Abstract

This work investigates the dynamic and nonlinear properties of quantum dot (QD) lasers directly grown on silicon with a view to isolator-free applications. Among them, the chirp parameter, also named the αH factor, is featured through a thermally insensitive method analyzing the residual side-mode dynamics under optical injection locking. The αH at threshold is found as low as 0.32. Then, the nonlinear gain is investigated from the gain compression factor viewpoint. The latter is found higher for epitaxial QD lasers on silicon than that in heterogeneously integrated quantum well (QW) devices on silicon. Despite that, the power dependence of the αH does not lead to a large increase of the chirp coefficient above the laser’s threshold at higher bias. This effect is confirmed from an analytical model and attributed to the strong lasing emission of the ground-state transition, which transforms into a critical feedback level as high as 6.5  dB, which is 19  dB higher than a comparable QW laser. Finally, the intensity noise analysis confirms that QD lasers are overdamped oscillators with damping frequencies as large as 33 GHz. Altogether, these features contribute to fundamentally enhancing the reflection insensitivity of the epitaxial QD lasers. This last feature is unveiled by the 10 Gbit/s error-free high-speed transmission experiments. Overall, we believe that this work is of paramount importance for future isolator-free photonics technologies and cost-efficient high-speed transmission systems.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon

Heming Huang, Jianan Duan, Daehwan Jung, Alan Y. Liu, Zeyu Zhang, Justin Norman, John E. Bowers, and Frédéric Grillot
J. Opt. Soc. Am. B 35(11) 2780-2787 (2018)

Multimode optical feedback dynamics in InAs/GaAs quantum dot lasers emitting exclusively on ground or excited states: transition from short- to long-delay regimes

Heming Huang, Lyu-Chih Lin, Chih-Ying Chen, Dejan Arsenijević, Dieter Bimberg, Fan-Yi Lin, and Frédéric Grillot
Opt. Express 26(2) 1743-1751 (2018)

Reflection sensitivity of 1.3 μm quantum dot lasers epitaxially grown on silicon

Alan Y. Liu, Tin Komljenovic, Michael L. Davenport, Arthur C. Gossard, and John E. Bowers
Opt. Express 25(9) 9535-9543 (2017)

References

  • View by:
  • |
  • |
  • |

  1. J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
    [Crossref]
  2. K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
    [Crossref]
  3. C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
    [Crossref]
  4. K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.
  5. L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
    [Crossref]
  6. T. L. Koch and R. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613–615 (1986).
    [Crossref]
  7. T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20, 1038–1040 (1984).
    [Crossref]
  8. A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
    [Crossref]
  9. H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
    [Crossref]
  10. S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
    [Crossref]
  11. C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
    [Crossref]
  12. D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
    [Crossref]
  13. B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
    [Crossref]
  14. S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
    [Crossref]
  15. J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
    [Crossref]
  16. C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
    [Crossref]
  17. M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers: an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
    [Crossref]
  18. C. Hantschmann, P. P. Vasil’ev, A. Wonfor, S. Chen, M. Liao, A. J. Seeds, H. Liu, R. V. Penty, and I. H. White, “Understanding the bandwidth limitations in monolithic 1.3  μm InAs/GaAs quantum dot lasers on silicon,” J. Lightwave Technol. 37, 949–955 (2019).
    [Crossref]
  19. M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
    [Crossref]
  20. D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
    [Crossref]
  21. H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
    [Crossref]
  22. A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25, 9535–9543 (2017).
    [Crossref]
  23. L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Vol.  218 of Wiley Series in Microwave and Optical Engineering (Wiley, 2012).
  24. F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
    [Crossref]
  25. H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
    [Crossref]
  26. F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
    [Crossref]
  27. Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
    [Crossref]
  28. J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
    [Crossref]

2019 (3)

