Abstract

Mid-infrared (MIR) integrated photonics has attracted broad interest due to its promising applications in biochemical sensing, environmental monitoring, disease diagnosis, and optical communication. Among MIR integration platforms, germanium-based platforms hold many excellent properties, such as wide transparency windows, high refractive indices, and high nonlinear coefficients; however, the development of MIR germanium photonic devices is still in its infancy. Specifically, MIR high-Q germanium resonators with comparable performance to their silicon counterparts remain unprecedented. Here we experimentally demonstrate an MIR germanium nanocavity with a Q factor of 18,000, the highest-to-date of reported nanocavities across MIR germanium-based integration platforms. This is achieved through a combination of a feasible theoretical design, Smart-Cut methods for wafer development, and optimized device fabrication processes. Our nanocavity, with its high Q factor and ultrasmall mode volume, opens new avenues for on-chip applications in the MIR spectral range.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Mid-infrared high-Q germanium microring resonator

Ting-Hui Xiao, Ziqiang Zhao, Wen Zhou, Chin-Yao Chang, Sze Yun Set, Mitsuru Takenaka, Hon Ki Tsang, Zhenzhou Cheng, and Keisuke Goda
Opt. Lett. 43(12) 2885-2888 (2018)

Mid-infrared germanium photonic crystal cavity

Ting-Hui Xiao, Ziqiang Zhao, Wen Zhou, Mitsuru Takenaka, Hon Ki Tsang, Zhenzhou Cheng, and Keisuke Goda
Opt. Lett. 42(15) 2882-2885 (2017)

Silicon photonic platforms for mid-infrared applications [Invited]

Ting Hu, Bowei Dong, Xianshu Luo, Tsung-Yang Liow, Junfeng Song, Chengkuo Lee, and Guo-Qiang Lo
Photon. Res. 5(5) 417-430 (2017)

References

  • View by:
  • |
  • |
  • |

  1. R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
    [Crossref]
  2. N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
    [Crossref]
  3. Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
    [Crossref]
  4. H. T. Lin, L. Li, Y. Zou, S. Danto, J. D. Musgraves, K. Richardson, S. Kozacik, M. Murakowski, D. Prather, P. T. Lin, V. Singh, A. Agarwal, L. C. Kimerling, and J. J. Hu, “Demonstration of high-Q mid-infrared chalcogenide glass-on-silicon resonators,” Opt. Lett. 38, 1470–1472 (2013).
    [Crossref]
  5. A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
    [Crossref]
  6. B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
    [Crossref]
  7. Y. Zou, S. Chakravarty, C. J. Chung, X. C. Xu, and R. T. Chen, “Mid-infrared silicon photonic waveguides and devices [Invited],” Photon. Res. 6, 254–276 (2018).
    [Crossref]
  8. T. Hu, B. W. Dong, X. S. Luo, T. Y. Liow, J. F. Song, C. Lee, and G. Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
    [Crossref]
  9. W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
    [Crossref]
  10. F. X. Li, S. D. Jackson, C. Grillet, E. Magi, D. Hudson, S. J. Madden, Y. Moghe, C. O’Brien, A. Read, S. G. Duvall, P. Atanackovic, B. J. Eggleton, and D. J. Moss, “Low propagation loss silicon-on-sapphire waveguides for the mid-infrared,” Opt. Express 19, 15212–15220 (2011).
    [Crossref]
  11. C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
    [Crossref]
  12. J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
    [Crossref]
  13. S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
    [Crossref]
  14. S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
    [Crossref]
  15. R. Shankar, R. Leijssen, I. Bulu, and M. Loncar, “Mid-infrared photonic crystal cavities in silicon,” Opt. Express 19, 5579–5586 (2011).
    [Crossref]
  16. R. Shankar, I. Bulu, R. Leijssen, and M. Loncar, “Study of thermally-induced optical bistability and the role of surface treatments in Si-based mid-infrared photonic crystal cavities,” Opt. Express 19, 24828–24837 (2011).
    [Crossref]
  17. H. T. Lin, Z. Q. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2018).
    [Crossref]
  18. N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110, 011301 (2011).
    [Crossref]
  19. A. Malik, S. Dwivedi, L. Van Landschoot, M. Munceb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
    [Crossref]
  20. S. Radosavljevic, N. T. Beneitez, A. Katumba, M. Muneeb, M. Vanslembrouck, B. Kuyken, and G. Roelkens, “Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited],” Opt. Mater. Express 8, 824–835 (2018).
    [Crossref]
  21. W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
    [Crossref]
  22. J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42, 259–263 (2016).
    [Crossref]
  23. K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
    [Crossref]
  24. T. H. Xiao, Z. Zhao, W. Zhou, M. Takenaka, H. K. Tsang, Z. Cheng, and K. Goda, “Mid-infrared germanium photonic crystal cavity,” Opt. Lett. 42, 2882–2885 (2017).
    [Crossref]
  25. J. Kang, Z. Cheng, W. Zhou, T. H. Xiao, K. L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42, 2094–2097 (2017).
    [Crossref]
  26. M. Sinobad, C. Monat, B. Luther-Davies, P. Ma, S. Madden, D. J. Moss, A. Mitchell, D. Allioux, R. Orobtchouk, S. Boutami, J. M. Hartmann, J. M. Fedeli, and C. Grillet, “Mid-infrared octave spanning supercontinuum generation to 8.5 μm in silicon–germanium waveguides,” Optica 5, 360–366 (2018).
    [Crossref]
  27. L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared,” Opt. Lett. 40, 2213–2216 (2015).
    [Crossref]
  28. B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
    [Crossref]

