Abstract

Historically, nonlinear optical phenomena such as spectral broadening by harmonic generation have been associated with crystals owing to their strong nonlinear refractive indices, which are in the range of 1014  cm2/W. This association was also the result of the limited optical power available from early lasers and the limited interaction length that the laser–crystal interaction architecture could offer. Consequently, these limitations disqualified a large number of materials whose nonlinear coefficient is lower than n21016  cm2/W as suitable materials for nonlinear optics applications. For example, it is a common practice in most of optical laboratories to consider ambient or atmospheric air as a “nonlinear optically” inert medium due to its very low nonlinear coefficient (10.1019  cm2/W) and low density. Today, the wide spread of high-power ultra-short pulse lasers on one hand, and low transmission loss and high-power handling of Kagome hollow-core photonic crystal fiber on the other hand, provide the necessary ingredients to excite strong nonlinear optical effects in practically any gas media, regardless of how low its optical nonlinear response is. By using a single table-top 1 mJ ultra-short pulse laser and an air exposed inhibited-coupling guiding hollow-core photonic crystal fiber, we observed generation of supercontinuum and third harmonic generation when the laser pulse duration was set at 600 fs and Raman comb generation when the duration was 300 ps. The supercontinuum spectrum spans over 1000  THz and exhibits a typical spectral-density energy of 150 nJ/nm. The dispersion profile of inhibited-coupling hollow-core fiber imprints a distinctive sequence in the supercontinuum generation, which is triggered by the generation of a cascade of four-wave mixing lines and concluded by solitonic dynamics. The Raman comb spans over 300 THz and exhibits multiple sidebands originating from N2 vibrational and ro-vibrational Raman transitions. With the growing use of hollow-core photonic crystal fiber in different fields, the results can be applied to mitigate air nonlinear response when it is not desired or to use ambient air as a convenient nonlinear medium.

© 2019 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Nonlinear dynamic of picosecond pulse propagation in atmospheric air-filled hollow core fibers

Seyedmohammad Abokhamis Mousavi, Hans Christian Hansen Mulvad, Natalie V. Wheeler, Peter Horak, John Hayes, Yong Chen, Thomas D. Bradley, Shaif-ul Alam, Seyed Reza Sandoghchi, Eric Numkam Fokoua, David J. Richardson, and Francesco Poletti
Opt. Express 26(7) 8866-8882 (2018)

Ultrafast nonlinear optics in gas-filled hollow-core photonic crystal fibers [Invited]

John C. Travers, Wonkeun Chang, Johannes Nold, Nicolas Y. Joly, and Philip St. J. Russell
J. Opt. Soc. Am. B 28(12) A11-A26 (2011)

Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid
Opt. Express 22(9) 10735-10746 (2014)

References

  • View by:
  • |
  • |
  • |

  1. R. W. Boyd, Nonlinear Optics (Academic Press, 2008).
  2. J. K. Ranka, R. S. Windeler, and A. J. Stentz, “Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800  nm,” Opt. Lett. 25, 25–27 (2000).
    [Crossref]
  3. P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
    [Crossref]
  4. R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
    [Crossref]
  5. W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
    [Crossref]
  6. P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
    [Crossref]
  7. J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
    [Crossref]
  8. F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
    [Crossref]
  9. F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
    [Crossref]
  10. F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
    [Crossref]
  11. A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber,” Opt. Express 23, 14002–14009 (2015).
    [Crossref]
  12. B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.
  13. D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
    [Crossref]
  14. M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
    [Crossref]
  15. Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (OSA, 2010), paper CPDB4.
  16. B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
    [Crossref]
  17. T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
    [Crossref]
  18. B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
    [Crossref]
  19. B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
    [Crossref]
  20. B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
    [Crossref]
  21. E. T. J. Nibbering, G. Grillon, M. A. Franco, B. Prade, and A. Mysyrowicz, “Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses,” J. Opt. Soc. Am. B 14, 650–660 (1997).
    [Crossref]
  22. V. Loriot, E. Hertz, O. Faucher, and B. Lavorel, “Measurement of high order Kerr refractive index of major air components,” Opt. Express 17, 13429–13434 (2009).
    [Crossref]
  23. A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
    [Crossref]
  24. M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).
    [Crossref]
  25. D. R. Miller and R. P. Andres, “Rotational relaxation of molecular nitrogen,” J. Chem. Phys. 46, 3418–3423 (1967).
    [Crossref]
  26. F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
    [Crossref]
  27. R. J. Heeman and H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
    [Crossref]
  28. G. P. Agrawal, “Chapter 8—Stimulated Raman scattering,” in Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), pp. 295–352.
  29. G. P. Agrawal, “Chapter 10—Four-wave mixing,” in Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), pp. 397–456.
  30. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
    [Crossref]
  31. S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
    [Crossref]
  32. http://www.fianium.com .
  33. M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
    [Crossref]

