Abstract

We propose a new type of dispersion flattening technology, which can generate an ultra-flat group velocity dispersion profile with five and six zero-dispersion wavelengths (ZDWs). The dispersion value varies from 0.15 to 0.35 ps/(nm·km) from 4 to 8 μm, which to the best of our knowledge is the flattest one reported so far, and the dispersion flatness is improved by more than an order of magnitude. We explain the principle of producing six ZDWs. Mode distribution in this waveguide is made stable over a wide bandwidth. General guidelines to systematically control the dispersion value, sign, and slope are provided, and one can achieve the desired dispersion by properly adjusting the structural parameters. Fabrication tolerance of this waveguide is also examined.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Slot–slot waveguide with negative large and flat dispersion covering C+L+U waveband for on-chip photonic networks

Zhanqiang Hui, Min Yang, Deng Pan, Tiantian Zhang, Jiamin Gong, Meizhi Zhang, and Xiangmei Zeng
Appl. Opt. 58(21) 5728-5739 (2019)

Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini
Opt. Express 25(6) 6561-6567 (2017)

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).
  2. M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1st ed. (Cambridge University, 2007).
  3. R. R. Alfano, The Supercontinuum Laser Source, 1st ed. (Springer, 1989).
  4. J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, 1st ed. (Springer, 2004).
  5. Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
    [Crossref]
  6. C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
    [Crossref]
  7. M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
    [Crossref]
  8. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andrés, “Nearly zero ultraflattened dispersion in photonic crystal fibers,” Opt. Lett. 25, 790–792 (2000).
    [Crossref]
  9. F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728–3736 (2005).
    [Crossref]
  10. S. Kim, C. S. Kee, and J. Lee, “Novel optical properties of six-fold symmetric photonic quasicrystal fibers,” Opt. Express 15, 13221–13226 (2007).
    [Crossref]
  11. D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun. 282, 4072–4076 (2009).
    [Crossref]
  12. H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
    [Crossref]
  13. A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous GVD in Si channel waveguides,” Opt. Express 14, 4357–4362 (2006).
    [Crossref]
  14. L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19, 11584–11590 (2011).
    [Crossref]
  15. L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690 (2012).
    [Crossref]
  16. H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
    [Crossref]
  17. Z. Jafari, L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel, and A. Zarifkar, “Parameter space exploration in dispersion engineering of multilayer silicon waveguides from near-infrared to mid-infrared,” J. Lightwave Technol. 34, 3696–3702 (2016).
    [Crossref]
  18. M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express 20, 15899–15907 (2012).
    [Crossref]
  19. Z. Jafari and F. Emami, “Strip/slot hybrid arsenic tri-sulfide waveguide with ultra-flat and low dispersion profile over an ultra-wide bandwidth,” Opt. Lett. 38, 3082–3085 (2013).
    [Crossref]
  20. D. Castelló-Lurbe, V. Torres-Company, and E. Silvestre, “Inverse dispersion engineering in silicon waveguides,” J. Opt. Soc. Am. B 31, 1829–1835 (2014).
    [Crossref]
  21. Y. Zhang, H. Liu, Q. Sun, N. Huang, and Z. Wang, “Supercontinuum generation in strip/slot hybrid waveguide with flat and low dispersion,” Appl. Opt. 54, 4850–4856 (2015).
    [Crossref]
  22. L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
    [Crossref]
  23. R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
    [Crossref]
  24. Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41, 4939–4942 (2016).
    [Crossref]
  25. A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.
  26. M. M. Borhan, J. Nafiz, and K. Sangsik, “Extremely high dispersions in heterogeneously coupled waveguides,” Opt. Express 27, 10426–10437 (2019).
    [Crossref]
  27. B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
    [Crossref]
  28. R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
    [Crossref]
  29. L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
    [Crossref]
  30. M. Li, L. Zhang, L. Tong, and D. Dai, “Hybrid silicon nonlinear photonics [Invited],” Photon. Res. 6, B13–B22 (2018).
    [Crossref]
  31. N. Singh, D. D. Hudson, Y. Yu, C. Grillet, S. D. Jackson, A. C. Bedoya, A. Read, P. Atanackovic, S. G. Duval, S. Palomba, B. L. Davies, S. Madden, D. J. Moss, and B. J. Eggleton, “Mid-infrared supercontinuum generation from 2 to 6 μm in a silicon nanowire,” Optica 2, 797–802 (2015).
    [Crossref]
  32. M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
    [Crossref]
  33. M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
    [Crossref]
  34. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  35. A. A. Savchenkov, V. S. Ilchenko, F. Di Teodoro, P. M. Belden, W. T. Lotshaw, A. B. Matsko, and L. Maleki, “Generation of Kerr combs centered at 4.5 μm in crystalline microresonators pumped with quantum-cascade lasers,” Opt. Lett. 40, 3468–3471 (2015).
    [Crossref]
  36. D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J. Fédéli, C. Kopp, and L. Vivien, “25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photon. Res. 7, 437–444 (2019).
    [Crossref]
  37. J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595–613.
  38. S. Türker-Kaya and C. W. Huck, “A review of mid-infrared and near-infrared imaging: principles concepts and applications in plant tissue analysis,” Molecules 22, 168 (2017).
    [Crossref]
  39. J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25, 6561–6567 (2017).
    [Crossref]
  40. J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. 35, 2994–3002 (2017).
    [Crossref]
  41. Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
    [Crossref]
  42. H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980).
    [Crossref]
  43. E. D. Palik, ed., Handbook of Optical Constants of Solids I (Academic, 1985).
  44. K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
    [Crossref]
  45. Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
    [Crossref]
  46. A. W. Synder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microwave Theory Tech. 17, 1138–1144 (1969).
    [Crossref]

