Abstract

Previous works for achieving mechanical squeezing focused mainly on the sole squeezing manipulation method. Here we study how to construct strong steady-state mechanical squeezing via the joint effect between Duffing nonlinearity and parametric pump driving. We find that the 3 dB limit of strong mechanical squeezing can be easily overcome from the joint effect of two different below 3 dB squeezing components induced by Duffing nonlinearity and parametric pump driving, respectively, without the need of any extra technologies, such as quantum measurement or quantum feedback. We first demonstrate that, in the ideal mechanical bath, the joint squeezing effect just is the superposition of the two respective independent squeezing components. The mechanical squeezing constructed by the joint effect is fairly robust against the mechanical thermal noise. Moreover, different from previous mechanical squeezing detection schemes, which need to introduce an additional ancillary cavity mode, the joint mechanical squeezing effect in the present scheme can be directly measured by homodyning the output field of the cavity with an appropriate phase. The joint idea opens up a new approach to construct strong mechanical squeezing and can be generalized to realize other strong macroscopic quantum effects.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Quantum squeezing in a modulated optomechanical system

Zhu-Cheng Zhang, Yi-Ping Wang, Ya-Fei Yu, and Zhi-Ming Zhang
Opt. Express 26(9) 11915-11927 (2018)

Enhanced quadratic nonlinearity with parametric amplifications

Wen-ju Gu, Zhen Yi, Li-hui Sun, and Yan Yan
J. Opt. Soc. Am. B 35(4) 652-657 (2018)

Dynamical Casimir effect of phonon excitation in the dispersive regime of cavity optomechanics

Ali Motazedifard, M. H. Naderi, and R. Roknizadeh
J. Opt. Soc. Am. B 34(3) 642-652 (2017)

References

  • View by:
  • |
  • |
  • |

  1. M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).
  2. C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
    [Crossref]
  3. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
    [Crossref]
  4. M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
    [Crossref]
  5. M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
    [Crossref]
  6. W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
    [Crossref]
  7. T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
    [Crossref]
  8. S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
    [Crossref]
  9. D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
    [Crossref]
  10. R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
    [Crossref]
  11. L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
    [Crossref]
  12. J. N. Hollenhorst, “Quantum limits on resonant-mass gravitational-radiation detectors,” Phys. Rev. D 19, 1669–1679 (1979).
    [Crossref]
  13. H. Lü, Y. Jiang, Y. Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photon. Res. 5, 367–371 (2017).
    [Crossref]
  14. S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
    [Crossref]
  15. T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
    [Crossref]
  16. J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
    [Crossref]
  17. J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
    [Crossref]
  18. J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
    [Crossref]
  19. J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
    [Crossref]
  20. S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
    [Crossref]
  21. J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
    [Crossref]
  22. M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
    [Crossref]
  23. A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
    [Crossref]
  24. J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
    [Crossref]
  25. M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New J. Phys. 14, 125005 (2012).
    [Crossref]
  26. C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
    [Crossref]
  27. M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
    [Crossref]
  28. A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
    [Crossref]
  29. R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
    [Crossref]
  30. K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
    [Crossref]
  31. A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
    [Crossref]
  32. M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
    [Crossref]
  33. S. Huang and G. S. Agarwal, “Reactive coupling can beat the motional quantum limit of nanowaveguides coupled to a microdisk resonator,” Phys. Rev. A 82, 033811 (2010).
    [Crossref]
  34. W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
    [Crossref]
  35. W. J. Gu and G. X. Li, “Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system,” Opt. Express 21, 20423–20440 (2013).
    [Crossref]
  36. X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
    [Crossref]
  37. B. Xiong, X. Li, S. L. Chao, and L. Zhou, “Optomechanical quadrature squeezing in the non-Markovian regime,” Opt. Lett. 43, 6053–6056 (2018).
    [Crossref]
  38. A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008).
    [Crossref]
  39. A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
    [Crossref]
  40. A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
    [Crossref]
  41. R. Ruskov, K. Schwab, and A. N. Korotkov, “Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback,” Phys. Rev. B 71, 235407 (2005).
    [Crossref]
  42. A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).
    [Crossref]
  43. A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).
    [Crossref]
  44. D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
    [Crossref]
  45. J. F. Huang, J. Q. Liao, and L. M. Kuang, “Ultrastrong Jaynes-Cummings model,” arXiv:1902.05779 (2019).
  46. K. Jacobs and A. J. Landahl, “Engineering giant nonlinearities in quantum nanosystems,” Phys. Rev. Lett. 103, 067201 (2009).
    [Crossref]
  47. E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288–5290 (1987).
    [Crossref]
  48. C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
    [Crossref]
  49. R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
    [Crossref]
  50. S. Chakraborty and A. K. Sarma, “Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics,” Phys. Rev. A 97, 022336 (2018).
    [Crossref]
  51. D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).
  52. K. W. Xiao, N. Zhao, and Z. Q. Yin, “Bistability and squeezing of the librational mode of an optically trapped nanoparticle,” Phys. Rev. A 96, 013837 (2017).
    [Crossref]