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

C. Hantschmann, P. P. Vasil’ev, A. Wonfor, S. Chen, M. Liao, A. J. Seeds, H. Liu, R. V. Penty, and I. H. White, “Understanding the bandwidth limitations in monolithic 1.3  μm InAs/GaAs quantum dot lasers on silicon,” J. Lightwave Technol. 37, 949–955 (2019).
[Crossref]

2018 (4)

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

2017 (4)

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25, 9535–9543 (2017).
[Crossref]

2016 (2)

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

2015 (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

2013 (1)

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[Crossref]

2012 (1)

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

2011 (2)

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

2008 (1)

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

2005 (3)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

2003 (1)

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

1987 (1)

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers: an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

1986 (1)

T. L. Koch and R. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613–615 (1986).
[Crossref]

1984 (1)

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20, 1038–1040 (1984).
[Crossref]

Alloatti, L.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Arakawa, Y.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Asanovic, K.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Atabaki, A. H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Avizienis, R. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Becker, A.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Bi, L.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Bimberg, D.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Bjelica, M.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Bowers, J. E.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25, 9535–9543 (2017).
[Crossref]

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20, 1038–1040 (1984).
[Crossref]

Buus, J.

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers: an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

Chen, S.

Chen, Y.-H.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Chow, W. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[Crossref]

Coldren, L. A.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Vol.  218 of Wiley Series in Microwave and Optical Engineering (Wiley, 2012).

Cook, H. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Corzine, S. W.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Vol.  218 of Wiley Series in Microwave and Optical Engineering (Wiley, 2012).

Crowley, M.

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

Dagens, B.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

Davenport, M. L.

Dionne, G. F.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Dong, B.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Duan, J.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

Eisenstein, G.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Elliott, S. N.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Erneux, T.

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

Eyal, O.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Georgas, M. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Globisch, B.

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

Gossard, A. C.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

A. Y. Liu, T. Komljenovic, M. L. Davenport, A. C. Gossard, and J. E. Bowers, “Reflection sensitivity of 1.3  μm quantum dot lasers epitaxially grown on silicon,” Opt. Express 25, 9535–9543 (2017).
[Crossref]

Gray, A.

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Grillot, F.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

Hagihara, Y.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Hantschmann, C.

Hatori, N.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Hegarty, S.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Herrick, R. W.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Hu, J.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Huang, H.

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

Huyet, G.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Jiang, P.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Jiang, Q.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Jung, D.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Kaiser, M.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Kennedy, M. J.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Kettler, T.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Kim, D. H.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Kimerling, L. C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Koch, T. L.

T. L. Koch and R. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613–615 (1986).
[Crossref]

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20, 1038–1040 (1984).
[Crossref]

Komljenovic, T.

Kovsh, A.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Krauskopf, B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Kumar, R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Kurata, K.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Kurihara, M.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Laemmlin, M.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Lee, Y.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lenstra, D.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Lester, L.

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Lester, L. F.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

Leu, J. C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Li, H.

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Li, W.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Liao, M.

Lin, S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Lingnau, B.

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[Crossref]

Linke, R.

T. L. Koch and R. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613–615 (1986).
[Crossref]

Liu, A. Y.

Liu, H.

Liu, S.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

Liu, Z.

Lüdge, K.

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[Crossref]

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

Mashanovitch, M. L.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Vol.  218 of Wiley Series in Microwave and Optical Engineering (Wiley, 2012).

McInerney, J.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Mikhrin, S.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Mizutani, K.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Moss, B. R.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Naderi, N.

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

Nakamura, T.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Nishi, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Norman, J.

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Norman, J. C.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

O’Brien, D.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Orcutt, J. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Osinski, M.

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers: an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

Otto, C.

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

Ou, A. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Patel, P.

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Pavanello, F.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Penty, R. V.

Ponnampalam, L.

Poole, P. J.

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

Popovic, M. A.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Provost, J.-G.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

Raghunathan, R.

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

Ram, R. J.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Reithmaier, J.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Rippien, A.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Ross, C.

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Ross, I.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Schires, K.

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

Schnabel, F.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Schöll, E.

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[Crossref]

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

Seeds, A.