2019 (2)

2018 (4)

M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
[Crossref]

M. Li, L. Zhang, L. Tong, and D. Dai, “Hybrid silicon nonlinear photonics [Invited],” Photon. Res. 6, B13–B22 (2018).
[Crossref]

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

2017 (4)

2016 (4)

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41, 4939–4942 (2016).
[Crossref]

Z. Jafari, L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel, and A. Zarifkar, “Parameter space exploration in dispersion engineering of multilayer silicon waveguides from near-infrared to mid-infrared,” J. Lightwave Technol. 34, 3696–3702 (2016).
[Crossref]

2015 (5)

2014 (4)

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

D. Castelló-Lurbe, V. Torres-Company, and E. Silvestre, “Inverse dispersion engineering in silicon waveguides,” J. Opt. Soc. Am. B 31, 1829–1835 (2014).
[Crossref]

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

2013 (1)

2012 (4)

2011 (3)

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19, 11584–11590 (2011).
[Crossref]

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

2009 (1)

D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun. 282, 4072–4076 (2009).
[Crossref]

2007 (2)

2006 (1)

2005 (1)

2000 (1)

1980 (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980).
[Crossref]

1969 (1)

A. W. Synder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microwave Theory Tech. 17, 1138–1144 (1969).
[Crossref]

Abdel-Moneim, N.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Agarwal, A. M.

Agrawal, G. P.

Alfano, R. R.

R. R. Alfano, The Supercontinuum Laser Source, 1st ed. (Springer, 1989).

Allioux, D.

Alonso-Ramos, C.

Amar, F.

Andrés, P.

Asaduzzaman, M.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

Atanackovic, P.

Aubin, G.

Bakaul, M.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

Ballabio, A.

Bang, O.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Baudot, C.

Beausoleil, R. G.

Bedoya, A. C.

Belden, P. M.

Benedikovic, D.

Benson, T.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Boeuf, F.

Borhan, M. M.

Boutami, S.

Broderick, N. G. R.

Cardenas, J.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Cassan, E.

Castelló-Lurbe, D.

Chaisakul, P.

Chen, T.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Chen, X.

Chen, Y. M.

Cheng, Z.

Chrastina, D.

Crowder, J. G.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595–613.

Crozat, P.

Cundiff, S. T.

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, 1st ed. (Springer, 2004).

Dai, D.

Dai, Y.

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

Davies, B. L.

Debbarma, S.

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Di Teodoro, F.

Dupont, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Duval, S. G.

Eggleton, B. J.

Emami, F.

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Fedeli, J.

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Fedeli, J. M.

Fédéli, J.

Ferrando, A.

Finazzi, V.

Foster, M. A.

Frigerio, J.

Fung, C. K. Y.

