Abstract

Dissipative solitons emerge as stable pulse solutions of nonintegrable and nonconservative nonlinear physical systems, owing to a balance of nonlinearity, dispersion, and loss/gain. A considerable research effort has been dedicated to characterizing amplitude and phase evolutions in the spatiotemporal dynamics of dissipative solitons emerging from fiber lasers. Yet, the picture of the buildup process of dissipative solitons in fiber lasers is incomplete in the absence of corresponding information about the polarization evolution. Here, we characterize probabilistic polarization distributions in the buildup of dissipative solitons in a net-normal dispersion fiber laser system, mode-locked by single-wall carbon nanotubes. The output optical spectra under different pump powers are filtered by a tunable filter, and are detected by a polarization state analyzer. The laser system operates from random amplified spontaneous emission into a stable dissipative soliton state as the cavity gain is progressively increased. Correspondingly, the state of polarization of each spectral wavelength converges towards a fixed point. To reveal the invariant polarization relationship among the various wavelength components of the laser output field, the phase diagram of the ellipticity angle and the spherical orientation angle is introduced. We find that, within the central spectral region of the dissipative soliton, the state of polarization evolves with frequency by tracing a uniform arc on the Poincaré sphere, whereas in the edges of the dissipative soliton spectrum, the state of polarization abruptly changes its path. Increasing cavity gain leads to spectral broadening, accompanied by a random scattering of the state of polarization of newly generated frequencies. Further increases of pump power result in dissipative soliton explosions, accompanied by the emergence of a new type of optical polarization rogue waves. These experimental results provide a deeper insight into the transient dynamics of dissipative soliton fiber lasers.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Vector dynamics of incoherent dissipative optical solitons

Katarzyna Krupa, K. Nithyanandan, and Philippe Grelu
Optica 4(10) 1239-1244 (2017)

Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion

Hong-Jie Chen, Meng Liu, Jian Yao, Song Hu, Jian-Bo He, Ai-Ping Luo, Wen-Cheng Xu, and Zhi-Chao Luo
Opt. Express 26(3) 2972-2982 (2018)

Multistability evolution and hysteresis phenomena of dissipative solitons in a passively mode-locked fiber laser with large normal cavity dispersion

Xueming Liu, Leiran Wang, Xiaohui Li, Hongbo Sun, Aoxiang Lin, Keqing Lu, Yishan Wang, and Wei Zhao
Opt. Express 17(10) 8506-8512 (2009)

References

  • View by:
  • |
  • |
  • |

  1. P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
    [Crossref]
  2. J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
    [Crossref]
  3. C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
    [Crossref]
  4. W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
    [Crossref]
  5. N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons (Springer, 2005).
  6. K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
    [Crossref]
  7. G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
    [Crossref]
  8. H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26, 2972–2982 (2018).
    [Crossref]
  9. K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4, 1239–1244 (2017).
    [Crossref]
  10. Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40, 1366–1369 (2015).
    [Crossref]
  11. L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
    [Crossref]
  12. D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
    [Crossref]
  13. L. Gao, T. Zhu, S. Wabnitz, Y. Li, X. S. Tang, and Y. L. Cao, “Optical puff mediated laminar-turbulent polarization transition,” Opt. Express 26, 6103–6113 (2018).
    [Crossref]
  14. T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
    [Crossref]
  15. P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
    [Crossref]
  16. P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
    [Crossref]
  17. S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
    [Crossref]
  18. D. Li, D. Shen, L. Li, D. Tang, L. Su, and L. Zhao, “Internal polarization dynamics of vector dissipative-soliton-resonance pulses in normal dispersion fiber lasers,” Opt. Lett. 43, 1222–1225 (2018).
    [Crossref]
  19. D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
    [Crossref]
  20. E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
    [Crossref]
  21. V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
    [Crossref]
  22. C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and processing states of polarization,” Opt. Express 21, 26868–26875 (2013).
    [Crossref]
  23. Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
    [Crossref]
  24. L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
    [Crossref]
  25. A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2, 36–39 (2015).
    [Crossref]
  26. W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
    [Crossref]
  27. K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
    [Crossref]
  28. D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
    [Crossref]
  29. M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
    [Crossref]
  30. J. P. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Rev. Mod. Phys. 53, 643–654 (1981).
    [Crossref]
  31. A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
    [Crossref]
  32. S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, “Dynamics of vector rogue waves in a fiber laser with a ring cavity,” Optica 3, 870–875 (2016).
    [Crossref]

2018 (5)

2017 (1)

2016 (5)

S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, “Dynamics of vector rogue waves in a fiber laser with a ring cavity,” Optica 3, 870–875 (2016).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

2015 (4)

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2, 36–39 (2015).
[Crossref]

Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40, 1366–1369 (2015).
[Crossref]

L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
[Crossref]

2014 (3)

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

2013 (5)

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and processing states of polarization,” Opt. Express 21, 26868–26875 (2013).
[Crossref]

2012 (3)

D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

2010 (1)

K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
[Crossref]

2008 (2)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

2007 (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

1981 (1)

J. P. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Rev. Mod. Phys. 53, 643–654 (1981).
[Crossref]

Akhmediev, N.