Seeds, A. J.

C. Hantschmann, P. P. Vasil’ev, A. Wonfor, S. Chen, M. Liao, A. J. Seeds, H. Liu, R. V. Penty, and I. H. White, “Understanding the bandwidth limitations in monolithic 1.3  μm InAs/GaAs quantum dot lasers on silicon,” J. Lightwave Technol. 37, 949–955 (2019).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Shainline, J. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Shang, C.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shimizu, T.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Shin, B.

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Shutts, S.

M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sichkovskyi, V.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Simpson, T. B.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Smowton, P. M.

M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Sobiesierski, A.

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Stojanovic, V. M.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Su, H.

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Sugawara, M.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Sun, C.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Suzuki, Y.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Takemasa, K.

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

Tang, M.

M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Urino, Y.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Ustinov, V.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Varangis, P.

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Vasil’ev, P. P.

Wade, M. T.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

Wan, Y.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

Wang, C.

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

Wang, R.

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Wang, Y.

Waterman, A. S.

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

White, I. H.

Wieczorek, S.

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Witzigmann, B.

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

Wonfor, A.

Wright, J.

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

Wu, J.

M. Liao, S. Chen, Z. Liu, Y. Wang, L. Ponnampalam, Z. Zhou, J. Wu, M. Tang, S. Shutts, Z. Liu, P. M. Smowton, S. Yu, A. Seeds, and H. Liu, “Low-noise 1.3  μm InAs/GaAs quantum dot laser monolithically grown on silicon,” Photon. Res. 6, 1062–1066 (2018).
[Crossref]

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

Yashiki, K.

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

Yu, S.

Zhang, L.

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Zhang, Z.

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

H. Huang, J. Duan, D. Jung, A. Y. Liu, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Analysis of the optical feedback dynamics in InAs/GaAs quantum dot lasers directly grown on silicon,” J. Opt. Soc. Am. B 35, 2780–2787 (2018).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Zhou, Z.

Zhukov, A.

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

Zou, Z.

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

Appl. Phys. Lett. (6)

T. L. Koch and R. Linke, “Effect of nonlinear gain reduction on semiconductor laser wavelength chirping,” Appl. Phys. Lett. 48, 613–615 (1986).
[Crossref]

A. Becker, V. Sichkovskyi, M. Bjelica, A. Rippien, F. Schnabel, M. Kaiser, O. Eyal, B. Witzigmann, G. Eisenstein, and J. Reithmaier, “Widely tunable narrow-linewidth 1.5  μm light source based on a monolithically integrated quantum dot laser array,” Appl. Phys. Lett. 110, 181103 (2017).
[Crossref]

J. Duan, H. Huang, D. Jung, Z. Zhang, J. Norman, J. E. Bowers, and F. Grillot, “Semiconductor quantum dot lasers epitaxially grown on silicon with low linewidth enhancement factor,” Appl. Phys. Lett. 112, 251111 (2018).
[Crossref]

D. Jung, J. Norman, M. J. Kennedy, C. Shang, B. Shin, Y. Wan, A. C. Gossard, and J. E. Bowers, “High efficiency low threshold current 1.3  μm InAs quantum dot lasers on on-axis (001) GaP/Si,” Appl. Phys. Lett. 111, 122107 (2017).
[Crossref]

F. Grillot, N. Naderi, J. Wright, R. Raghunathan, M. Crowley, and L. Lester, “A dual-mode quantum dot laser operating in the excited state,” Appl. Phys. Lett. 99, 231110 (2011).
[Crossref]

Z. Zhang, D. Jung, J. C. Norman, P. Patel, W. W. Chow, and J. E. Bowers, “Effects of modulation p doping in InAs quantum dot lasers on silicon,” Appl. Phys. Lett. 113, 061105 (2018).
[Crossref]

Electron. Lett. (2)