Furniss, D.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Gaeta, A. L.

Griffith, A. G.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grillet, C.

Guo, Y.

Han, Z.

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

Hartmann, J.

D. Benedikovic, L. Virot, G. Aubin, F. Amar, B. Szelag, B. Karakus, J. Hartmann, C. Alonso-Ramos, X. L. Roux, P. Crozat, E. Cassan, D. Marris-Morini, C. Baudot, F. Boeuf, J. Fédéli, C. Kopp, and L. Vivien, “25 Gbps low-voltage hetero-structured silicon-germanium waveguide pin photodetectors for monolithic on-chip nanophotonic architectures,” Photon. Res. 7, 437–444 (2019).
[Crossref]

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Hartmann, J. M.

Hu, D. J. J.

D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun. 282, 4072–4076 (2009).
[Crossref]

Hu, M.

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

Huang, N.

Huck, C. W.

S. Türker-Kaya and C. W. Huck, “A review of mid-infrared and near-infrared imaging: principles concepts and applications in plant tissue analysis,” Molecules 22, 168 (2017).
[Crossref]

Hudson, D. D.

Ilchenko, V. S.

Isella, G.

Jackson, S. D.

Jafari, Z.

Jeon, S.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Kang, Z.

Karakus, B.

Keddie, J.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595–613.

Kee, C. S.

Khandokar, R. H.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

Kim, S.

Kimerling, L. C.

Kopp, C.

Kubat, I.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Lamont, M. R. E.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Le Roux, X.

Lee, H.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Lee, J.

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Li, F.

Li, G.

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41, 4939–4942 (2016).
[Crossref]

Li, H. H.

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980).
[Crossref]

Li, J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Li, M.

Li, X.

Li, Y.

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

Lin, J.

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

Lin, Q.

Lipson, M.

Liu, B.

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

Liu, H.

Loncar, M.

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Lotshaw, W. T.

Lu, C.

Luke, K.

Luther-Davies, B.

Luther-Davis, B.

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Ma, P.

M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
[Crossref]

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Madden, S.

Maleki, L.

Manolatou, C.

Marhic, M.

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1st ed. (Cambridge University, 2007).

Marris-Morini, D.

Matsko, A. B.

Michel, J.

Miret, J. J.

Mitchell, A.

M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
[Crossref]

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Møller, U.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Monat, C.

M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
[Crossref]

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Monro, T. M.

Moss, D. J.

Nafiz, J.

Ni, X.

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

Nirmalathas, T.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

K. Luke, Y. Okawachi, M. R. E. Lamont, A. L. Gaeta, and M. Lipson, “Broadband mid-infrared frequency comb generation in a Si3N4 microresonator,” Opt. Lett. 40, 4823–4826 (2015).
[Crossref]

Orobtchouk, R.

Painter, O.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19, 11584–11590 (2011).
[Crossref]

Painter, O. J.

Palomba, S.

Petersen, C. R.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Poletti, F.

Ramirez, J. M.

Ramsay, J.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Read, A.

Ren, G.

D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun. 282, 4072–4076 (2009).
[Crossref]

Richardson, D. J.

Richardson, K.

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Roux, X. L.

Sang, X.

Sangsik, K.

Savchenkov, A. A.

Schmidt, B. S.

Seddon, A.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Shankar, R.

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

Sharping, J. E.

Shum, P. P.

D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun. 282, 4072–4076 (2009).
[Crossref]

Silvestre, E.

Singh, N.

Sinobad, M.

M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon-germanium waveguides,” Optica 5, 360–366 (2018).
[Crossref]

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Skafidas, S.

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

Smith, S. D.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595–613.

Sujecki, S.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Sun, Q.

Synder, A. W.

A. W. Synder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microwave Theory Tech. 17, 1138–1144 (1969).
[Crossref]

Szelag, B.

Tam, H. Y.

Tang, Z.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Tong, L.

Torre, A. D.

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Torres-Company, V.

Tsang, H. K.

Tse, V.

Türker-Kaya, S.

S. Türker-Kaya and C. W. Huck, “A review of mid-infrared and near-infrared imaging: principles concepts and applications in plant tissue analysis,” Molecules 22, 168 (2017).
[Crossref]

Turner, A. C.

Vahala, K. J.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Vakarin, V.

