Abstract

The ultrafast fiber laser has attracted a great deal of research interest due to its low cost, high efficiency, and simple maintenance. Optical passive devices are vital parts of a fiber laser. In order to obtain a fiber laser with high quality, optical passive devices with high performance are required. Here, we demonstrate a highly integrated optical device with the combination of a saturable absorber (SA), coupler, isolator, wavelength division multiplexer, and erbium-doped fiber. The built-in SA has a modulation depth of 7% and can withstand high pump power due to the unique structure of the proposed device. The proposed device is applied to an ultracompact fiber laser, which greatly simplifies the laser structure and reduces the size of the proposed laser. The central wavelength, pulse duration, repetition rate, and signal-to-noise ratio of the output soliton are 1560 nm, 1.06 ps, 25.8 MHz, and 50 dB, respectively. The proposed device has great potential for application in high-power and high-frequency fiber lasers. The proposed ultracompact fiber laser has important applications in optical communication, optical sensing, optical frequency combs, and micromachining.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Graphene-based passively mode-locked bidirectional fiber ring laser

Venkatesh Mamidala, R. I. Woodward, Y. Yang, H. H. Liu, and K. K. Chow
Opt. Express 22(4) 4539-4546 (2014)

Three operation regimes with an L-band ultrafast fiber laser passively mode-locked by graphene oxide saturable absorber

Junqing Zhao, Yonggang Wang, Shuangchen Ruan, Peiguang Yan, Han Zhang, Yuen H. Tsang, Jinhui Yang, and Guoxi Huang
J. Opt. Soc. Am. B 31(4) 716-722 (2014)

Carbon nanotube mode lockers with enhanced nonlinearity via evanescent field interaction in D-shaped fibers

Yong-Won Song, Shinji Yamashita, Chee S. Goh, and Sze Y. Set
Opt. Lett. 32(2) 148-150 (2007)

References

  • View by:
  • |
  • |
  • |

  1. G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
    [Crossref]
  2. M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
    [Crossref]
  3. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2010).
  4. X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
    [Crossref]
  5. F. Chen and J. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
    [Crossref]
  6. T. Eidam, S. Hanf, E. Seise, T. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830  W average output power,” Opt. Lett. 35, 94–96 (2010).
    [Crossref]
  7. B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
    [Crossref]
  8. X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).
    [Crossref]
  9. Z. Qiao, L. C. Kong, G. Q. Xie, Z. P. Qin, P. Yuan, L. J. Qian, X. D. Xu, J. Xu, and D. Y. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42, 2547–2550 (2017).
    [Crossref]
  10. F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
    [Crossref]
  11. X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82, 053808 (2010).
    [Crossref]
  12. N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
    [Crossref]
  13. Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
    [Crossref]
  14. N. Ansari and Y. Luo, Passive Optical Device: Computer Science and Communications Dictionary (Springer, 2011), p. 1235.
  15. P. Sah and B. K. Das, “Integrated optical rectangular-edge filter devices in SOI,” IEEE J. Lightwave Technol. 35, 128–135 (2017).
    [Crossref]
  16. S. Li and D. Gao, “Integrated optical device design based on transformation optics,” in Progress in Electromagnetic Research Symposium (2016), p. 16.
  17. Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41, 548–550 (2016).
    [Crossref]
  18. J. B. Schröder, S. Coen, T. Sylvestre, and B. J. Eggleton, “Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper,” Opt. Express 18, 22715–22721 (2010).
    [Crossref]
  19. S. Kobtsev, S. Kukarin, S. Smirnov, S. Turitsyn, and A. Latkin, “Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers,” Opt. Express 17, 20707–20713 (2009).
    [Crossref]
  20. H. Q. Lam, P. Shum, Y. D. Gong, and S. Fu, “Series analysis of active mode-locked laser under the influence of ASE noise,” J. Lightwave Technol. 26, 1671–1680 (2008).
    [Crossref]
  21. X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
    [Crossref]
  22. X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
    [Crossref]
  23. L. M. Zhao, A. C. Bartnik, Q. Q. Tai, and F. W. Wise, “Generation of 8  nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 38, 1942–1944 (2013).
    [Crossref]
  24. X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22, 6147–6153 (2014).
    [Crossref]
  25. L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picoseconds pulses from a divided-pulse fiber amplifier,” Opt. Lett. 37, 253–255 (2012).
    [Crossref]
  26. W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
    [Crossref]
  27. C. Ouyang, P. Shum, K. Wu, J. Wong, H. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett. 36, 2089–2091 (2011).
    [Crossref]
  28. Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115 (2008).
    [Crossref]
  29. F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
    [Crossref]
  30. Z. P. Qin, G. Q. Xie, C. J. Zhao, S. C. Wen, P. Yuan, and L. J. Qian, “Mid-infrared mode-locking pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
    [Crossref]
  31. J. H. Im, S. Choi, F. Rotermund, and D. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18, 22141–22146 (2010).
    [Crossref]
  32. P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
    [Crossref]
  33. M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
    [Crossref]
  34. X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
    [Crossref]
  35. Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
    [Crossref]