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

Ankiewicz, A.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

Arecchi, F. T.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Babin, S. A.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Bielawski, S.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Billet, C.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Bortolozzo, U.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Broderick, N. G. R.

Cao, Y. L.

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, Y. Li, X. S. Tang, and Y. L. Cao, “Optical puff mediated laminar-turbulent polarization transition,” Opt. Express 26, 6103–6113 (2018).
[Crossref]

Chang, W.

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

Chen, H. J.

Chong, A.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Christodoulides, D. N.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Churkin, D. V.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Dias, F.

Dudley, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

Eckmann, J. P.

J. P. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Rev. Mod. Phys. 53, 643–654 (1981).
[Crossref]

Erkintalo, M.

A. F. J. Runge, N. G. R. Broderick, and M. Erkintalo, “Observation of soliton explosions in a passively mode-locked fiber laser,” Optica 2, 36–39 (2015).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

Evain, C.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Falkovich, G.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Finot, C.

K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
[Crossref]

Gao, L.

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, Y. Li, X. S. Tang, and Y. L. Cao, “Optical puff mediated laminar-turbulent polarization transition,” Opt. Express 26, 6103–6113 (2018).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
[Crossref]

Garnier, J.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Genty, G.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

T. Godin, B. Wetzel, T. Sylvestre, L. Larger, A. Kudlinski, A. Mussot, A. B. Salem, M. Zghal, G. Genty, F. Dias, and J. M. Dudley, “Real time noise and wavelength correlations in octave-spanning supercontinuum generation,” Opt. Express 21, 18452–18460 (2013).
[Crossref]

Goda, K.

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

Godin, T.

Grelu, P.

K. Krupa, K. Nithyanandan, and P. Grelu, “Vector dynamics of incoherent dissipative optical solitons,” Optica 4, 1239–1244 (2017).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Hammani, K.

K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
[Crossref]

Hansson, T.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

He, J. B.

Herink, G.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

Hu, S.

Huang, W.

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
[Crossref]

Huang, X. B.

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

Jacobsen, G.

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

Jalali, B.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Kalashnikov, V.

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

Kbashi, H.

Khorev, S.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

Kibler, B.

K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
[Crossref]

Kobtsev, S. M.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

Kolpakov, S. A.

Koonath, P.

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Koussaifi, R. E.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Krupa, K.

Kudlinski, A.

Larger, L.

Lecaplain, C.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Li, D.

Li, L.

Li, Y.

Li, Y. J.

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

Liu, M.

H. J. Chen, M. Liu, J. Yao, S. Hu, J. B. He, A. P. Luo, W. C. Xu, and Z. C. Luo, “Buildup dynamics of dissipative soliton in an ultrafast fiber laser with net-normal dispersion,” Opt. Express 26, 2972–2982 (2018).
[Crossref]

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

Liu, Z.

Luo, A. P.

Luo, Z.

L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
[Crossref]

Luo, Z. C.

Merolla, J. M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Millot, G.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Montina, A.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Mou, C.

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and processing states of polarization,” Opt. Express 21, 26868–26875 (2013).
[Crossref]

Mussot, A.

Närhi, M.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Nithyanandan, K.

Onorato, M.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Picozzi, A.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
[Crossref]

Podivilov, E. V.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Popov, S.

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

Qiu, F.

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

Qu, D. R.

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

Randoux, G.

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Randoux, S.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Renninger, W. H.

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Residori, S.

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

Ropers, C.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Rozhin, A.

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

Rozhin, A. G.

Runge, A. F. J.

Ryczkowski, P.

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

Salem, A. B.

Sergeyev, S. V.

S. A. Kolpakov, H. Kbashi, and S. V. Sergeyev, “Dynamics of vector rogue waves in a fiber laser with a ring cavity,” Optica 3, 870–875 (2016).
[Crossref]

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and processing states of polarization,” Opt. Express 21, 26868–26875 (2013).
[Crossref]

Shen, D.

Shu, X.

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Smirnov, S. V.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Solli, D. R.

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Soto-Crespo, J. M.

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

Su, L.

Sugavanam, S.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Suret, P.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Sylvestre, T.

Szwaj, C.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Tang, D.

Tang, X. S.

Tarasov, N.

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Tikan, A.

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Turitsyn, S. K.

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

C. Mou, S. V. Sergeyev, A. G. Rozhin, and S. K. Turitsyn, “Bound state vector solitons with locked and processing states of polarization,” Opt. Express 21, 26868–26875 (2013).
[Crossref]

Turitsyna, E. G.