2019 (2)

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

2018 (4)

B. Xiong, X. Li, S. L. Chao, and L. Zhou, “Optomechanical quadrature squeezing in the non-Markovian regime,” Opt. Lett. 43, 6053–6056 (2018).
[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

S. Chakraborty and A. K. Sarma, “Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics,” Phys. Rev. A 97, 022336 (2018).
[Crossref]

2017 (3)

K. W. Xiao, N. Zhao, and Z. Q. Yin, “Bistability and squeezing of the librational mode of an optically trapped nanoparticle,” Phys. Rev. A 96, 013837 (2017).
[Crossref]

H. Lü, Y. Jiang, Y. Z. Wang, and H. Jing, “Optomechanically induced transparency in a spinning resonator,” Photon. Res. 5, 367–371 (2017).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

2015 (2)

R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
[Crossref]

X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
[Crossref]

2014 (2)

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

2013 (4)

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

W. J. Gu and G. X. Li, “Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system,” Opt. Express 21, 20423–20440 (2013).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
[Crossref]

2012 (4)

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New J. Phys. 14, 125005 (2012).
[Crossref]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[Crossref]

2011 (4)

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

2010 (4)

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[Crossref]

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

S. Huang and G. S. Agarwal, “Reactive coupling can beat the motional quantum limit of nanowaveguides coupled to a microdisk resonator,” Phys. Rev. A 82, 033811 (2010).
[Crossref]

2009 (4)

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[Crossref]

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

K. Jacobs and A. J. Landahl, “Engineering giant nonlinearities in quantum nanosystems,” Phys. Rev. Lett. 103, 067201 (2009).
[Crossref]

2008 (4)

A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008).
[Crossref]

M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

2006 (1)

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

2005 (2)

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

R. Ruskov, K. Schwab, and A. N. Korotkov, “Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback,” Phys. Rev. B 71, 235407 (2005).
[Crossref]

2004 (1)

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
[Crossref]

1992 (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

1991 (1)

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
[Crossref]

1987 (1)

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288–5290 (1987).
[Crossref]

1986 (1)

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

1985 (1)

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

1983 (1)

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

1980 (1)

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

1979 (1)

J. N. Hollenhorst, “Quantum limits on resonant-mass gravitational-radiation detectors,” Phys. Rev. D 19, 1669–1679 (1979).
[Crossref]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Agarwal, G. S.

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

S. Huang and G. S. Agarwal, “Reactive coupling can beat the motional quantum limit of nanowaveguides coupled to a microdisk resonator,” Phys. Rev. A 82, 033811 (2010).
[Crossref]

Alegre, T. P. M.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Allman, M. S.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Asjad, M.

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

Aspelmeyer, M.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[Crossref]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Aumentado, J.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

Bai, C. H.

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

Bäuerle, D.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Blaser, F.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Böhm, H. R.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Børkje, K.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[Crossref]

Bowen, W. P.

A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

Braunstein, S. L.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Brawley, G. A.

A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
[Crossref]

Buu, O.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
[Crossref]

Camarota, B.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
[Crossref]

Caves, C. M.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Cerf, N. J.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Chakraborty, S.

S. Chakraborty and A. K. Sarma, “Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics,” Phys. Rev. A 97, 022336 (2018).
[Crossref]

Chan, J.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Chao, S. L.

Chen, R. X.

R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
[Crossref]

Chesi, S.

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

Cicak, K.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Clark, J. B.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

Clerk, A. A.

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008).
[Crossref]

Dalafi, A.

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).
[Crossref]

DeJesus, E. X.

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288–5290 (1987).
[Crossref]

Doherty, A. C.

A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
[Crossref]

Donner, T.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Eisert, J.

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

Fang, Y.

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

Farace, A.

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).
[Crossref]

García-Patrón, R.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Genes, C.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Gigan, S.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Giovannetti, V.

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).
[Crossref]

Girvin, S. M.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

Giuseppe, G. D.

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

Gröblacher, S.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[Crossref]

Gu, W. J.

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

W. J. Gu and G. X. Li, “Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system,” Opt. Express 21, 20423–20440 (2013).
[Crossref]

Gürsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Hall, J. L.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Hammerer, K.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[Crossref]

Harlow, J. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Harris, G. I.

