Abstract

The mid-infrared (mid-IR) second-order optical nonlinearity of the barium titanate (BTO) thin films was characterized by second harmonic generation (SHG). The epitaxial BTO thin films were grown on strontium titanate substrates by pulsed-laser deposition. From the azimuthal-dependent polarized SHG measurements, the tensorial optical nonlinear coefficients, dij, and ferroelectric domain fraction ratio, δAY/δAz, were resolved. Strong SHG signals were obtained at the pumping laser wavelength λ between 3.0 and 3.6 μm. The SHG intensity was linearly dependent upon the square of the pumping laser power. The broadband mid-IR optical nonlinearity enables BTO thin films for applications in chip-scale quantum optics and nonlinear integrated photonic circuits.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear optical properties of calcium barium niobate epitaxial thin films

Stéphane Bancelin, Sébastien Vigne, Nadir Hossain, Mohammed Chaker, and François Légaré
Opt. Express 24(15) 17497-17504 (2016)

Reflective second harmonic generation near resonance in the epitaxial Al-doped ZnO thin film

S.W. Liu, J.L. Weerasinghe, J. Liu, J. Weaver, C.L. Chen, W. Donner, and Min Xiao
Opt. Express 15(17) 10666-10671 (2007)

Strain-induced non-linear optical characteristics of pyroelectric PbVO3 epitaxial thin films

Seol Hee Oh, Hae-Young Shin, Seokhyun Yoon, Jai Seok Ahn, Janghwan Cha, Suklyun Hong, Sung Jin Kang, Miyoung Kim, Sukgeun Choi, Changjae Roh, Jongseok Lee, and William Jo
Opt. Mater. Express 7(1) 62-72 (2017)

References

  • View by:
  • |
  • |
  • |

  1. D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J. 1, 191–206 (2001).
    [Crossref]
  2. A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
    [Crossref]
  3. D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
    [Crossref]
  4. C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
    [Crossref]
  5. N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, 1996).
  6. A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
    [Crossref]
  7. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
    [Crossref]
  8. M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
    [Crossref]
  9. H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
    [Crossref]
  10. S. Arahira, N. Namekata, T. Kishimoto, H. Yaegashi, and S. Inoue, “Generation of polarization entangled photon pairs at telecommunication wavelength using cascaded χ(2) processes in a periodically poled LiNbO3 ridge waveguide,” Opt. Express 19, 16032–16043 (2011).
    [Crossref]
  11. O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
    [Crossref]
  12. J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
    [Crossref]
  13. K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
    [Crossref]
  14. S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
    [Crossref]
  15. R. A. McKee, F. J. Walker, and M. F. Chisholm, “Physical structure and inversion charge at a semiconductor interface with a crystalline oxide,” Science 293, 468–471 (2001).
    [Crossref]
  16. C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
    [Crossref]
  17. B. W. Wessels, “Ferroelectric epitaxial thin films for integrated optics,” Ann. Rev. Mater. Res. 37, 659–679 (2007).
    [Crossref]
  18. D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
    [Crossref]
  19. Y. Garbovskiy and A. Glushchenko, “Optical/ferroelectric characterization of BaTiO3 and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies,” Appl. Opt. 52, E34–E39 (2013).
    [Crossref]
  20. M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
    [Crossref]
  21. P. T. Lin, Z. Liu, and B. W. Wessels, “Ferroelectric thin film photonic crystal waveguide and its electro-optic properties,” J. Opt. A 11, 075005 (2009).
    [Crossref]
  22. A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
    [Crossref]
  23. T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
    [Crossref]
  24. M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
    [Crossref]
  25. M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
    [Crossref]
  26. T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
    [Crossref]
  27. E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
    [Crossref]
  28. B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
    [Crossref]
  29. F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
    [Crossref]
  30. P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
    [Crossref]
  31. D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
    [Crossref]
  32. P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
    [Crossref]
  33. T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
    [Crossref]
  34. J. Zhou and P. T. Lin, “Mid-infrared multi-spectral detection for real-time and non-invasive analysis of structure and composition of materials,” ACS Sens. 3, 1322–1328 (2018).
    [Crossref]
  35. H. D. Megaw, “Origin of ferroelectricity in barium titanate and other perovskite-type crystals,” Acta Crystallogr. 5, 739–749 (1952).
    [Crossref]
  36. S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
    [Crossref]
  37. O. Diéguez, K. M. Rabe, and D. Vanderbilt, “First-principles study of epitaxial strain in perovskites,” Phys. Rev. B 72, 144101 (2005).
    [Crossref]