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

Wabnitz, S.

L. Gao, T. Zhu, S. Wabnitz, Y. Li, X. S. Tang, and Y. L. Cao, “Optical puff mediated laminar-turbulent polarization transition,” Opt. Express 26, 6103–6113 (2018).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

Wetzel, B.

Wise, F. W.

Z. Liu, S. Zhang, and F. W. Wise, “Rogue waves in a normal-dispersion fiber laser,” Opt. Lett. 40, 1366–1369 (2015).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Xu, W. C.

Yao, J.

Zghal, M.

Zhang, S.

Zhao, L.

Zhu, T.

L. Gao, T. Zhu, S. Wabnitz, Y. Li, X. S. Tang, and Y. L. Cao, “Optical puff mediated laminar-turbulent polarization transition,” Opt. Express 26, 6103–6113 (2018).
[Crossref]

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
[Crossref]

IEEE J. Sel. Top. Quantum (1)

Y. J. Li, L. Gao, T. Zhu, Y. L. Cao, M. Liu, D. R. Qu, F. Qiu, and X. B. Huang, “Graphene-assisted all-fiber optical-controllable laser,” IEEE J. Sel. Top. Quantum 24, 0901709 (2018).
[Crossref]

IEEE Photon. J. (1)

L. Gao, T. Zhu, W. Huang, and Z. Luo, “Stable, ultrafast pulse mode-locked by topological insulator Bi2Se3 nanosheets interacting with photonic crystal fiber: from anomalous dispersion to normal dispersion,” IEEE Photon. J. 7, 3300108 (2015).
[Crossref]

Light Sci. Appl. (2)

S. V. Sergeyev, C. Mou, E. G. Turitsyna, A. Rozhin, and S. K. Turitsyn, “Spiral attractor created by vector solitons,” Light Sci. Appl. 3, e131 (2014).
[Crossref]

V. Kalashnikov, S. V. Sergeyev, G. Jacobsen, S. Popov, and S. K. Turitsyn, “Multi-scale polarisation phenomena,” Light Sci. Appl. 5, e16011 (2016).
[Crossref]

Nat. Commun. (2)

D. V. Churkin, S. Sugavanam, N. Tarasov, S. Khorev, S. V. Smirnov, S. M. Kobtsev, and S. K. Turitsyn, “Stochasticity, periodicity and localized light structures in partially mode-locked fiber lasers,” Nat. Commun. 65, 700 (2015).
[Crossref]

P. Suret, R. E. Koussaifi, A. Tikan, C. Evain, S. Randoux, C. Szwaj, and S. Bielawski, “Single-shot observation of optical rogue waves in integrable turbulence using time microscopy,” Nat. Commun. 7, 13136 (2016).
[Crossref]

Nat. Photonics (7)

P. Ryczkowski, M. Närhi, C. Billet, J. M. Merolla, G. Genty, and J. M. Dudley, “Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser,” Nat. Photonics 12, 221–227 (2018).
[Crossref]

K. Goda and B. Jalali, “Dispersive Fourier transformation for fast continuous single-shot measurements,” Nat. Photonics 7, 102–112 (2013).
[Crossref]

G. Herink, B. Jalali, C. Ropers, and D. R. Solli, “Resolving the build-up of femtosecond mode-locking with single-shot spectroscopy at 90  MHz frame rate,” Nat. Photonics 10, 321–326 (2016).
[Crossref]

P. Grelu and N. Akhmediev, “Dissipative solitons for mode-locked lasers,” Nat. Photonics 6, 84–92 (2012).
[Crossref]

J. M. Dudley, F. Dias, M. Erkintalo, and G. Genty, “Instabilities, breathers and rogue waves in optics,” Nat. Photonics 8, 755–764 (2014).
[Crossref]

E. G. Turitsyna, S. V. Smirnov, S. Sugavanam, N. Tarasov, X. Shu, S. A. Babin, E. V. Podivilov, D. V. Churkin, G. Falkovich, and S. K. Turitsyn, “The laminar-turbulent transition in a fiber laser,” Nat. Photonics 7, 783–786 (2013).
[Crossref]

D. R. Solli, G. Herink, B. Jalali, and C. Ropers, “Fluctuations and correlations in modulation instability,” Nat. Photonics 6, 463–468 (2012).
[Crossref]

Nature (1)

D. R. Solli, C. Ropers, P. Koonath, and B. Jalali, “Optical rogue waves,” Nature 450, 1054–1057 (2007).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (3)

Phys. Lett. A (1)

K. Hammani, B. Kibler, C. Finot, and A. Picozzi, “Emergence of rogue waves from optical turbulence,” Phys. Lett. A 374, 3585–3589 (2010).
[Crossref]

Phys. Rep. (2)