D. O’Brien, S. Hegarty, G. Huyet, J. McInerney, T. Kettler, M. Laemmlin, D. Bimberg, V. Ustinov, A. Zhukov, S. Mikhrin, and A. Kovsh, “Feedback sensitivity of 1.3  μm InAs/GaAs quantum dot lasers,” Electron. Lett. 39, 1819–1820 (2003).
[Crossref]

T. L. Koch and J. E. Bowers, “Nature of wavelength chirping in directly modulated semiconductor lasers,” Electron. Lett. 20, 1038–1040 (1984).
[Crossref]

IEEE J. Quantum Electron. (3)

J. C. Norman, D. Jung, Z. Zhang, Y. Wan, S. Liu, C. Shang, R. W. Herrick, W. W. Chow, A. C. Gossard, and J. E. Bowers, “A review of high-performance quantum dot lasers on silicon,” IEEE J. Quantum Electron. 55, 2000511 (2019).
[Crossref]

M. Osinski and J. Buus, “Linewidth broadening factor in semiconductor lasers: an overview,” IEEE J. Quantum Electron. 23, 9–29 (1987).
[Crossref]

F. Grillot, B. Dagens, J.-G. Provost, H. Su, and L. F. Lester, “Gain compression and above-threshold linewidth enhancement factor in 1.3-μm InAs-GaAs quantum-dot lasers,” IEEE J. Quantum Electron. 44, 946–951 (2008).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

K. Nishi, K. Takemasa, M. Sugawara, and Y. Arakawa, “Development of quantum dot lasers for data-com and silicon photonics applications,” IEEE J. Sel. Top. Quantum Electron. 23, 1901007 (2017).
[Crossref]

IEEE Photon. Technol. Lett. (2)

H. Su, H. Li, L. Zhang, Z. Zou, A. Gray, R. Wang, P. Varangis, and L. Lester, “Nondegenerate four-wave mixing in quantum dot distributed feedback lasers,” IEEE Photon. Technol. Lett. 17, 1686–1688 (2005).
[Crossref]

J. Duan, H. Huang, B. Dong, D. Jung, J. C. Norman, J. E. Bowers, and F. Grillot, “1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon,” IEEE Photon. Technol. Lett. 31, 345–348 (2019).
[Crossref]

Internat. J. Bifur. Chaos (1)

C. Otto, B. Globisch, K. Lüdge, E. Schöll, and T. Erneux, “Complex dynamics of semiconductor quantum dot lasers subject to delayed optical feedback,” Internat. J. Bifur. Chaos 22, 1250246 (2012).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. Soc. Am. B (1)

J. Phys. D (1)

H. Su and L. F. Lester, “Dynamic properties of quantum dot distributed feedback lasers: high speed, linewidth and chirp,” J. Phys. D 38, 2112–2118 (2005).
[Crossref]

Nat. Photonics (2)

S. Chen, W. Li, J. Wu, Q. Jiang, M. Tang, S. Shutts, S. N. Elliott, A. Sobiesierski, A. J. Seeds, I. Ross, P. M. Smowton, and H. Liu, “Electrically pumped continuous-wave III–V quantum dot lasers on silicon,” Nat. Photonics 10, 307–311 (2016).
[Crossref]

L. Bi, J. Hu, P. Jiang, D. H. Kim, G. F. Dionne, L. C. Kimerling, and C. Ross, “On-chip optical isolation in monolithically integrated non-reciprocal optical resonators,” Nat. Photonics 5, 758–762 (2011).
[Crossref]

Nature (1)

C. Sun, M. T. Wade, Y. Lee, J. S. Orcutt, L. Alloatti, M. S. Georgas, A. S. Waterman, J. M. Shainline, R. R. Avizienis, S. Lin, B. R. Moss, R. Kumar, F. Pavanello, A. H. Atabaki, H. M. Cook, A. J. Ou, J. C. Leu, Y.-H. Chen, K. Asanovic, R. J. Ram, M. A. Popovic, and V. M. Stojanovic, “Single-chip microprocessor that communicates directly using light,” Nature 528, 534–538 (2015).
[Crossref]