2018 (3)

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
[Crossref]

J. Zhou and P. T. Lin, “Mid-infrared multi-spectral detection for real-time and non-invasive analysis of structure and composition of materials,” ACS Sens. 3, 1322–1328 (2018).
[Crossref]

2017 (2)

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

2016 (3)

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

2015 (1)

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

2014 (2)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

2013 (3)

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Y. Garbovskiy and A. Glushchenko, “Optical/ferroelectric characterization of BaTiO3 and PbTiO3 colloidal nanoparticles and their applications in hybrid materials technologies,” Appl. Opt. 52, E34–E39 (2013).
[Crossref]

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

2012 (1)

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

2011 (2)

2009 (1)

P. T. Lin, Z. Liu, and B. W. Wessels, “Ferroelectric thin film photonic crystal waveguide and its electro-optic properties,” J. Opt. A 11, 075005 (2009).
[Crossref]

2007 (3)

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

B. W. Wessels, “Ferroelectric epitaxial thin films for integrated optics,” Ann. Rev. Mater. Res. 37, 659–679 (2007).
[Crossref]

2005 (1)

O. Diéguez, K. M. Rabe, and D. Vanderbilt, “First-principles study of epitaxial strain in perovskites,” Phys. Rev. B 72, 144101 (2005).
[Crossref]

2004 (1)

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

2003 (2)

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

2002 (1)

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

2001 (2)

R. A. McKee, F. J. Walker, and M. F. Chisholm, “Physical structure and inversion charge at a semiconductor interface with a crystalline oxide,” Science 293, 468–471 (2001).
[Crossref]

D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J. 1, 191–206 (2001).
[Crossref]

2000 (1)

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

1999 (1)

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

1997 (1)

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

1995 (2)

L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce, “Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3,” J. Opt. Soc. Am. B 12, 2102–2116 (1995).
[Crossref]

M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
[Crossref]

1994 (1)

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

1952 (1)

H. D. Megaw, “Origin of ferroelectricity in barium titanate and other perovskite-type crystals,” Acta Crystallogr. 5, 739–749 (1952).
[Crossref]

Agarwal, A.

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Ahn, C. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Alibart, O.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Allibe, J.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Arahira, S.

Armus, L.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Arruda, T. M.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Baets, R.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Barnes, E.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Barthelemy, A.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Belkin, M. A.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Bellaiche, L.

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

Belyanin, A.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Bender, H.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Bernard-Salas, J.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Bethea, C. G.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Bibes, M.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Bihari, B.

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

Bloembergen, N.

N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, 1996).

Bosenberg, W. R.

Bouzehouane, K.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Brandl, B.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Bruley, J.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Buchal, Ch.

A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
[Crossref]

Buscaglia, M. T.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

Buscaglia, V.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

Byer, R. L.

Cain, T. A.

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Capasso, F.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Caplinger, M.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Cartier, E.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Chanthbouala, A.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Charmandaris, V.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Chen, F.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

Chen, Z.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Chen, Z. H.

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

Chisholm, M. F.

R. A. McKee, F. J. Walker, and M. F. Chisholm, “Physical structure and inversion charge at a semiconductor interface with a crystalline oxide,” Science 293, 468–471 (2001).
[Crossref]

Cho, A. Y.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Christensen, P. R.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Cid, R.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Clemmen, S.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Colombelli, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Conard, T.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Conrad, C. W.