M. Onorato, S. Residori, U. Bortolozzo, A. Montina, and F. T. Arecchi, “Rogue waves and their generating mechanisms in different physical contexts,” Phys. Rep. 528, 47–89 (2013).
[Crossref]

A. Picozzi, J. Garnier, T. Hansson, P. Suret, G. Randoux, G. Millot, and D. N. Christodoulides, “Optical wave turbulence: towards a unified nonequilibrium thermodynamic formulation of statistical nonlinear optics,” Phys. Rep. 542, 1–132 (2014).
[Crossref]

Phys. Rev. A (2)

W. Chang, A. Ankiewicz, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative soliton resonances,” Phys. Rev. A 78, 023830 (2008).
[Crossref]

W. H. Renninger, A. Chong, and F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008).
[Crossref]

Phys. Rev. Lett. (1)

C. Lecaplain, P. Grelu, J. M. Soto-Crespo, and N. Akhmediev, “Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser,” Phys. Rev. Lett. 108, 233901 (2012).
[Crossref]

Rev. Mod. Phys. (1)

J. P. Eckmann, “Roads to turbulence in dissipative dynamical systems,” Rev. Mod. Phys. 53, 643–654 (1981).
[Crossref]

Sci. Rep. (1)

L. Gao, T. Zhu, S. Wabnitz, M. Liu, and W. Huang, “Coherence loss of partially mode-locked fiber laser,” Sci. Rep. 6, 24995 (2016).
[Crossref]

Other (1)

N. Akhmediev and A. Ankiewicz, eds., Dissipative Solitons (Springer, 2005).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic of the fiber laser cavity and measurement methods.
Fig. 2.
Fig. 2. Average output power under different pump powers, where unstable pulse (below 53 mW), DS (53–66 mW), and DS explosion (above 66 mW) are observed.
Fig. 3.
Fig. 3. Typical outputs for laser pulses. (a)–(d) Averaged optical spectra for various pump powers. (e) Averaged optical spectrum for a pump power of 35 mW, in linear scale. (f) Autocorrelation trace of DS for a pump power of 55 mW, fitted by a Gaussian function. (g) RF spectrum at the fundamental frequency of 11.48 MHz. The inset is the RF spectrum within a broader range, and an envelope is shown due to the mismatching of the PD and the RF spectrum analyzer.
Fig. 4.
Fig. 4. (a)–(c) Conservative single-shot spectra in the buildup of a DS for pump powers of 35, 45, and 70 mW, respectively. The corresponding 3D plots in (d)–(f) indicate giant peaks with rogue intensities in the spectral domain. Due to limited splicing error of long time series into pieces, a slight tilt is shown in the single-shot spectra. All intensities are normalized with respect to the maximum value in each detection. The first round-trip is determined by the trigging level of the real-time oscilloscope during DFT detection. (g) Integrated normalized energy for the pulsed component in the single-shot spectra for different pump powers, fitted by a Gaussian shape. The number of round-trips is shifted, so that maximum energies are realigned at the same position. (h) Spliced single-shot spectra for (c), where a DS explosion with giant intensity occurs. The dotted line indicates the position of the DS. The intensity is in logarithm scale.
Fig. 5.
Fig. 5. Evolution of SOPs for various filtered wavelengths and different pump powers. (a)–(e) Normalized Stokes parameters represented on the Poincaré sphere for pump powers of 35, 45, 55, 67.5, and 70 mW, respectively. Specifically, (c) depicts four detections for a pump power of 55 mW, where the absolute SOP entering the PSA is changed arbitrarily through biasing the fiber between output OC and the PSA.
Fig. 6.
Fig. 6. (a)–(c), (e), (f) Phase diagrams based on the ellipticity angle χ and spherical orientation angle ψ, corresponding to the SOPs of various filtered wavelengths and different pump powers in Figs. 5(a)5(e). (d) Phase diagram for a stable DS, where the pump power is either 55 mW (circled dots), 60 mW (rectangle dots), or 65 mW (star dots), respectively. The SOPs on the edges of the spectrum exhibit fluctuations.
Fig. 7.
Fig. 7. Average relative distances of SOPs of laser wavelengths as a function of pump power. An exponential convergence towards a fixed point is observed. Error bars represent absolute errors based on experimental data, which are relatively high for lower pump powers.
Fig. 8.
Fig. 8. Histograms of the relative distance, r, between points on the Poincaré sphere for 70 mW pump power, when DS explosion deteriorates its high coherence. Large deviations from a Gaussian distribution indicate the presence of optical polarization rogue waves, which can also be certified by the SWH.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

{χ=12arctan(S3S12+S22)ψ=12arctan(S2S1).
r=2arcsin[(Sm1Sn1)2+(Sm2Sn2)2+(Sm3Sn3)2/2],
rave=m,n=1Nmnr/N.