2018 (1)

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

2017 (4)

Z. Qiao, L. C. Kong, G. Q. Xie, Z. P. Qin, P. Yuan, L. J. Qian, X. D. Xu, J. Xu, and D. Y. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42, 2547–2550 (2017).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

P. Sah and B. K. Das, “Integrated optical rectangular-edge filter devices in SOI,” IEEE J. Lightwave Technol. 35, 128–135 (2017).
[Crossref]

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

2016 (2)

2015 (3)

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

P. Yan, R. Lin, S. Ruan, A. Liu, and H. Chen, “A 2.95  GHz, femtosecond passive harmonic mode-locked fiber laser based on evanescent field interaction with topological insulator film,” Opt. Express 23, 154–164 (2015).
[Crossref]

2014 (3)

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

X. Wang, P. Zhou, X. Wang, H. Xiao, and Z. Liu, “Pulse bundles and passive harmonic mode-locked pulses in Tm-doped fiber laser based on nonlinear polarization rotation,” Opt. Express 22, 6147–6153 (2014).
[Crossref]

F. Chen and J. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

2013 (3)

L. M. Zhao, A. C. Bartnik, Q. Q. Tai, and F. W. Wise, “Generation of 8  nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 38, 1942–1944 (2013).
[Crossref]

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

2012 (2)

L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picoseconds pulses from a divided-pulse fiber amplifier,” Opt. Lett. 37, 253–255 (2012).
[Crossref]

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

2011 (1)

2010 (8)

J. H. Im, S. Choi, F. Rotermund, and D. Yeom, “All-fiber Er-doped dissipative soliton laser based on evanescent field interaction with carbon nanotube saturable absorber,” Opt. Express 18, 22141–22146 (2010).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
[Crossref]

X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82, 053808 (2010).
[Crossref]

J. B. Schröder, S. Coen, T. Sylvestre, and B. J. Eggleton, “Dark and bright pulse passive mode-locked laser with in-cavity pulse-shaper,” Opt. Express 18, 22715–22721 (2010).
[Crossref]

T. Eidam, S. Hanf, E. Seise, T. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830  W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

2009 (2)

2008 (3)

H. Q. Lam, P. Shum, Y. D. Gong, and S. Fu, “Series analysis of active mode-locked laser under the influence of ASE noise,” J. Lightwave Technol. 26, 1671–1680 (2008).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115 (2008).
[Crossref]

Aditya, S.

Agrawal, G. P.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2010).

Andersen, T.

Ansari, N.

N. Ansari and Y. Luo, Passive Optical Device: Computer Science and Communications Dictionary (Springer, 2011), p. 1235.

Bartnik, A. C.

Bonaccorso, F.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Bückmann, T.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Chen, F.

F. Chen and J. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Chen, H.

Choi, S.