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

Crassous, A.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

D’Auria, V.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Damjanovic, D.

D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J. 1, 191–206 (2001).
[Crossref]

De Micheli, M.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Demkov, A. A.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Dendooven, J.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Denev, S. A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Deranlot, C.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Desai, V.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Devost, D.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Diéguez, O.

O. Diéguez, K. M. Rabe, and D. Vanderbilt, “First-principles study of epitaxial strain in perovskites,” Phys. Rev. B 72, 144101 (2005).
[Crossref]

Dkhil, B.

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

Dlubak, B.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Doutre, F.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Dubourdieu, C.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Eckardt, R. C.

Farrah, D.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Favia, P.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Fejer, M. M.

Ferry, S.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Ford, G.

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

Frank, D. J.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Frank, M. M.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Fu, D.

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

Fusil, S.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Garbovskiy, Y.

Garcia, V.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Gill, D. M.

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

Glushchenko, A.

Gmachl, C.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Gong, Y. X.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Gopalan, V.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Grange, R.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

Grollier, J.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Han, Z.

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Hermans, A.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Higdon, S.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Ho, S. T.

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

Houck, J.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Hsu, M. H. M.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Hwang, C. S.

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

Hwang, H. Y.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Inoue, S.

Jakosky, B. M.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Jana, S.

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

Jin, H.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Jin, T.

T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
[Crossref]

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Jordan-Sweet, J.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Kaiser, F.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Kalinin, S. V.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Kato, K.

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

Kauranen, M.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Kawasaki, M.

M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
[Crossref]

Kieffer, H. H.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Kieninger, C.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Kim, E.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

Kim, H.

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Kimerling, L. C.

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Kishimoto, T.

Koinuma, H.

M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
[Crossref]

Koos, C.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Koskinen, K.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Kumah, D.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Kumar, A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Kumar, J.

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

Labonté, L.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Latiyal, O.

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

Lee, M. B.

M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
[Crossref]

Lin, H.-Y.

T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
[Crossref]

Lin, H.-Y. G.

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Lin, P. T.

T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
[Crossref]

J. Zhou and P. T. Lin, “Mid-infrared multi-spectral detection for real-time and non-invasive analysis of structure and composition of materials,” ACS Sens. 3, 1322–1328 (2018).
[Crossref]

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

P. T. Lin, Z. Liu, and B. W. Wessels, “Ferroelectric thin film photonic crystal waveguide and its electro-optic properties,” J. Opt. A 11, 075005 (2009).
[Crossref]

Liu, B.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Liu, F. M.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Liu, H. C.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Liu, Z.

P. T. Lin, Z. Liu, and B. W. Wessels, “Ferroelectric thin film photonic crystal waveguide and its electro-optic properties,” J. Opt. A 11, 075005 (2009).
[Crossref]

Lu, H.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Lu, H. B.

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

Lummen, T. T. A.

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

Lunghi, T.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Malin, M. C.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Martini, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Mathur, N. D.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

McKee, R. A.

R. A. McKee, F. J. Walker, and M. F. Chisholm, “Physical structure and inversion charge at a semiconductor interface with a crystalline oxide,” Science 293, 468–471 (2001).
[Crossref]

McSween, H. Y.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Meersschaut, J.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Megaw, H. D.

H. D. Megaw, “Origin of ferroelectricity in barium titanate and other perovskite-type crystals,” Acta Crystallogr. 5, 739–749 (1952).
[Crossref]

Mehall, G. L.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Miki, T.

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

Millender, R.

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Moshar, A.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Moya, X.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Muralt, P.

D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J. 1, 191–206 (2001).
[Crossref]

Myers, L. E.

Myers, T. L.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Nagarajan, V.

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Namekata, N.

Narayanan, V.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Nayak, G.

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

Nealson, K.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Neaton, J. B.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Ngai, J. H.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Nishizawa, K.