2017 (3)

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

2015 (2)

2014 (2)

2013 (2)

2011 (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

2009 (1)

2007 (1)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

2006 (1)

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

2005 (1)

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[Crossref]

2002 (1)

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

2000 (1)

1997 (1)

1995 (1)

R. J. Heeman and H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[Crossref]

1994 (1)

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref]

1986 (2)

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).
[Crossref]

1985 (1)

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[Crossref]

1978 (1)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[Crossref]

1972 (1)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

1970 (1)

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

1967 (1)

D. R. Miller and R. P. Andres, “Rotational relaxation of molecular nitrogen,” J. Chem. Phys. 46, 3418–3423 (1967).
[Crossref]

1961 (1)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Abdolvand, A.

Agrawal, G. P.

G. P. Agrawal, “Chapter 8—Stimulated Raman scattering,” in Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), pp. 295–352.

G. P. Agrawal, “Chapter 10—Four-wave mixing,” in Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), pp. 397–456.

Alam, S.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Alfano, R. R.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Alharbi, M.

Amsanpally, A.

Andres, R. P.

D. R. Miller and R. P. Andres, “Rotational relaxation of molecular nitrogen,” J. Chem. Phys. 46, 3418–3423 (1967).
[Crossref]

Antonopoulos, G.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Baz, A.

Beaudou, B.

Belli, F.

Benabid, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (OSA, 2010), paper CPDB4.

Benoît, A.

Blondy, J. M.

Blondy, J.-M.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

Bradley, T.

Bradley, T. D.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

Chafer, M.

Chang, W.

Coen, S.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Corkum, P. B.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Couny, F.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (OSA, 2010), paper CPDB4.

Debord, B.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

T. D. Bradley, Y. Wang, M. Alharbi, B. Debord, C. Fourcade-Dutin, B. Beaudou, F. Gerome, and F. Benabid, “Optical properties of low loss (70  dB/km) hypocycloid-core Kagome hollow core photonic crystal fiber for Rb and Cs based optical applications,” J. Lightwave Technol. 31, 2752–2755 (2013).
[Crossref]

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

Dontabactouny, M.

Dudley, J.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Faucher, O.

Flusberg, A.

M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).
[Crossref]

Fourcade-Dutin, C.

Franco, M. A.

Franken, P. A.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Genty, G.

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Gerome, F.

Gérôme, F.

B. Debord, A. Amsanpally, M. Chafer, A. Baz, M. Maurel, J. M. Blondy, E. Hugonnot, F. Scol, L. Vincetti, F. Gérôme, and F. Benabid, “Ultralow transmission loss in inhibited-coupling guiding hollow fibers,” Optica 4, 209–217 (2017).
[Crossref]

A. Benoît, B. Beaudou, M. Alharbi, B. Debord, F. Gérôme, F. Salin, and F. Benabid, “Over-five octaves wide Raman combs in high-power picosecond-laser pumped H2-filled inhibited coupling Kagome fiber,” Opt. Express 23, 14002–14009 (2015).
[Crossref]

B. Debord, M. Alharbi, A. Benoît, D. Ghosh, M. Dontabactouny, L. Vincetti, J.-M. Blondy, F. Gérôme, and F. Benabid, “Ultra low-loss hypocycloid-core Kagome hollow-core photonic crystal fiber for green spectral-range applications,” Opt. Lett. 39, 6245–6248 (2014).
[Crossref]

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, M. Alharbi, T. Bradley, C. Fourcade-Dutin, Y. Y. Wang, L. Vincetti, F. Gérôme, and F. Benabid, “Hypocycloid-shaped hollow-core photonic crystal fiber Part I: arc curvature effect on confinement loss,” Opt. Express 21, 28597–28608 (2013).
[Crossref]

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

Ghosh, D.

Godfried, H. P.

R. J. Heeman and H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[Crossref]

Grillon, G.

Hayes, J.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Heeman, R. J.

R. J. Heeman and H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[Crossref]

Hertz, E.

Hill, A. E.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Hoenninger, C.

Honninger, C.

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

Horak, P.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Hugonnot, E.

Husakou, A.

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

Kaiser, W.

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[Crossref]

Knight, J. C.

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Lau, A.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Laubereau, A.

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[Crossref]

Lavorel, B.

Lenz, K.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Light, P. S.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Loriot, V.

Maurel, M.

Miller, D. R.

D. R. Miller and R. P. Andres, “Rotational relaxation of molecular nitrogen,” J. Chem. Phys. 46, 3418–3423 (1967).
[Crossref]

Mottay, E.