Chong, A.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Chung, D.

Coen, S.

Cui, Y.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Das, B. K.

P. Sah and B. K. Das, “Integrated optical rectangular-edge filter devices in SOI,” IEEE J. Lightwave Technol. 35, 128–135 (2017).
[Crossref]

de Aldana, J. V.

F. Chen and J. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

Denisov, V. I.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Eggert, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Eggleton, B. J.

Eidam, T.

Fan, D. Y.

Fan, Y.

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

Fermann, M. E.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Ferrari, A.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Fu, S.

Gabler, T.

Gao, D.

S. Li and D. Gao, “Integrated optical device design based on transformation optics,” in Progress in Electromagnetic Research Symposium (2016), p. 16.

Gong, Y. D.

Gruhler, N.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Gu, C.

Han, D.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Hanf, S.

Hanke, T.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Hartl, I.

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

Hasan, T.

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Huang, X.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Huber, R.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Ilday, F.

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Im, J. H.

Ivanenko, V.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Kobtsev, S.

Kobtsev, S. M.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Kong, L. C.

Kong, L. J.

Korovin, A.

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

Krauss, G.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Kukarin, S.

Lam, H.

Lam, H. Q.

Latkin, A.

Lefrancois, S.

Leitenstorfer, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Li, F.

Li, S.

S. Li and D. Gao, “Integrated optical device design based on transformation optics,” in Progress in Electromagnetic Research Symposium (2016), p. 16.

Limpert, J.

Lin, R.

Liu, A.

Liu, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
[Crossref]

X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82, 053808 (2010).
[Crossref]

Liu, Z.

Lohss, S.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Lu, F.

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

Lu, H.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Luo, Y.

N. Ansari and Y. Luo, Passive Optical Device: Computer Science and Communications Dictionary (Springer, 2011), p. 1235.

Lupu, A.

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

Lustrac, A.

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

Mao, D.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Maruyama, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115 (2008).
[Crossref]

Meng, H.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Mou, C.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Nyushkov, N.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Oktem, B.

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Ouyang, C.

Ouzounov, D. G.

Pernice, W.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Pivtsov, V. S.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Qian, L. J.

Qiao, Z.

Qin, Z. P.

Renninger, W. H.

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Rotermund, F.

Roux, X.

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

Ruan, S.

Sah, P.

P. Sah and B. K. Das, “Integrated optical rectangular-edge filter devices in SOI,” IEEE J. Lightwave Technol. 35, 128–135 (2017).
[Crossref]

Schreiber, T.

Schröder, J. B.

Schumann, M.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Seise, E.

Sell, A.

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Shum, P.

Smirnov, S.

Song, Y. W.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115 (2008).
[Crossref]

Sun, B.

Sun, Z.

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

Sylvestre, T.

Tai, Q. Q.

Tan, C.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Tünnermann, A.

Turitsyn, K.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Turitsyn, S.

Ulgudur, C.

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

Wang, A.

Wang, F.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Wang, W.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Wang, X.

Wegener, M.

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Wen, S. C.

Wirth, C.

Wise, F. W.

Wong, J.

Wu, K.

Wu, X.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Xiao, H.

Xie, G. Q.

Xiong, R.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Xu, J.

Xu, L.

Xu, X. D.

Xue, H.

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Yamashita, S.

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115 (2008).
[Crossref]

Yan, P.

Yang, C. X.

Yao, X.

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

Yeom, D.

Yuan, P.

Zeng, C.

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Zhan, Q.

Zhang, L.

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

Zhao, C. J.

Zhao, L. M.

Zhou, P.

Zhou, Y.