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

Oakley, D. C.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Ogale, S. B.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Paiella, R.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Paillard, C.

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

Pantouvaki, M.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Patil, S.

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

Pernice, W. H. P.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Pertsch, T.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

Petraru, A.

A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
[Crossref]

Picholle, É.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Pierce, J. W.

Posadas, A.

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Proksch, R.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Rabe, K. M.

O. Diéguez, K. M. Rabe, and D. Vanderbilt, “First-principles study of epitaxial strain in perovskites,” Phys. Rev. B 72, 144101 (2005).
[Crossref]

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Raghavan, S.

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Ramesh, R.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Ravine, M.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Reiner, J. W.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Richard, O.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Sando, D.

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

Schlom, D. G.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Schmid, M.

A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
[Crossref]

Schubert, J.

A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
[Crossref]

Schumann, T.

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Sergent, A. M.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Setter, N.

D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J. 1, 191–206 (2001).
[Crossref]

Shi, W. S.

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

Siegert, M.

A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
[Crossref]

Silverman, S. H.

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Sivco, D. L.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Soifer, B. T.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Solano, E.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Spaldin, N. A.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Spoon, H. W. W.

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

Stauf, G. T.

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

Steinbrück, A.

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

Stemmer, S.

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Suzuki, K.

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

Tallapragada, R. M.

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

Tang, H. X.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Tanzilli, S.

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

Taubman, M. S.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Trivedi, M. K.

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

Turner, G. W.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Unterrainer, K.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Vaithyanathan, V.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Van Buskirk, P. C.

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

Van Thourhout, D.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Vanderbilt, D.

O. Diéguez, K. M. Rabe, and D. Vanderbilt, “First-principles study of epitaxial strain in perovskites,” Phys. Rev. B 72, 144101 (2005).
[Crossref]

Viehland, D.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Vila, M.

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Vineis, C. J.

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Waghmare, U. V.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Walker, F. J.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

R. A. McKee, F. J. Walker, and M. F. Chisholm, “Physical structure and inversion charge at a semiconductor interface with a crystalline oxide,” Science 293, 468–471 (2001).
[Crossref]

Wang, J.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Wang, W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Wegener, M.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Wessels, B. W.

P. T. Lin, Z. Liu, and B. W. Wessels, “Ferroelectric thin film photonic crystal waveguide and its electro-optic properties,” J. Opt. A 11, 075005 (2009).
[Crossref]

B. W. Wessels, “Ferroelectric epitaxial thin films for integrated optics,” Ann. Rev. Mater. Res. 37, 659–679 (2007).
[Crossref]

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

Whittaker, E. A.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Wickberg, A.

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Williams, R. M.

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

Wuttig, M.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Xavier, S.

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

Xia, J. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Xiong, C.

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Xu, P.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Yaegashi, H.

Yang, G.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

Yang, G. Z.

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

Yang, Y.

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

Yoshimoto, M.

M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
[Crossref]

Yuan, Y.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhang, J. Y.

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Zhao, T.

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

Zheng, H.

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

Zhong, M. L.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhou, J.

J. Zhou and P. T. Lin, “Mid-infrared multi-spectral detection for real-time and non-invasive analysis of structure and composition of materials,” ACS Sens. 3, 1322–1328 (2018).
[Crossref]

T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
[Crossref]

Zhou, J. W.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Zhu, S. N.

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

ACS Nano (1)

E. Kim, A. Steinbrück, M. T. Buscaglia, V. Buscaglia, T. Pertsch, and R. Grange, “Second-harmonic generation of single BaTiO3 nanoparticles down to 22  nm diameter,” ACS Nano 7, 5343–5349 (2013).
[Crossref]

ACS Sens. (1)

J. Zhou and P. T. Lin, “Mid-infrared multi-spectral detection for real-time and non-invasive analysis of structure and composition of materials,” ACS Sens. 3, 1322–1328 (2018).
[Crossref]

Acta Crystallogr. (1)