B. Debord, M. Alharbi, L. Vincetti, A. Husakou, C. Fourcade-Dutin, C. Hoenninger, E. Mottay, F. Gérôme, and F. Benabid, “Multi-meter fiber-delivery and pulse self-compression of milli-Joule femtosecond laser and fiber-aided laser-micromachining,” Opt. Express 22, 10735–10746 (2014).
[Crossref]

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

Mourou, G.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[Crossref]

Mousavi, S. A.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Mulvad, H. C. H.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Mysyrowicz, A.

Nibbering, E. T. J.

Perry, M. D.

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref]

Peters, C. W.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Pfeiffer, M.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Poletti, F.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Prade, B.

Ranka, J. K.

Raymer, M. G.

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Richardson, D.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Roberts, P. J.

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (OSA, 2010), paper CPDB4.

Rokni, M.

M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).
[Crossref]

Rolland, C.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Russell, P. St.J.

F. Belli, A. Abdolvand, W. Chang, J. C. Travers, and P. St.J. Russell, “Vacuum-ultraviolet to infrared supercontinuum in hydrogen-filled photonic crystal fiber,” Optica 2, 292–300 (2015).
[Crossref]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

Salin, F.

Sandoghchi, S. R.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Schmidt, M. A.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

Scol, F.

Shapiro, S. L.

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

Srinivasan-Rao, T.

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

Stentz, A. J.

Strickland, D.

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[Crossref]

Thuy, C. D.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Travers, J. C.

Vincetti, L.

Wang, Y.

Wang, Y. Y.

Weigmann, H.-J.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Weinreich, G.

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

Werncke, W.

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

Wheeler, N.

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Windeler, R. S.

Zeisberger, M.

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

IEEE J. Quantum Electron. (2)

M. Rokni and A. Flusberg, “Stimulated rotational Raman scattering in the atmosphere,” IEEE J. Quantum Electron. 22, 1102–1108 (1986).
[Crossref]

R. J. Heeman and H. P. Godfried, “Gain reduction measurements in transient stimulated Raman scattering,” IEEE J. Quantum Electron. 31, 358–364 (1995).
[Crossref]

J. Chem. Phys. (1)

D. R. Miller and R. P. Andres, “Rotational relaxation of molecular nitrogen,” J. Chem. Phys. 46, 3418–3423 (1967).
[Crossref]

J. Lightwave Technol. (1)

J. Mod. Opt. (1)

F. Benabid and P. J. Roberts, “Linear and nonlinear optical properties of hollow core photonic crystal fiber,” J. Mod. Opt. 58, 87–124 (2011).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Commun. (2)

W. Werncke, A. Lau, M. Pfeiffer, K. Lenz, H.-J. Weigmann, and C. D. Thuy, “An anomalous frequency broadening in water,” Opt. Commun. 4, 413–415 (1972).
[Crossref]

D. Strickland and G. Mourou, “Compression of amplified chirped optical pulses,” Opt. Commun. 55, 447–449 (1985).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Optica (2)

Phys. Rev. Lett. (4)

P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7, 118–119 (1961).
[Crossref]

R. R. Alfano and S. L. Shapiro, “Emission in the region 4000 to 7000  Å via four-photon coupling in glass,” Phys. Rev. Lett. 24, 584–587 (1970).
[Crossref]

P. B. Corkum, C. Rolland, and T. Srinivasan-Rao, “Supercontinuum generation in gases,” Phys. Rev. Lett. 57, 2268–2271 (1986).
[Crossref]

F. Benabid, G. Antonopoulos, J. C. Knight, and P. St.J. Russell, “Stokes amplification regimes in quasi-cw pumped hydrogen-filled hollow-core photonic crystal fiber,” Phys. Rev. Lett. 95, 213903 (2005).
[Crossref]

Proc. SPIE (1)

S. A. Mousavi, H. C. H. Mulvad, N. Wheeler, P. Horak, T. D. Bradley, S. Alam, J. Hayes, S. R. Sandoghchi, D. Richardson, and F. Poletti, “Exploring nonlinear pulse propagation, Raman frequency conversion and near octave spanning supercontinuum generation in atmospheric air-filled hollow-core Kagomé fiber,” Proc. SPIE 10088, 100880G (2017).
[Crossref]

Rev. Mod. Phys. (2)

A. Laubereau and W. Kaiser, “Vibrational dynamics of liquids and solids investigated by picosecond light pulses,” Rev. Mod. Phys. 50, 607–665 (1978).
[Crossref]

J. Dudley, G. Genty, and S. Coen, “Supercontinuum generation in photonic crystal fiber,” Rev. Mod. Phys. 78, 1135–1184 (2006).
[Crossref]

Sci. Rep. (1)