ACS Nano (1)

Y. Fan, X. Roux, A. Korovin, A. Lupu, and A. Lustrac, “Integrated 2D-graded index plasmonic lens on a silicon waveguide for operation in the near infrared domain,” ACS Nano 11, 4599–4605 (2017).
[Crossref]

Appl. Phys. Lett. (1)

Y. W. Song, S. Yamashita, and S. Maruyama, “Single-walled carbon nanotubes for high-energy optical pulse formation,” Appl. Phys. Lett. 92, 021115 (2008).
[Crossref]

IEEE J. Lightwave Technol. (1)

P. Sah and B. K. Das, “Integrated optical rectangular-edge filter devices in SOI,” IEEE J. Lightwave Technol. 35, 128–135 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Fermann and I. Hartl, “Ultrafast fiber laser technology,” IEEE J. Sel. Top. Quantum Electron. 15, 191–206 (2009).
[Crossref]

J. Lightwave Technol. (1)

Laser Photon. Rev. (2)

F. Chen and J. V. de Aldana, “Optical waveguides in crystalline dielectric materials produced by femtosecond laser micromachining,” Laser Photon. Rev. 8, 251–275 (2014).
[Crossref]

F. W. Wise, A. Chong, and W. H. Renninger, “High-energy femtosecond fiber lasers based on pulse propagation at normal dispersion,” Laser Photon. Rev. 2, 58–73 (2008).
[Crossref]

Laser Phys. Lett. (2)

N. Nyushkov, V. Ivanenko, S. M. Kobtsev, K. Turitsyn, C. Mou, L. Zhang, V. I. Denisov, and V. S. Pivtsov, “Gamma-shaped long-cavity normal-dispersion mode-locked Er-fiber laser for sub-nanosecond high-energy pulsed generation,” Laser Phys. Lett. 9, 59–67 (2012).
[Crossref]

W. Wang, H. Meng, X. Wu, W. Wang, R. Xiong, H. Xue, C. Tan, and X. Huang, “A nonlinear polarization rotation-based linear cavity waveband switchable multi-wavelength fiber laser,” Laser Phys. Lett. 10, 015104 (2013).
[Crossref]

Light Sci. Appl. (1)

M. Schumann, T. Bückmann, N. Gruhler, M. Wegener, and W. Pernice, “Hybrid 2D-3D optical devices for integrated optics by direct laser writing,” Light Sci. Appl. 3, e175 (2014).
[Crossref]

Nat. Photonics (3)

F. Bonaccorso, Z. Sun, T. Hasan, and A. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics 4, 611–622 (2010).
[Crossref]

B. Oktem, C. Ulgudur, and F. Ilday, “Soliton-similariton fibre laser,” Nat. Photonics 4, 307–311 (2010).
[Crossref]

G. Krauss, S. Lohss, T. Hanke, A. Sell, S. Eggert, R. Huber, and A. Leitenstorfer, “Synthesis of a single cycle of light with compact erbium-doped fibre technology,” Nat. Photonics 4, 33–36 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (7)

L. J. Kong, L. M. Zhao, S. Lefrancois, D. G. Ouzounov, C. X. Yang, and F. W. Wise, “Generation of megawatt peak power picoseconds pulses from a divided-pulse fiber amplifier,” Opt. Lett. 37, 253–255 (2012).
[Crossref]

C. Ouyang, P. Shum, K. Wu, J. Wong, H. Lam, and S. Aditya, “Bidirectional passively mode-locked soliton fiber laser with a four-port circulator,” Opt. Lett. 36, 2089–2091 (2011).
[Crossref]

Z. P. Qin, G. Q. Xie, C. J. Zhao, S. C. Wen, P. Yuan, and L. J. Qian, “Mid-infrared mode-locking pulse generation with multilayer black phosphorus as saturable absorber,” Opt. Lett. 41, 56–59 (2016).
[Crossref]

L. M. Zhao, A. C. Bartnik, Q. Q. Tai, and F. W. Wise, “Generation of 8  nJ pulses from a dissipative-soliton fiber laser with a nonlinear optical loop mirror,” Opt. Lett. 38, 1942–1944 (2013).
[Crossref]