H. D. Megaw, “Origin of ferroelectricity in barium titanate and other perovskite-type crystals,” Acta Crystallogr. 5, 739–749 (1952).
[Crossref]

Adv. Opt. Mater. (1)

P. T. Lin, H.-Y. G. Lin, Z. Han, T. Jin, R. Millender, L. C. Kimerling, and A. Agarwal, “Label-free glucose sensing using chip-scale mid-infrared integrated photonics,” Adv. Opt. Mater. 4, 1755–1759 (2016).
[Crossref]

Anal. Chem. (1)

T. Jin, J. Zhou, H.-Y. Lin, and P. T. Lin, “Mid-infrared chalcogenide waveguides for real-time and non-destructive volatile organic compounds detection,” Anal. Chem. 91, 817–822 (2018).
[Crossref]

Ann. Rev. Mater. Res. (1)

B. W. Wessels, “Ferroelectric epitaxial thin films for integrated optics,” Ann. Rev. Mater. Res. 37, 659–679 (2007).
[Crossref]

APL Mater. (1)

S. Raghavan, T. Schumann, H. Kim, J. Y. Zhang, T. A. Cain, and S. Stemmer, “High-mobility BaSnO3 grown by oxide molecular beam epitaxy,” APL Mater. 4, 016106 (2016).
[Crossref]

Appl. Opt. (1)

Appl. Phys. Express (1)

M. H. M. Hsu, D. Van Thourhout, M. Pantouvaki, J. Meersschaut, T. Conard, O. Richard, H. Bender, P. Favia, M. Vila, and R. Cid, “Controlled orientation of molecular-beam-epitaxial BaTiO3 on Si (001) using thickness engineering of BaTiO3 and SrTiO3 buffer layers,” Appl. Phys. Express 10, 065501 (2017).
[Crossref]

Appl. Phys. Lett. (2)

M. B. Lee, M. Kawasaki, M. Yoshimoto, and H. Koinuma, “Heteroepitaxial growth of BaTiO3 films on Si by pulsed laser deposition,” Appl. Phys. Lett. 66, 1331–1333 (1995).
[Crossref]

D. M. Gill, C. W. Conrad, G. Ford, B. W. Wessels, and S. T. Ho, “Thin-film channel waveguide electro-optic modulator in epitaxial BaTiO3,” Appl. Phys. Lett. 71, 1783–1785 (1997).
[Crossref]

Appl. Phys. Rev. (1)

D. Sando, Y. Yang, C. Paillard, B. Dkhil, L. Bellaiche, and V. Nagarajan, “Epitaxial ferroelectric oxide thin films for optical applications,” Appl. Phys. Rev. 5, 041108 (2018).
[Crossref]

Astrophys. J. (1)

D. Farrah, J. Bernard-Salas, H. W. W. Spoon, B. T. Soifer, L. Armus, B. Brandl, V. Charmandaris, V. Desai, S. Higdon, D. Devost, and J. Houck, “High-resolution mid-infrared spectroscopy of ultraluminous infrared galaxies,” Astrophys. J. 667, 149–169 (2007).
[Crossref]

IEEE J. Quantum Electron. (1)

F. Capasso, R. Paiella, R. Martini, R. Colombelli, C. Gmachl, T. L. Myers, M. S. Taubman, R. M. Williams, C. G. Bethea, K. Unterrainer, H. Y. Hwang, D. L. Sivco, A. Y. Cho, A. M. Sergent, H. C. Liu, and E. A. Whittaker, “Quantum cascade lasers: ultrahigh-speed operation, optical wireless communication, narrow linewidth, and far-infrared emission,” IEEE J. Quantum Electron. 38, 511–532 (2002).
[Crossref]

IEEE Sens. J. (1)

D. Damjanovic, P. Muralt, and N. Setter, “Ferroelectric sensors,” IEEE Sens. J. 1, 191–206 (2001).
[Crossref]

Indus. Eng. Manage. (1)

