Zhang, X. Zou, B. Luo, W. Pan, and L. Yan, “Optical fiber temperature and torsion sensor based on Lyot–Sagnac interferometer,” Sensors 16, 1774 (2016).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Experimental setup for polarization measurement of the transmitted circularly polarized light through the PM fiber at different temperatures or powers of light. QWP: quarter-wave plate.
Fig. 2.
Fig. 2. (a) Cross section of a PANDA PM fiber. (b) An example of elliptically polarized light with ellipticity of 0.37 and angle of 135° with respect to the slow axis of the PM fiber.
Fig. 3.
Fig. 3. (a) Projection patterns of the transmitted circularly polarized laser light at different powers through a 17.5 cm PM fiber (at room temperature) followed by a rotating polarizer. (b) Ellipticities and angles of the polarization ellipses associated to (a).
Fig. 4.
Fig. 4. (a) Color-coded transmission of circularly polarized light at different powers through a 17.5 cm PM fiber followed by a rotating polarizer. (b) Transmission versus power of circularly polarized light for the optimum polarizer angle of 58° shown in (a).
Fig. 5.
Fig. 5. Projection patterns of the transmitted circularly polarized laser light (at 30.4 mW) through a 17.5 cm PM fiber with 6 cm exposed to different temperatures from (a) 2°C to 30°C and (c) 20°C to 20.8°C. (b) and (d) Ellipticities and angles of the polarization ellipses associated to (a) and (c), respectively.
Fig. 6.
Fig. 6. Transmission of circularly polarized light at 30.4 mW sent to the PM fiber at different temperatures followed by a polarizer oriented at 46°, which is shown by the dashed lines located at 46° in Figs. 3(a) and 3(c). Temperature determination is ambiguous in the highlighted regions. Inset: enlarged scale to show the sensitivity of the temperature sensor.
Fig. 7.
Fig. 7. (a) Transmission of circularly polarized light at the power of 30.4 mW through the PM fiber at specific temperatures (solid lines), and the transmission of circularly polarized light at specific powers through the PM fiber at temperature of 19°C (circles). (b) Changes in temperature of the PM fiber versus changes in the power of light passing through the fiber calculated from the legend of (a).
Fig. 8.
Fig. 8. Response curve of the sensor as measured by 1550 nm laser (probe) to a step function change of the 980 nm laser (power/heating source).

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

r=ΔPtPt1ΔTL.