T. Eidam, S. Hanf, E. Seise, T. Andersen, T. Gabler, C. Wirth, T. Schreiber, J. Limpert, and A. Tünnermann, “Femtosecond fiber CPA system emitting 830  W average output power,” Opt. Lett. 35, 94–96 (2010).
[Crossref]

Z. Qiao, L. C. Kong, G. Q. Xie, Z. P. Qin, P. Yuan, L. J. Qian, X. D. Xu, J. Xu, and D. Y. Fan, “Ultraclean femtosecond vortices from a tunable high-order transverse-mode femtosecond laser,” Opt. Lett. 42, 2547–2550 (2017).
[Crossref]

Y. Zhou, A. Wang, C. Gu, B. Sun, L. Xu, F. Li, D. Chung, and Q. Zhan, “Actively mode-locked all fiber laser with cylindrical vector beam output,” Opt. Lett. 41, 548–550 (2016).
[Crossref]

Phys. Rev. A (2)

X. Liu, “Mechanism of high-energy pulse generation without wave breaking in mode-locked fiber lasers,” Phys. Rev. A 82, 053808 (2010).
[Crossref]

X. Liu, “Hysteresis phenomena and multipulse formation of a dissipative system in a passively mode-locked fiber laser,” Phys. Rev. A 81, 023811 (2010).
[Crossref]

Phys. Rev. Lett. (1)

X. Liu, X. Yao, and Y. Cui, “Real-time observation of the buildup of soliton molecules,” Phys. Rev. Lett. 121, 023905 (2018).
[Crossref]

Sci. Rep. (4)

X. Liu and Y. Cui, “Flexible pulse-controlled fiber laser,” Sci. Rep. 5, 9399 (2015).
[Crossref]

Y. Cui, F. Lu, and X. Liu, “Nonlinear saturable and polarization-induced absorption of rhenium disulfide,” Sci. Rep. 7, 40080 (2017).
[Crossref]

X. Liu, Y. Cui, D. Han, X. Yao, and Z. Sun, “Distributed ultrafast fibre laser,” Sci. Rep. 5, 9101 (2015).
[Crossref]

X. Liu, D. Han, Z. Sun, C. Zeng, H. Lu, D. Mao, Y. Cui, and F. Wang, “Versatile multi-wavelength ultrafast fiber laser mode-locked by carbon nanotubes,” Sci. Rep. 3, 2718 (2013).
[Crossref]

Other (3)

N. Ansari and Y. Luo, Passive Optical Device: Computer Science and Communications Dictionary (Springer, 2011), p. 1235.

S. Li and D. Gao, “Integrated optical device design based on transformation optics,” in Progress in Electromagnetic Research Symposium (2016), p. 16.

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. (a) Internal schematic setup of the highly integrated optical device. EDF, erbium-doped fiber; SMF, single-mode fiber; G-lens, gradient-index lens; SA film, saturable absorber film; WDM slice, wavelength division multiplexer slice. (b) Image and size of the proposed optical device.
Fig. 2.
Fig. 2. (a) Schematic setup of nonlinear optical characterization. OC, optical coupler; OPM, optical power meter. (b) Image of SA film. (c) Nonlinear saturable absorption of the SA. The solid curve is the fit to the experimental data.
Fig. 3.
Fig. 3. Schematic setup of the ultracompact laser. EDF, erbium-doped fiber; the highly integrated optical device is marked with a red dashed rectangle box, and it is an aggregation of an SA, coupler, isolator, WDM, and EDF; LD, laser diode. The red arrow in the inner loop shows the propagation route of 980-nm light, while the blue arrow in the outer loop shows the propagation route of the 1550-nm CW and soliton.
Fig. 4.
Fig. 4. Typical characteristics of an ultrafast soliton. (a) Optical spectrum; (b) oscilloscope trace; (c) autocorrelation trace of the experimental data (circles) and sech2-shaped fit (solid curve); (d) fundamental RF spectrum.
Fig. 5.
Fig. 5. Characteristics of ultrafast CS. (a) Optical spectrum; (b) oscilloscope trace.

Metrics