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

Harris, J. G. E.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

Hertzberg, J. B.

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Hill, J. T.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Hollberg, L. W.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Hollenhorst, J. N.

J. N. Hollenhorst, “Quantum limits on resonant-mass gravitational-radiation detectors,” Phys. Rev. D 19, 1669–1679 (1979).
[Crossref]

Huang, J. F.

J. F. Huang, J. Q. Liao, and L. M. Kuang, “Ultrastrong Jaynes-Cummings model,” arXiv:1902.05779 (2019).

Huang, S.

S. Huang and G. S. Agarwal, “Reactive coupling can beat the motional quantum limit of nanowaveguides coupled to a microdisk resonator,” Phys. Rev. A 82, 033811 (2010).
[Crossref]

Jacobs, K.

K. Jacobs and A. J. Landahl, “Engineering giant nonlinearities in quantum nanosystems,” Phys. Rev. Lett. 103, 067201 (2009).
[Crossref]

A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008).
[Crossref]

Jähne, K.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Jayich, A. M.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

Jiang, Y.

Jing, H.

Kaufman, C.

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288–5290 (1987).
[Crossref]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Kim, M. S.

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

Kimble, H. J.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Kippenberg, T. J.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Korotkov, A. N.

R. Ruskov, K. Schwab, and A. N. Korotkov, “Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback,” Phys. Rev. B 71, 235407 (2005).
[Crossref]

Krause, A.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Kronwald, A.

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

Kuang, L. M.

J. F. Huang, J. Q. Liao, and L. M. Kuang, “Ultrastrong Jaynes-Cummings model,” arXiv:1902.05779 (2019).

LaHaye, M. D.

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
[Crossref]

Landahl, A. J.

K. Jacobs and A. J. Landahl, “Engineering giant nonlinearities in quantum nanosystems,” Phys. Rev. Lett. 103, 067201 (2009).
[Crossref]

Langer, G.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Law, C. K.

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

Lecocq, F.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

Lehnert, K. W.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Li, D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Li, G. X.

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

W. J. Gu and G. X. Li, “Squeezing of the mirror motion via periodic modulations in a dissipative optomechanical system,” Opt. Express 21, 20423–20440 (2013).
[Crossref]

Li, X.

Liao, J. Q.

X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

J. F. Huang, J. Q. Liao, and L. M. Kuang, “Ultrastrong Jaynes-Cummings model,” arXiv:1902.05779 (2019).

Liu, S.

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

Lloyd, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Lü, H.

Lü, X. Y.

X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
[Crossref]

Ludwig, M.

M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New J. Phys. 14, 125005 (2012).
[Crossref]

Macklin, C.

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

Mari, A.

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

Marquardt, F.

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New J. Phys. 14, 125005 (2012).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008).
[Crossref]

Mertz, J. C.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Meystre, P.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[Crossref]

Milburn, G. J.

M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Motazedifard, A.

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).
[Crossref]

Naderi, M. H.

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).
[Crossref]

Ndukum, T.

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

Nori, F.

X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
[Crossref]

Nunnenkamp, A.

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[Crossref]

Painter, O.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Paternostro, M.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Pirandola, S.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Polzik, E. S.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Ralph, T. C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Rocheleau, T.

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

Ruskov, R.

R. Ruskov, K. Schwab, and A. N. Korotkov, “Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback,” Phys. Rev. B 71, 235407 (2005).
[Crossref]

Safavi-Naeini, A. H.

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

Sandberg, V. D.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Sankey, J. C.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

Sarma, A. K.

S. Chakraborty and A. K. Sarma, “Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics,” Phys. Rev. A 97, 022336 (2018).
[Crossref]

Schmidt, M.

M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New J. Phys. 14, 125005 (2012).
[Crossref]

Schwab, K.

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[Crossref]

R. Ruskov, K. Schwab, and A. N. Korotkov, “Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback,” Phys. Rev. B 71, 235407 (2005).
[Crossref]

Schwab, K. C.

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
[Crossref]

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
[Crossref]

Scully, M. O.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Shapiro, J. H.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Shen, L. T.

R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
[Crossref]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Simmonds, R. W.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Sirois, A. J.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Slusher, R. E.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Szorkovszky, A.

A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
[Crossref]

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

Teufel, J. D.

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Thompson, J. D.

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Tian, L.

X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
[Crossref]

Tombesi, P.

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

Vahala, K. J.

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Valley, J. F.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

van Loock, P.

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

Vanner, M. R.

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[Crossref]

Vitali, D.

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Wallquist, M.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Walls, D. F.

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Wang, D. Y.

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

Wang, H. F.

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

Wang, Y. D.

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

Wang, Y. Y.

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

Wang, Y. Z.