M. K. Trivedi, G. Nayak, S. Patil, R. M. Tallapragada, O. Latiyal, and S. Jana, “Impact of biofield treatment on atomic and structural characteristics of barium titanate powder,” Indus. Eng. Manage. 4, 166 (2015).
[Crossref]

J. Am. Ceram. Soc. (1)

S. A. Denev, T. T. A. Lummen, E. Barnes, A. Kumar, and V. Gopalan, “Probing ferroelectrics using optical second harmonic generation,” J. Am. Ceram. Soc. 94, 2699–2727 (2011).
[Crossref]

J. Appl. Phys. (2)

B. Bihari, J. Kumar, G. T. Stauf, P. C. Van Buskirk, and C. S. Hwang, “Investigation of barium titanate thin films on MgO substrates by second-harmonic generation,” J. Appl. Phys. 76, 1169–1174 (1994).
[Crossref]

T. Zhao, H. Lu, F. Chen, G. Yang, and Z. Chen, “Stress-induced enhancement of second-order nonlinear optical susceptibilities of barium titanate films,” J. Appl. Phys. 87, 7448–7451 (2000).
[Crossref]

J. Opt. (1)

O. Alibart, V. D’Auria, M. De Micheli, F. Doutre, F. Kaiser, L. Labonté, T. Lunghi, É. Picholle, and S. Tanzilli, “Quantum photonics at telecom wavelengths based on lithium niobate waveguides,” J. Opt. 18, 104001 (2016).
[Crossref]

J. Opt. A (1)

P. T. Lin, Z. Liu, and B. W. Wessels, “Ferroelectric thin film photonic crystal waveguide and its electro-optic properties,” J. Opt. A 11, 075005 (2009).
[Crossref]

J. Opt. Soc. Am. B (1)

Jpn. J. Appl. Phys. (1)

K. Suzuki, D. Fu, K. Nishizawa, T. Miki, and K. Kato, “Ferroelectric property of alkoxy-derived YMnO3 films crystallized in argon,” Jpn. J. Appl. Phys. 42, 5692–5695 (2003).
[Crossref]

Nano Lett. (1)

C. Xiong, W. H. P. Pernice, J. H. Ngai, J. W. Reiner, D. Kumah, F. J. Walker, C. H. Ahn, and H. X. Tang, “Active silicon integrated nanophotonics: ferroelectric BaTiO3 devices,” Nano Lett. 14, 1419–1425 (2014).
[Crossref]

Nat. Nanotechnol. (2)

A. Chanthbouala, A. Crassous, V. Garcia, K. Bouzehouane, S. Fusil, X. Moya, J. Allibe, B. Dlubak, J. Grollier, S. Xavier, C. Deranlot, A. Moshar, R. Proksch, N. D. Mathur, M. Bibes, and A. Barthelemy, “Solid-state memories based on ferroelectric tunnel junctions,” Nat. Nanotechnol. 7, 101–104 (2012).
[Crossref]

C. Dubourdieu, J. Bruley, T. M. Arruda, A. Posadas, J. Jordan-Sweet, M. M. Frank, E. Cartier, D. J. Frank, S. V. Kalinin, A. A. Demkov, and V. Narayanan, “Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode,” Nat. Nanotechnol. 8, 748–754 (2013).
[Crossref]

Nat. Photonics (1)

M. A. Belkin, F. Capasso, A. Belyanin, D. L. Sivco, A. Y. Cho, D. C. Oakley, C. J. Vineis, and G. W. Turner, “Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation,” Nat. Photonics 1, 288–292 (2007).
[Crossref]

Opt. Express (1)

Phys. Rev. B (2)

T. Zhao, Z. H. Chen, F. Chen, W. S. Shi, H. B. Lu, and G. Z. Yang, “Enhancement of second-harmonic generation in BaTiO3/SrTiO3 superlattices,” Phys. Rev. B 60, 1697–1700 (1999).
[Crossref]