M. Zeisberger and M. A. Schmidt, “Analytic model for the complex effective index of the leaky modes of tube-type anti-resonant hollow core fibers,” Sci. Rep. 7, 11761 (2017).
[Crossref]

Science (3)

F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, “Generation and photonic guidance of multi-octave optical-frequency combs,” Science 318, 1118–1121 (2007).
[Crossref]

F. Benabid, J. C. Knight, G. Antonopoulos, and P. St.J. Russell, “Stimulated Raman scattering in hydrogen-filled hollow-core photonic crystal fiber,” Science 298, 399–402 (2002).
[Crossref]

M. D. Perry and G. Mourou, “Terawatt to petawatt subpicosecond lasers,” Science 264, 917–924 (1994).
[Crossref]

Other (6)

Y. Wang, F. Couny, P. J. Roberts, and F. Benabid, “Low loss broadband transmission in optimized core-shape Kagome hollow-core PCF,” in Conference on Lasers and Electro-Optics (OSA, 2010), paper CPDB4.

B. Debord, F. Gérôme, C. Honninger, E. Mottay, A. Husakou, F. Benabid, F. Benabid, and F. Benabid, “Milli-Joule energy-level comb and supercontinuum generation in atmospheric air-filled inhibited coupling Kagome fiber,” in CLEO: 2015 Postdeadline Paper Digest (OSA, 2015), paper JTh5C.4.

R. W. Boyd, Nonlinear Optics (Academic Press, 2008).

G. P. Agrawal, “Chapter 8—Stimulated Raman scattering,” in Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), pp. 295–352.

G. P. Agrawal, “Chapter 10—Four-wave mixing,” in Nonlinear Fiber Optics, 5th ed. (Elsevier, 2013), pp. 397–456.

http://www.fianium.com .

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1.
Fig. 1. Experimental setup. Table-top Yb laser (1.36 mJ, 1 kHz repetition rate) composed of two output channels (“output 1” corresponding to 300 ps pulses, and “output 2” corresponding to 600 fs pulses) coupled into two different IC Kagome HC-PCFs.
Fig. 2.
Fig. 2. (a) SEM images of the cross section of the two IC fibers used. Transmission (shaded grey curves), loss (blue curves), and effective index of the core fundamental mode (black curve) spectra for (b) Fiber #A and (c) Fiber #B. Normal and anomalous dispersion regimes in different transmission bands identified by ND and AD, respectively.
Fig. 3.
Fig. 3. (a) Raman comb generated at the output of IC Fiber #A for a 300 ps laser pulse duration. Evolution of the 3 m long air-filled IC Fiber #A output spectrum. (Top) Output spectrum for input energy of 1.36 mJ. The input pulse is shown for comparison. (Right) Transmission coefficient versus input energy. (b) Rotational response of the AS2 line.
Fig. 4.
Fig. 4. (a) SC generated at the output of IC Fiber #B for a 600 fs laser pulse duration. Experimental evolution of the 3.8 m long air-filled IC Fiber #B output spectrum. (Top) Output spectrum for input energy of 840 μJ. The input pulse is shown for comparison. (Right) Transmission coefficient versus input energy. (b) Dispersed beam of the SC generated at the output of the IC Fiber #B.
Fig. 5.
Fig. 5. (a) Theoretical spectral evolution of the 20 cm long air-filled IC Fiber #B output spectrum. (Top) Output spectrum for input energy of 840 μJ. The input pulse is shown for comparison. (b) Output fiber theoretical spectral evolution with the input energy (100, 200, and 400 μJ) for a fiber length of 20 cm. (Bottom) Phase mismatch curve Δβ as a function of the idler/signal wavelengths (f2 and f3). (c) Theoretical temporal pulse profiles for two input energies: 20 μJ and 500 μJ.
Fig. 6.
Fig. 6. (a) Phase mismatch Δβ1n versus the mode number n. (b) Experimental spectral evolution with input power, up to 175 mW, of the THG at the output of a 30 cm long air-filled IC Fiber #B.

Tables (2)

Tables Icon

Table 1. Kerr and SRS Coefficients of Main Atmospheric Air Gases

Tables Icon

Table 2. Characteristic Lengths of Nonlinear Effects: Raman Gain, Self-Phase Modulation, Four-Wave Mixing, and Third Harmonic Generation, for 96  TW/cm2 Input Intensity

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

LR25gssR(τ)Ip.
R(τ)(Γτ)/gssLIp,
LSPM=λpτΔωRn2Ip.
LFWM=λp2πn2Ip.
LTHG=25λp2πn2Ip.
Δβ=2βFM(fp)[βFM(f2)+βFM(f3)],
Δβ1n=β1n(3fp)3βFM(fp)+3γκ1nPpeak,