Weedbrook, C.

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Whittaker, J. D.

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

Woolley, M. J.

M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
[Crossref]

Wu, H.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Wu, H. Z.

R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
[Crossref]

Wu, L. A.

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

Xiao, K. W.

K. W. Xiao, N. Zhao, and Z. Q. Yin, “Bistability and squeezing of the librational mode of an optically trapped nanoparticle,” Phys. Rev. A 96, 013837 (2017).
[Crossref]

Xiong, B.

Yang, C.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

Yang, Y. P.

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

Yang, Z. B.

R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
[Crossref]

Yin, Z. Q.

K. W. Xiao, N. Zhao, and Z. Q. Yin, “Bistability and squeezing of the librational mode of an optically trapped nanoparticle,” Phys. Rev. A 96, 013837 (2017).
[Crossref]

Yurke, B.

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

Zeilinger, A.

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

Zhang, R.

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

Zhang, S.

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

Zhao, N.

K. W. Xiao, N. Zhao, and Z. Q. Yin, “Bistability and squeezing of the librational mode of an optically trapped nanoparticle,” Phys. Rev. A 96, 013837 (2017).
[Crossref]

Zhou, L.

Zimmermann, M.

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

Zoller, P.

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

Zubairy, M. S.

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

Zurek, W. H.

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
[Crossref]

Zwickl, B. M.

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

Ann. Phys. (1)

C. H. Bai, D. Y. Wang, S. Zhang, S. Liu, and H. F. Wang, “Modulation-based atom-mirror entanglement and mechanical squeezing in an unresolved-sideband optomechanical system,” Ann. Phys. 531, 1800271 (2019).
[Crossref]

Nat. Phys. (1)

J. C. Sankey, C. Yang, B. M. Zwickl, A. M. Jayich, and J. G. E. Harris, “Strong and tunable nonlinear optomechanical coupling in a low-loss system,” Nat. Phys. 6, 707–712 (2010).
[Crossref]

Nature (8)

S. Gigan, H. R. Böhm, M. Paternostro, F. Blaser, G. Langer, J. B. Hertzberg, K. C. Schwab, D. Bäuerle, M. Aspelmeyer, and A. Zeilinger, “Self-cooling of a micromirror by radiation pressure,” Nature 444, 67–70 (2006).
[Crossref]

T. Rocheleau, T. Ndukum, C. Macklin, J. B. Hertzberg, A. A. Clerk, and K. C. Schwab, “Preparation and detection of a mechanical resonator near the ground state of motion,” Nature 463, 72–75 (2010).
[Crossref]

J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman, K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and R. W. Simmonds, “Sideband cooling of micromechanical motion to the quantum ground state,” Nature 475, 359–363 (2011).
[Crossref]

J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A. Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter, “Laser cooling of a nanomechanical oscillator into its quantum ground state,” Nature 478, 89–92 (2011).
[Crossref]

J. B. Clark, F. Lecocq, R. W. Simmonds, J. Aumentado, and J. D. Teufel, “Sideband cooling beyond the quantum backaction limit with squeezed light,” Nature 541, 191–195 (2017).
[Crossref]

J. D. Thompson, B. M. Zwickl, A. M. Jayich, F. Marquardt, S. M. Girvin, and J. G. E. Harris, “Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane,” Nature 452, 72–75 (2008).
[Crossref]

S. Gröblacher, K. Hammerer, M. R. Vanner, and M. Aspelmeyer, “Observation of strong coupling between a micromechanical resonator and an optical cavity field,” Nature 460, 724–727 (2009).
[Crossref]

D. F. Walls, “Squeezed states of light,” Nature 306, 141–146 (1983).
[Crossref]

New J. Phys. (2)

M. Schmidt, M. Ludwig, and F. Marquardt, “Optomechanical circuits for nanomechanical continuous variable quantum state processing,” New J. Phys. 14, 125005 (2012).
[Crossref]

A. A. Clerk, F. Marquardt, and K. Jacobs, “Back-action evasion and squeezing of a mechanical resonator using a cavity detector,” New J. Phys. 10, 095010 (2008).
[Crossref]

Opt. Express (1)

Opt. Lett. (1)

Photon. Res. (1)

Phys. Rev. A (17)

K. W. Xiao, N. Zhao, and Z. Q. Yin, “Bistability and squeezing of the librational mode of an optically trapped nanoparticle,” Phys. Rev. A 96, 013837 (2017).
[Crossref]

X. Y. Lü, J. Q. Liao, L. Tian, and F. Nori, “Steady-state mechanical squeezing in an optomechanical system via Duffing nonlinearity,” Phys. Rev. A 91, 013834 (2015).
[Crossref]