O. Diéguez, K. M. Rabe, and D. Vanderbilt, “First-principles study of epitaxial strain in perovskites,” Phys. Rev. B 72, 144101 (2005).
[Crossref]

Phys. Rev. Lett. (1)

H. Jin, F. M. Liu, P. Xu, J. L. Xia, M. L. Zhong, Y. Yuan, J. W. Zhou, Y. X. Gong, W. Wang, and S. N. Zhu, “On-chip generation and manipulation of entangled photons based on reconfigurable lithium-niobate waveguide circuits,” Phys. Rev. Lett. 113, 103601 (2014).
[Crossref]

Sci. Rep. (1)

A. Hermans, C. Kieninger, K. Koskinen, A. Wickberg, E. Solano, J. Dendooven, M. Kauranen, S. Clemmen, M. Wegener, C. Koos, and R. Baets, “On the determination of χ(2) in thin films: a comparison of one-beam second-harmonic generation measurement methodologies,” Sci. Rep. 7, 44581 (2017).
[Crossref]

Science (2)

J. Wang, J. B. Neaton, H. Zheng, V. Nagarajan, S. B. Ogale, B. Liu, D. Viehland, V. Vaithyanathan, D. G. Schlom, U. V. Waghmare, N. A. Spaldin, K. M. Rabe, M. Wuttig, and R. Ramesh, “Epitaxial BiFeO3 multiferroic thin film heterostructures,” Science 299, 1719–1722 (2003).
[Crossref]

R. A. McKee, F. J. Walker, and M. F. Chisholm, “Physical structure and inversion charge at a semiconductor interface with a crystalline oxide,” Science 293, 468–471 (2001).
[Crossref]

Space Sci. Rev. (1)

P. R. Christensen, B. M. Jakosky, H. H. Kieffer, M. C. Malin, H. Y. McSween, K. Nealson, G. L. Mehall, S. H. Silverman, S. Ferry, M. Caplinger, and M. Ravine, “The thermal emission imaging system (THEMIS) for the Mars 2001 Odyssey Mission,” Space Sci. Rev. 110, 85–130 (2004).
[Crossref]

Other (2)

A. Petraru, M. Siegert, M. Schmid, J. Schubert, and Ch. Buchal, “Ferroelectic BaTiO3 thin film optical waveguide modulators,” in Ferroelectric Thin Films X, Vol. 688 of MRS Symposium Proceedings (Cambridge University Press, 2002), pp. 279–284.
[Crossref]