Vass, A.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595–613.

Virot, L.

Vivien, L.

Vu, K.

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

Wada, K.

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

Wai, P. K. A.

Wang, J.

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

Wang, K.

Wang, Z.

Wen, J.

Willner, A. E.

Wong, C. Y.

Wu, J.

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

Wu, Q.

Xu, C.

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

Xu, H.

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

Xu, K.

Z. Cheng, X. Chen, C. Y. Wong, K. Xu, C. K. Y. Fung, Y. M. Chen, and H. K. Tsang, “Broadband focusing grating couplers for suspended-membrane waveguides,” Opt. Lett. 37, 5181–5183 (2012).
[Crossref]

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

Xu, L.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

Yan, B.

Yan, Y.

Yang, K. Y.

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

Yang, M.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

Ye, J.

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, 1st ed. (Springer, 2004).

Yu, C.

Yu, M.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Yu, Y.

Yuan, J.

Yue, Y.

Zarifkar, A.

Zhang, L.

M. Li, L. Zhang, L. Tong, and D. Dai, “Hybrid silicon nonlinear photonics [Invited],” Photon. Res. 6, B13–B22 (2018).
[Crossref]

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

Z. Jafari, L. Zhang, A. M. Agarwal, L. C. Kimerling, J. Michel, and A. Zarifkar, “Parameter space exploration in dispersion engineering of multilayer silicon waveguides from near-infrared to mid-infrared,” J. Lightwave Technol. 34, 3696–3702 (2016).
[Crossref]

Y. Guo, Z. Jafari, A. M. Agarwal, L. C. Kimerling, G. Li, J. Michel, and L. Zhang, “Bilayer dispersion-flattened waveguides with four zero-dispersion wavelengths,” Opt. Lett. 41, 4939–4942 (2016).
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690 (2012).
[Crossref]

L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19, 11584–11590 (2011).
[Crossref]

Zhang, X.

Zhang, Y.

Zheng, Z.

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Zhong, K.

Zhou, B.

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

Zhou, G.

Zhou, X.

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

J. Yuan, Z. Kang, F. Li, X. Zhang, X. Sang, Q. Wu, B. Yan, K. Wang, X. Zhou, K. Zhong, G. Zhou, C. Yu, C. Lu, H. Y. Tam, and P. K. A. Wai, “Mid-infrared octave-spanning supercontinuum and frequency comb generation in a suspended germanium-membrane ridge waveguide,” J. Lightwave Technol. 35, 2994–3002 (2017).
[Crossref]

Zhu, M.

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. Yang, L. Xu, J. Wang, H. Liu, X. Zhou, G. Li, and L. Zhang, “An octave-spanning optical parametric amplifier based on a low-dispersion silicon-rich nitride waveguide,” IEEE J. Sel. Top. Quantum Electron. 24, 8300607 (2018).
[Crossref]

IEEE J. Sel. Top. Quantum. Electron. (1)

R. H. Khandokar, M. Bakaul, S. Skafidas, T. Nirmalathas, and M. Asaduzzaman, “Performance of planar, rib and photonic crystal silicon waveguides in tailoring group-velocity dispersion and mode loss,” IEEE J. Sel. Top. Quantum. Electron. 22, 73–80 (2016).
[Crossref]

IEEE Trans. Microwave Theory Tech. (1)

A. W. Synder, “Excitation and scattering of modes on a dielectric or optical fiber,” IEEE Trans. Microwave Theory Tech. 17, 1138–1144 (1969).
[Crossref]

J. Lightwave Technol. (2)

J. Opt. (1)

H. Xu, J. Wu, K. Xu, Y. Dai, C. Xu, and J. Lin, “Ultra-flattened chromatic dispersion control for circular photonic crystal fibers,” J. Opt. 13, 055405 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

J. Phys. Chem. Ref. Data (1)

H. H. Li, “Refractive index of alkaline earth halides and its wavelength and temperature derivatives,” J. Phys. Chem. Ref. Data 9, 161–289 (1980).
[Crossref]

Molecules (1)

S. Türker-Kaya and C. W. Huck, “A review of mid-infrared and near-infrared imaging: principles concepts and applications in plant tissue analysis,” Molecules 22, 168 (2017).
[Crossref]