E. X. DeJesus and C. Kaufman, “Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations,” Phys. Rev. A 35, 5288–5290 (1987).
[Crossref]

R. X. Chen, L. T. Shen, Z. B. Yang, and H. Z. Wu, “Transition of entanglement dynamics in an oscillator system with weak time-dependent coupling,” Phys. Rev. A 91, 012312 (2015).
[Crossref]

S. Chakraborty and A. K. Sarma, “Entanglement dynamics of two coupled mechanical oscillators in modulated optomechanics,” Phys. Rev. A 97, 022336 (2018).
[Crossref]

A. Dalafi, M. H. Naderi, and A. Motazedifard, “Effects of quadratic coupling and squeezed vacuum injection in an optomechanical cavity assisted with a Bose-Einstein condensate,” Phys. Rev. A 97, 043619 (2018).
[Crossref]

A. Farace and V. Giovannetti, “Enhancing quantum effects via periodic modulations in optomechanical systems,” Phys. Rev. A 86, 013820 (2012).
[Crossref]

D. Y. Wang, C. H. Bai, S. Liu, S. Zhang, and H. F. Wang, “Optomechanical cooling beyond the quantum backaction limit with frequency modulation,” Phys. Rev. A 98, 023816 (2018).
[Crossref]

J. Q. Liao and C. K. Law, “Parametric generation of quadrature squeezing of mirrors in cavity optomechanics,” Phys. Rev. A 83, 033820 (2011).
[Crossref]

M. J. Woolley, A. C. Doherty, G. J. Milburn, and K. C. Schwab, “Nanomechanical squeezing with detection via a microwave cavity,” Phys. Rev. A 78, 062303 (2008).
[Crossref]

A. Kronwald, F. Marquardt, and A. A. Clerk, “Arbitrarily large steady-state bosonic squeezing via dissipation,” Phys. Rev. A 88, 063833 (2013).
[Crossref]

R. Zhang, Y. Fang, Y. Y. Wang, S. Chesi, and Y. D. Wang, “Strong mechanical squeezing in an unresolved-sideband optomechanical system,” Phys. Rev. A 99, 043805 (2019).
[Crossref]

K. Jähne, C. Genes, K. Hammerer, M. Wallquist, E. S. Polzik, and P. Zoller, “Cavity-assisted squeezing of a mechanical oscillator,” Phys. Rev. A 79, 063819 (2009).
[Crossref]

A. Nunnenkamp, K. Børkje, J. G. E. Harris, and S. M. Girvin, “Cooling and squeezing via quadratic optomechanical coupling,” Phys. Rev. A 82, 021806 (2010).
[Crossref]

M. Asjad, G. S. Agarwal, M. S. Kim, P. Tombesi, G. D. Giuseppe, and D. Vitali, “Robust stationary mechanical squeezing in a kicked quadratic optomechanical system,” Phys. Rev. A 89, 023849 (2014).
[Crossref]

S. Huang and G. S. Agarwal, “Reactive coupling can beat the motional quantum limit of nanowaveguides coupled to a microdisk resonator,” Phys. Rev. A 82, 033811 (2010).
[Crossref]

W. J. Gu, G. X. Li, and Y. P. Yang, “Generation of squeezed states in a movable mirror via dissipative optomechanical coupling,” Phys. Rev. A 88, 013835 (2013).
[Crossref]

Phys. Rev. B (1)

R. Ruskov, K. Schwab, and A. N. Korotkov, “Squeezing of a nanomechanical resonator by quantum nondemolition measurement and feedback,” Phys. Rev. B 71, 235407 (2005).
[Crossref]

Phys. Rev. D (1)

J. N. Hollenhorst, “Quantum limits on resonant-mass gravitational-radiation detectors,” Phys. Rev. D 19, 1669–1679 (1979).
[Crossref]

Phys. Rev. Lett. (6)

A. Szorkovszky, A. C. Doherty, G. I. Harris, and W. P. Bowen, “Mechanical squeezing via parametric amplification and weak measurement,” Phys. Rev. Lett. 107, 213603 (2011).
[Crossref]

A. Szorkovszky, G. A. Brawley, A. C. Doherty, and W. P. Bowen, “Strong thermomechanical squeezing via weak measurement,” Phys. Rev. Lett. 110, 184301 (2013).
[Crossref]

R. E. Slusher, L. W. Hollberg, B. Yurke, J. C. Mertz, and J. F. Valley, “Observation of squeezed states generated by four-wave mixing in an optical cavity,” Phys. Rev. Lett. 55, 2409–2412 (1985).
[Crossref]