New J. Phys. (1)

B. Lingnau, W. W. Chow, E. Schöll, and K. Lüdge, “Feedback and injection locking instabilities in quantum-dot lasers: a microscopically based bifurcation analysis,” New J. Phys. 15, 093031 (2013).
[Crossref]

Opt. Express (1)

Photon. Res. (1)

Phys. Rep. (1)

S. Wieczorek, B. Krauskopf, T. B. Simpson, and D. Lenstra, “The dynamical complexity of optically injected semiconductor lasers,” Phys. Rep. 416, 1–128 (2005).
[Crossref]

Sci. Rep. (1)

C. Wang, K. Schires, M. Osiński, P. J. Poole, and F. Grillot, “Thermally insensitive determination of the linewidth broadening factor in nanostructured semiconductor lasers using optical injection locking,” Sci. Rep. 6, 27825 (2016).
[Crossref]

Other (2)

K. Mizutani, K. Yashiki, M. Kurihara, Y. Suzuki, Y. Hagihara, N. Hatori, T. Shimizu, Y. Urino, T. Nakamura, K. Kurata, and Y. Arakawa, “Isolator free optical I/O core transmitter by using quantum dot laser,” in 2015 IEEE 12th International Conference on Group IV Photonics (GFP) (IEEE, 2015), pp. 177–178.

L. A. Coldren, S. W. Corzine, and M. L. Mashanovitch, Diode Lasers and Photonic Integrated Circuits, Vol.  218 of Wiley Series in Microwave and Optical Engineering (Wiley, 2012).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1.
Fig. 1. Schematic illustration of the laser epitaxial structure; the close-up on the right depicts one period of the active region.
Fig. 2.
Fig. 2. Optical spectrum at 18 mA (3×Ith, red marker) of the QD laser. The inset shows the light-current characteristics measured at room temperature (20°C).
Fig. 3.
Fig. 3. Measured optical spectra for the QD laser. In black, the free-running laser without optical injection. In blue, the laser is injection-locked. When the wavelength detuning is increased by 11 pm, the blue lines are shifted towards the red lines.
Fig. 4.
Fig. 4. Spectral dependence of the αH factor measured by ASE (blue) and ASE-IL methods (red) for the epitaxial QD laser. The inset shows the αH-factor values for the QW laser. The vertical dotted line indicates the αH-factor value at FP gain peak.
Fig. 5.
Fig. 5. Measured damping factor (γ) as a function of the squared relaxation oscillation frequency (fRO2), both for QD and QW lasers.
Fig. 6.
Fig. 6. Squared relaxation oscillation frequency (fRO2) versus the output power, both for QD and QW lasers.
Fig. 7.
Fig. 7. The simulated αH factor as a function of the output power for the (a) QW laser and (b) QD laser. Superimposed black stars in (b) correspond to experimental data from Ref. [15].
Fig. 8.
Fig. 8. Schematic of the optical feedback apparatus used both for static and dynamic characterizations.
Fig. 9.
Fig. 9. Optical spectra under free-running (blue) and 100% (red) of total reflection for QD laser at (a) 3×Ith and (b) 4×Ith.
Fig. 10.
Fig. 10. (a) BER curves for solitary QD laser and with 100% of backreflection in B2B configuration and after transmission. Eye diagrams (b) of the solitary laser and (c) with 100% feedback in B2B configuration. Eye diagrams (d) of the solitary laser and (e) with 100% feedback after transmission.

Tables (1)

Tables Icon

Table 1. Dynamical Parameters of QD and QW Lasers

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

Δν=α4π(ddtlnP+2ΓPϵVactηhν),
fcrit=τL2γ216C2(1+αH2αH4),
αH=2πLδλdλ/dIdg/dI,
αH=2πLδλdλ/dλmdg/dλm,
fRO2=AP1+ϵPP,
g=g01+ϵPP,
αH(P)=α0(1+ϵP),
αH(P)=α0(1+ϵPP)+α11gthgmaxgthϵPP,