Nanophotonics (3)

R. Shankar and M. Lončar, “Silicon photonic devices for mid-infrared applications,” Nanophotonics 3, 329–341 (2014).
[Crossref]

L. Zhang, A. M. Agarwal, L. C. Kimerling, and J. Michel, “Nonlinear group IV photonics based on silicon and germanium: from near-infrared to mid-infrared,” Nanophotonics 3, 247–268 (2014).
[Crossref]

Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, Z. Zheng, G. Li, and L. Zhang, “Power-efficient generation of octave-spanning mid-IR frequency combs in a germanium,” Nanophotonics 7, 1461–1467 (2018).
[Crossref]

Nat. Commun. (1)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Nat. Photonics (3)

C. R. Petersen, U. Møller, I. Kubat, B. Zhou, S. Dupont, J. Ramsay, T. Benson, S. Sujecki, N. Abdel-Moneim, Z. Tang, D. Furniss, A. Seddon, and O. Bang, “Mid-infrared supercontinuum covering the 1.4-13.3  μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre,” Nat. Photonics 8, 830–834 (2014).
[Crossref]

H. Lee, T. Chen, J. Li, K. Y. Yang, S. Jeon, O. Painter, and K. J. Vahala, “Chemically etched ultrahigh-Q wedge-resonator on a silicon chip,” Nat. Photonics 6, 369–373 (2012).
[Crossref]

B. J. Eggleton, B. L. Davies, and K. Richardson, “Chalcogenide photonics,” Nat. Photonics 5, 141–148 (2011).
[Crossref]

Opt. Commun. (1)

D. J. J. Hu, P. P. Shum, C. Lu, and G. Ren, “Dispersion-flattened polarization-maintaining photonic crystal fiber for nonlinear applications,” Opt. Commun. 282, 4072–4076 (2009).
[Crossref]

Opt. Eng. (1)

L. Xu, X. Ni, B. Liu, Y. Li, and M. Hu, “Ultraflat and low dispersion in a horizontal silicon nitride slot waveguide at near-infrared wavelengths,” Opt. Eng. 55, 037109 (2016).
[Crossref]

Opt. Express (10)

F. Poletti, V. Finazzi, T. M. Monro, N. G. R. Broderick, V. Tse, and D. J. Richardson, “Inverse design and fabrication tolerances of ultra-flattened dispersion holey fibers,” Opt. Express 13, 3728–3736 (2005).
[Crossref]

A. C. Turner, C. Manolatou, B. S. Schmidt, M. Lipson, M. A. Foster, J. E. Sharping, and A. L. Gaeta, “Tailored anomalous GVD in Si channel waveguides,” Opt. Express 14, 4357–4362 (2006).
[Crossref]

S. Kim, C. S. Kee, and J. Lee, “Novel optical properties of six-fold symmetric photonic quasicrystal fibers,” Opt. Express 15, 13221–13226 (2007).
[Crossref]

Q. Lin, O. J. Painter, and G. P. Agrawal, “Nonlinear optical phenomena in silicon waveguides: modeling and applications,” Opt. Express 15, 16604–16644 (2007).
[Crossref]

L. Zhang, Y. Yan, Y. Yue, Q. Lin, O. Painter, R. G. Beausoleil, and A. E. Willner, “On-chip two-octave supercontinuum generation by enhancing self-steepening of optical pulses,” Opt. Express 19, 11584–11590 (2011).
[Crossref]

L. Zhang, Q. Lin, Y. Yue, Y. Yan, R. G. Beausoleil, and A. E. Willner, “Silicon waveguide with four zero-dispersion wavelengths and its application in on-chip octave-spanning supercontinuum generation,” Opt. Express 20, 1685–1690 (2012).
[Crossref]

M. Zhu, H. Liu, X. Li, N. Huang, Q. Sun, J. Wen, and Z. Wang, “Ultrabroadband flat dispersion tailoring of dual-slot silicon waveguides,” Opt. Express 20, 15899–15907 (2012).
[Crossref]

J. M. Ramirez, V. Vakarin, J. Frigerio, P. Chaisakul, D. Chrastina, X. Le Roux, A. Ballabio, L. Vivien, G. Isella, and D. Marris-Morini, “Ge-rich graded-index Si1-xGex waveguides with broadband tight mode confinement and flat anomalous dispersion for nonlinear mid-infrared photonics,” Opt. Express 25, 6561–6567 (2017).
[Crossref]