L. A. Wu, H. J. Kimble, J. L. Hall, and H. Wu, “Generation of squeezed states by parametric down conversion,” Phys. Rev. Lett. 57, 2520–2523 (1986).
[Crossref]

A. Mari and J. Eisert, “Gently modulating optomechanical systems,” Phys. Rev. Lett. 103, 213603 (2009).
[Crossref]

K. Jacobs and A. J. Landahl, “Engineering giant nonlinearities in quantum nanosystems,” Phys. Rev. Lett. 103, 067201 (2009).
[Crossref]

Phys. Today (2)

M. Aspelmeyer, P. Meystre, and K. Schwab, “Quantum optomechanics,” Phys. Today 65, 29–35 (2012).
[Crossref]

W. H. Zurek, “Decoherence and the transition from quantum to classical,” Phys. Today 44, 36–44 (1991).
[Crossref]

Rev. Mod. Phys. (4)

C. M. Caves, K. S. Thorne, R. W. P. Drever, V. D. Sandberg, and M. Zimmermann, “On the measurement of a weak classical force coupled to a quantum-mechanical oscillator. I. Issues of principle,” Rev. Mod. Phys. 52, 341–392 (1980).
[Crossref]

S. L. Braunstein and P. van Loock, “Quantum information with continuous variables,” Rev. Mod. Phys. 77, 513–577 (2005).
[Crossref]

M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, “Cavity optomechanics,” Rev. Mod. Phys. 86, 1391–1452 (2014).
[Crossref]

C. Weedbrook, S. Pirandola, R. García-Patrón, N. J. Cerf, T. C. Ralph, J. H. Shapiro, and S. Lloyd, “Gaussian quantum information,” Rev. Mod. Phys. 84, 621–669 (2012).
[Crossref]

Science (3)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Gürsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, and M. E. Zucker, “LIGO: the laser interferometer gravitational-wave observatory,” Science 256, 325–333 (1992).
[Crossref]

M. D. LaHaye, O. Buu, B. Camarota, and K. C. Schwab, “Approaching the quantum limit of a nanomechanical resonator,” Science 304, 74–77 (2004).
[Crossref]

T. J. Kippenberg and K. J. Vahala, “Cavity optomechanics: back-action at the mesoscale,” Science 321, 1172–1176 (2008).
[Crossref]

Other (3)

J. F. Huang, J. Q. Liao, and L. M. Kuang, “Ultrastrong Jaynes-Cummings model,” arXiv:1902.05779 (2019).

M. O. Scully and M. S. Zubairy, Quantum Optics (Cambridge University, 1997).

D. F. Walls and G. J. Milburn, Quantum Optics (Springer-Verlag, 1994).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1.
Fig. 1. Schematic diagram of the considered optomechanical system. An OPA is placed inside the cavity driven by an external laser field and is pumped by a parametric driving field. Here the movable mirror is coupled to the cavity field via the radiation-pressure interaction and is treated as a quantum-mechanical oscillator with a Duffing nonlinearity.
Fig. 2.
Fig. 2. Sketch of the physical processes of the joint effect between Duffing nonlinearity and parametric pump driving in construction of strong mechanical squeezing.
Fig. 3.
Fig. 3. Dependence of (a) the cavity mode phase mean square fluctuation δY2 and (b) the mechanical mode position mean square fluctuation δQ2 on the parametric gain G for the parametric phase θ[0,12π]. The horizontal dashed line represents the variance of the vacuum state. The frequency of the mechanical mode ωm/(2π)=2.5×106  Hz. Other parameters are ωc=2.5×108ωm, γm=106ωm, κ=0.1ωm, g0=104ωm, P=0.1  mW, nmth=ncth=0, and εL=2Pκ/(ωc).
Fig. 4.
Fig. 4. Dependence of the mechanical mode position mean square fluctuation δQ2 on the parametric gain G in the cases of η=0 and η=105ωm. The parameter sets (G,η) corresponding to the points A, B, C, and D are (0,0), (0.4κ,0), (0,105ωm), and (0.4κ,105ωm), respectively. Here we have set θ=0, and other parameters are the same as in Fig. 3. The shadowed blue bottom region corresponds to squeezing below the 3 dB limit.
Fig. 5.
Fig. 5. Wigner function in the phase space for the mechanical mode. (a), (b), (c), and (d) correspond to the points A, B, C, and D in Fig. 4, respectively. The parameters are the same as in Fig. 4.
Fig. 6.
Fig. 6. Mechanical mode position mean square fluctuation δQ2 obtained by the numerical solution in Eq. (25) and the analytical solution in Eq. (44), respectively, in the cases of η=0 and η=105ωm. Other parameters are the same as in Fig. 4. The shadowed blue bottom region corresponds to squeezing below the 3 dB limit.
Fig. 7.
Fig. 7. Dependence of the mechanical mode position mean square fluctuation δQ2 on the thermal phonon number nmth. Here we have set κ=0.2ωm, η=104ωm, G=0.49κ, θ=0, and P=10  mW. Other parameters are the same as in Fig. 3. The shadowed blue bottom region corresponds to squeezing below the 3 dB limit.
Fig. 8.
Fig. 8. Contour plot of the detection spectrum SZout(ω) of the quadrature fluctuation of the output field versus the frequency ω and the measurement phase angle ϕ when G=0.4κ and η=105ωm. Other parameters are the same as in Fig. 4.