N. Bloembergen, Nonlinear Optics, 4th ed. (World Scientific, 1996).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. XRD results of the BTO thin film deposited on the (001) STO substrate by PLD. (a) A θ-2θ scan of the BTO thin film. The BTO was epitaxially grown along the (00l) direction. (b) A φ scan of the BTO thin film indicated a cube-on-cube growth on the STO substrate.
Fig. 2.
Fig. 2. (a) Structure of a tetragonal BTO unit cell with one Ti atom in the cell center, eight Ba atoms in the corners, and six O atoms in the center of the facets. (b) The six possible ferroelectric domain variants, X+, X, Y+, Y, Z+, and Z, in the +X, +Y, and +Z lab-based coordinate system.
Fig. 3.
Fig. 3. Four possible domain variants in the yz plane, Y+, Y, Z+, and Z, and the crystal axes (U1, U2, U3) associated with each of the four domain variants. The incident light E0 is linearly polarized, and the azimuthal angle between the incident light and the y-axis is noted as φ.
Fig. 4.
Fig. 4. Calculated azimuthal-dependent polarized SHG, Iy2ω(φ) and Iz2ω(φ), of a single Y+ domain BTO thin film. The tensors dij from a bulk BTO crystal were used: d15=17  pm/V, d31=15.7  pm/V, and d33=6.8  pm/V. The thickness of the BTO crystal was 500 nm. Iy2ω(φ) and Iz2ω(φ) showed distinct two-lobed and four-lobed SHG patterns, respectively.
Fig. 5.
Fig. 5. Iy2ω(φ) and Iz2ω(φ) were calculated when the ferroelectric domain fraction ratio, δAY/δAZ, was set to (a) 10, (b) 1, and (c) 0.1. The dij values were from a bulk BTO crystal. At δAY/δAZ=10, Iy2ω(φ) had a two-lobed profile, and Iz2ω(φ) had a four-lobed profile. As δAY/δAZ decreased to 0.1, Iy2ω(φ) became four-lobed and Iz2ω(φ) became two-lobed. In addition, the axis of the two-lobes rotated as δAY/δAZ changed.
Fig. 6.
Fig. 6. Schematic of the experimental setup for measuring the azimuthal-dependent polarized SHG from a BTO thin film. The pumping laser was a tunable ns pulsed laser and the first filter removed the light that was not at the pumping wavelength λ. The polarization of the light was rotated by the λ/2 phase plate. The mid-IR light was focused on the BTO thin film using the front objective lens, and the SHG was collected by another objective lens in the back. The polarizer selected the polarization of the SHG signals, and the second filter removed the residual mid-IR pumping light. The SHG in the NIR region was measured by a photodetector or a spectrometer.
Fig. 7.
Fig. 7. (a) Iy2ω(φ) and (b) Iz2ω(φ) obtained from the BTO thin film deposited by PLD. The dashed lines represent the measured data and the solid green lines represent the modeling results. From the fitting, the values d15=12.5  pm/V, d31=9.0  pm/V, d33=10.0  pm/V, and δAY/δAZ=1 were resolved.
Fig. 8.
Fig. 8. SHG intensity, Iy2ω, versus the square of the input mid-IR laser power, Ilaser, measured at λ=3.5  μm. The black circles indicate the measured data, and the red line represents the fitted curve. A linear relationship between Iy2ω and (Ilaser)2 was found.
Fig. 9.
Fig. 9. SHG spectrum of the BTO thin film when the mid-IR pumping wavelength was tuned from λω=3.0 to 3.6 μm. Strong SHG signals between λ2ω=1.5 and 1.8 μm were found, indicating that BTO has a broadband second-order optical nonlinearity.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

Ps=(P1P2P3)=(000000d31d31d330d150d1500000)(E12E22E322E2E32E1E32E1E2).
P1Y+=2d15E1E3=0,
P2Y+=2d15E2E3=E02d15sin2φ,
P3Y+=d31E12+d31E22+d33E32=E02d31sin2φ+E02d33cos2φ.
Iy2ωP32=(E02d31sin2φ+E02d33cos2φ)2,
Iz2ωP22=(E02d15sin2φ)2.
P1Y+=P1Y=P1Z+=P1Z=0,
P2Y+=P2Y=P2Z+=P2Z=E02d15sin2φ,
P3Y+=P3Y=E02d31sin2φ+E02d33cos2φ,
P3Z+=P3Z=E02d31cos2φ+E02d33sin2φ.
Py2ω=AY+PyY++AYPyY+(AZ+PyZ++AZPyZ)eiΓ=AY+P3Y+AYP3Y+(AZ+P2Z+AZP2Z)eiΓ=δAYP3Y++δAZP2Z+eiΓ.
Iy2ωδAY2(P3Y+)2+δAZ2(P2Z+)2±2δAYδAZP3Y+P2Z+cosΓ=δAY2(d31sin2φ+d33cos2φ)2+δAz2(d15sin2φ)2+2δAYδAZ(d31sin2φ+d33cos2φ)d15sin2φcosΓ.
Iy2ω=K1,y(cos2φ+K2,ysin2φ)2+K3,ysin22φ+K4,y(cos2φ+K2,ysin2φ)sin2φ,
Iz2ω=K1,z(cos2φ+K2,zsin2φ)2+K3,zsin22φ+K4,z(cos2φ+K2,zsin2φ)sin2φ,
cos2Γ=K4,y24K1,yK3,y=K4,z24K1,zK3,z
d33d31=K2,z=1K2,y.