M. Yang, Y. Guo, J. Wang, Z. Han, K. Wada, L. C. Kimerling, A. M. Agarwal, J. Michel, G. Li, and L. Zhang, “Mid-IR supercontinuum generated in low-dispersion Ge-on-Si waveguides pumped by sub-ps pulses,” Opt. Express 25, 16116–16122 (2017).
[Crossref]

M. M. Borhan, J. Nafiz, and K. Sangsik, “Extremely high dispersions in heterogeneously coupled waveguides,” Opt. Express 27, 10426–10437 (2019).
[Crossref]

Opt. Lett. (6)

Optica (2)

Photon. Res. (2)

Other (7)

E. D. Palik, ed., Handbook of Optical Constants of Solids I (Academic, 1985).

A. D. Torre, M. Sinobad, B. Luther-Davis, P. Ma, S. Madden, S. Debbarma, K. Vu, D. J. Moss, A. Mitchell, J. Hartmann, J. Fedeli, C. Monat, and C. Grillet, “Tailoring the dispersion of a hybrid chalcogenide/silicon-germanium waveguide for mid-infrared supercontinuum generation,” in Conference on Lasers and Electro-Optics, OSA Technical Digest (Optical Society of America, 2019), paper FF2D.8.

J. G. Crowder, S. D. Smith, A. Vass, and J. Keddie, “Infrared methods for gas detection,” in Mid-Infrared Semiconductor Optoelectronics (Springer, 2006), pp. 595–613.

G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2006).

M. Marhic, Fiber Optical Parametric Amplifiers, Oscillators and Related Devices, 1st ed. (Cambridge University, 2007).

R. R. Alfano, The Supercontinuum Laser Source, 1st ed. (Springer, 1989).

J. Ye and S. T. Cundiff, Femtosecond Optical Frequency Comb: Principle, Operation, and Applications, 1st ed. (Springer, 2004).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Scheme for obtaining dispersion profile with more ZDWs. (a) The dispersion profile with another dip can introduce two more ZDWs. (b) The waveguide structure can generate the dispersion curve in (a), with one more slot layer added. (c) A slab beneath the waveguide core is introduced so that the guided mode extends to the slab more at a longer wavelength. (d) The proposed waveguide in this work.
Fig. 2.
Fig. 2. Dispersion profiles of the guided mode over a wideband (a) for WG1 and (b) for WG2. Details of the dispersion are shown in the insets, individually.
Fig. 3.
Fig. 3. Mode evolution in this waveguide. (a) Optical field distributions of the quasi-fundamental-TM mode in WG1 at 4, 5, 6, 7, and 8 μm, respectively. (b) Normalized optical field overlaps of a fixed mode located at 6 μm with other modes at 4, 5, 7, and 8 μm.
Fig. 4.
Fig. 4. Dispersion profiles for WG2 with different structural parameters changed around the optimal values. (a) Different W, (b) different H1, (c) different H2, (d) different H3, (e) different H4, and (f) different H5.
Fig. 5.
Fig. 5. Dispersion profiles of the waveguides with the six structural parameters randomly changed within a range of ±2.5% for 10 times to mimic the influence of fabrication errors (a) for WG1 and (b) for WG2.
Fig. 6.
Fig. 6. Suggested waveguide fabrication process. (a) Thermal evaporation of GeSbS. (b) Spin-coating of photoresist. (c) UV exposure through photomask. (d) Photoresist development. (e) Thermal evaporation of GeSbSe, GeSbS, and GeSbSe. (f) Photoresist lift-off. (g) Thermal evaporation of GeSbS.

Tables (3)

Tables Icon

Table 1. Comparison of Dispersion-Flattened Waveguides in Recent Works

Tables Icon

Table 2. Values of the Six Structural Parameters Randomly Changed within a Range of ±2.5% for 10 Times for WG1 (unit: nm)

Tables Icon

Table 3. Values of the Six Structural Parameters Randomly Changed within a Range of ±2.5% for 10 Times for WG2 (unit: nm)

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

D=(λc)·(2neffλ2),

Metrics