Tables (1)

Tables Icon

Table 1. Applying Either (Both) of the Parametric Pump Driving and the Duffing Nonlinearity, the Sole (Joint) Squeezing Result (in Units of Decibels) of These Two Different Squeezing Methods in Different Parameter Sets of (P,G,η)a

Equations (49)

Equations on this page are rendered with MathJax. Learn more.

H=δccc+ωmbb+η2(b+b)4g0cc(b+b)+εL(c+c)+iG(eiθc2e2iω˜mteiθc2e2iω˜mt).
[i(δc2g0β)κ]αiεL=0,16ηβ3+(12η+ωm)βg0|α|2=0,
b˙=iω˜mb2iΛb+ig(c+c)γm2b+γmbin(t),c˙=iΔcc+ig(b+b)+2Geiθce2iω˜mtκc+2κcin(t),
Δc=δc2g0β,ω˜m=ωm+2Λ,Λ=3η(4β2+1),g=g0|α|.
bin(t)bin(t)=nmthδ(tt),bin(t)bin(t)=(nmth+1)δ(tt),
cin(t)cin(t)=ncthδ(tt),cin(t)cin(t)=(ncth+1)δ(tt),
Heff=ω˜mbb+Δccc+Λ(b2+b2)g(b+b)(c+c)+iG(eiθc2e2iω˜mteiθc2e2iω˜mt).
r=14ln(1+4Λωm)
Heff=S(r)HeffS(r)=ω˜mbb+Δcccg(b+b)(c+c)+iG(eiθc2e2iω˜mteiθc2e2iω˜mt),
ω˜m=ωm2+4ωmΛ,g=g(1+4Λωm)14.
Heff=g[ei(Δc+ω˜m)tbc+ei(Δcω˜m)tbc+ei(Δcω˜m)tcb+ei(Δc+ω˜m)tcb]+iG[eiθc2e2i(Δcω˜m)teiθc2e2i(Δcω˜m)t].
Heff=g(bc+cb)+iG(eiθc2eiθc2).
b˙=igcγm2b+γmbin(t),c˙=igb+2Geiθcκc+2κcin(t).
δQ=(b+b)/2,δP=(bb)/2i,Qin=(bin+bin)/2,Pin=(binbin)/2i,
δX=(c+c)/2,δY=(cc)/2i,Xin=(cin+cin)/2,Yin=(cincin)/2i,
f˙(t)=Mf(t)+n(t),
f(t)=[δQ,δP,δX,δY]T,n(t)=[γmQin,γmPin,2κXin,2κYin]T,
M=[γm200g0γm2g00g2Gcosθκ2Gsinθg02Gsinθ(2Gcosθ+κ)].
2κ(κ24G2)+14γm3+(2κ+γm)(g2+2κγm)>0,γm2(κ24G2)+4g2(g2+κγm)>0,2κγm(κ24G2)2+[(2κ+γm)2g2+(4κ+γm)κγm2]×(κ24G2)+κγm(2κ+γm)[κγm2+(2κ+32γm)g2]+γm34[κγm22+(2κ+γm)g2]>0.
δQ(ω)=A1(ω)Qin(ω)+B1(ω)Pin(ω)+E1(ω)Xin(ω)+F1(ω)Yin(ω),δP(ω)=A2(ω)Qin(ω)+B2(ω)Pin(ω)+E2(ω)Xin(ω)+F2(ω)Yin(ω),
A1(ω)=γmd(ω){[u(ω)24G2]ν(ω)+g2u(ω)+2Gg2cosθ},B1(ω)=γmd(ω)2Gg2sinθ,E1(ω)=2κd(ω)2Ggsinθν(ω),F1(ω)=2κd(ω)g{[2Gcosθu(ω)]ν(ω)g2},A2(ω)=γmd(ω)2Gg2sinθ,B2(ω)=γmd(ω){[u(ω)ν(ω)+g2]u(ω)4G2ν(ω)2Gg2cosθ},E2(ω)=2κd(ω)g{[2Gcosθ+u(ω)]ν(ω)+g2},F2(ω)=2κd(ω)2Ggsinθν(ω),
2πSZ(ω)δ(ω+Ω)=12[δZ(ω)δZ(Ω)+δZ(Ω)δZ(ω)],Z=Q,P.
Qin(ω)Qin(Ω)=Pin(ω)Pin(Ω)=(nmth+12)2πδ(ω+Ω),Qin(ω)Pin(Ω)=Pin(ω)Qin(Ω)=iπδ(ω+Ω),Xin(ω)Xin(Ω)=Yin(ω)Yin(Ω)=(ncth+12)2πδ(ω+Ω),Xin(ω)Yin(Ω)=Yin(ω)Xin(Ω)=iπδ(ω+Ω),
SQ(ω)=[A1(ω)A1(ω)+B1(ω)B1(ω)](nmth+12)+[E1(ω)E1(ω)+F1(ω)F1(ω)](ncth+12),SP(ω)=[A2(ω)A2(ω)+B2(ω)B2(ω)](nmth+12)+[E2(ω)E2(ω)+F2(ω)F2(ω)](ncth+12).
δQ2=e2r2πSQ(ω)dω,δP2=e2r2πSP(ω)dω.
δX(ω)=E3(ω)Xin(ω)+F3(ω)Yin(ω),δY(ω)=E4(ω)Xin(ω)+F4(ω)Yin(ω),
E3(ω)=2κ4G2u(ω)2[u(ω)+2Gcosθ],F3(ω)=2κ4G2u(ω)22Gsinθ,E4(ω)=2κ4G2u(ω)22Gsinθ,F4(ω)=2κ4G2u(ω)2[u(ω)2Gcosθ].
SX(ω)=[E3(ω)E3(ω)+F3(ω)F3(ω)](ncth+12),SY(ω)=[E4(ω)E4(ω)+F4(ω)F4(ω)](ncth+12).
δO2=12πSO(ω)dω,O=X,Y.
σij=fi(t)fj(t)+fj(t)fi(t)/2,i,j=1,2,3,4.
σ˙(t)=Mσ(t)+σ(t)MT+D,
Dij=ni(t)nj(t)+nj(t)ni(t)/2.
Mσ+σMT=D.
σb=[σb11σb12σb21σb22],
Vb=[e2rσb11σb12σb21e2rσb22].
W(R)=exp(12RTVb1R)2πDet[Vb],
c=1κ24G2[iκgb2iGgeiθb+2Geiθ2κcin(t)+κ2κcin(t)].
b˙=κg2κ24G2b+2Gg2eiθκ24G2b+γmbin(t)+ig2κκ24G2[2Geiθcin(t)+κcin(t)],
δQ˙=g2κ+2GδQ+F1(t)+F2(t),
F1(t)=igκκ+2G[cin(t)cin(t)],F2(t)=γm2[bin(t)+bin(t)],
F1(t1)F1(t2)=g2κ(κ+2G)2(2ncth+1)δ(t1t2),F2(t1)F2(t2)=γm2(2nmth+1)δ(t1t2).
dδQ2(t)dt=2g2κ+2GδQ2(t)+g2κ(κ+2G)2(2ncth+1)+γm2(2nmth+1).
δQ2s=e2r[κ2(κ+2G)(2ncth+1)+γm(κ+2G)4g2(2nmth+1)].
ζ=10log10δQ2sδQ2vac=10log10e2r10log10[κ2(κ+2G)+γm(κ+2G)4g2]10log102,
δZout(ω)=12[δcout(ω)eiϕ+δcout(ω)eiϕ],
δZout(ω)=AZ(ω)Qin(ω)+BZ(ω)Pin(ω)+EZ(ω)Xin(ω)+FZ(ω)Yin(ω),
AZ(ω)=γm[cosϕE1(ω)+sinϕF1(ω)],BZ(ω)=γm[cosϕE2(ω)+sinϕF2(ω)],EZ(ω)=cosϕH(ω)+sinϕI(ω),FZ(ω)=cosϕI(ω)+sinϕR(ω),H(ω)=2κd(ω)ν(ω){g2+[u(ω)+2Gcosθ]ν(ω)}1,R(ω)=2κd(ω)ν(ω){g2+[u(ω)2Gcosθ]ν(ω)}1,I(ω)=4κd(ω)Gsinθν(ω)2.
2πSZout(ω)δ(ω+Ω)=12[δZout(ω)δZout(Ω)+δZout(Ω)δZout(ω)].
SZout(ω)=[AZ(ω)AZ(ω)+BZ(ω)BZ(ω)](nmth+12)+[EZ(ω)EZ(ω)+FZ(ω)FZ(ω)](ncth+12).

Metrics