2018 (4)

2017 (4)

2016 (5)

B. Troia, J. S. Penades, A. Z. Khokhar, M. Nedeljkovic, C. Alonso-Ramos, V. M. N. Passaro, and G. Z. Mashanovich, “Germanium-on-silicon Vernier-effect photonic microcavities for the mid-infrared,” Opt. Lett. 41, 610–613 (2016).
[Crossref]

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42, 259–263 (2016).
[Crossref]

2015 (4)

C. J. Smith, R. Shankar, M. Laderer, M. B. Frish, M. Loncar, and M. G. Allen, “Sensing nitrous oxide with QCL-coupled silicon-on-sapphire ring resonators,” Opt. Express 23, 5491–5499 (2015).
[Crossref]

L. Shen, N. Healy, C. J. Mitchell, J. S. Penades, M. Nedeljkovic, G. Z. Mashanovich, and A. C. Peacock, “Two-photon absorption and all-optical modulation in germanium-on-silicon waveguides for the mid-infrared,” Opt. Lett. 40, 2213–2216 (2015).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

2014 (3)

2013 (2)

2012 (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

2011 (4)

2010 (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Agarwal, A.

Allen, M. G.

Allioux, D.

Alonso-Ramos, C.

Anantha, P.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Ashihara, S.

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Atanackovic, P.

Baets, R.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bao, S. Y.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

Beneitez, N. T.

Bhuiyan, M.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Bienstman, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Bogaerts, W.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Boutami, S.

Bulu, I.

Cardenas, J.

S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Chakravarty, S.

Chen, R. T.

Cheng, Z.

Chiles, J.

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Chong, G. Y.

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

Chung, C. J.

Claes, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Coen, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Danto, S.

De Heyn, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

De Vos, K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Deng, B. C.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Dong, B. W.

Dumon, P.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Duvall, S. G.

Dwivedi, S.

Eggleton, B. J.

Fain, R.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Farmer, D.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Fathpour, S.

J. Chiles and S. Fathpour, “Mid-infrared integrated waveguide modulators based on silicon-on-lithium-niobate photonics,” Optica 1, 350–355 (2014).
[Crossref]

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Fedeli, J. M.

Fitzgerald, E. A.

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

Frish, M. B.

Gaeta, A. L.

S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Goda, K.

Gopalakrisna, K. L.

Griffith, A. G.

S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Grillet, C.

Gu, T.

H. T. Lin, Z. Q. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2018).
[Crossref]

Guo, Q. S.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Guo, X.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Han, S. J.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Hansch, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Hartmann, J. M.

Healy, N.

Hiramatsu, N.

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Holzner, S.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Hon, N. K.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110, 011301 (2011).
[Crossref]

Hu, J. J.

Hu, T.

T. Hu, B. W. Dong, X. S. Luo, T. Y. Liow, J. F. Song, C. Lee, and G. Q. Lo, “Silicon photonic platforms for mid-infrared applications [Invited],” Photon. Res. 5, 417–430 (2017).
[Crossref]

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Hudson, D.

Ideguchi, T.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Imasaka, K.

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Jackson, S. D.

Jalali, B.

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110, 011301 (2011).
[Crossref]

Ji, X. C.

Jiang, H.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Kang, J.

J. Kang, Z. Cheng, W. Zhou, T. H. Xiao, K. L. Gopalakrisna, M. Takenaka, H. K. Tsang, and K. Goda, “Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides,” Opt. Lett. 42, 2094–2097 (2017).
[Crossref]

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42, 259–263 (2016).
[Crossref]

Katumba, A.

Khan, S.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Khokhar, A. Z.

Kimerling, L. C.

Kozacik, S.

Kusa, F.

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Kuyken, B.

S. Radosavljevic, N. T. Beneitez, A. Katumba, M. Muneeb, M. Vanslembrouck, B. Kuyken, and G. Roelkens, “Mid-infrared Vernier racetrack resonator tunable filter implemented on a germanium on SOI waveguide platform [Invited],” Opt. Mater. Express 8, 824–835 (2018).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Laderer, M.

Lau, R. K. W.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lee, C.

Lee, K. H.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

Lee, Y. H. D.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Leijssen, R.

Leo, F.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Lepage, G.

Li, C.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Li, F. X.

Li, L.

Li, W.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Lin, H. T.

Lin, P. T.

Liow, T. Y.

Lipson, M.

S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Lo, G. Q.

Loncar, M.

Loo, R.

Luo, X. S.

Luo, Z. Q.

H. T. Lin, Z. Q. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2018).
[Crossref]

Luther-Davies, B.

Ma, J.

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

Ma, P.

Ma, T. P.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Madden, S.

Madden, S. J.

Magi, E.

Malik, A.

Mashanovich, G. Z.

Miller, S. A.

Mitchell, A.

Mitchell, C. J.

Moghe, Y.

Mohanty, A.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Monat, C.

Morichika, I.

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Moss, D. J.

Mueller, T.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Munceb, M.

Muneeb, M.

Murakowski, M.

Musgraves, J. D.

Nedeljkovic, M.

O’Brien, C.

Okawachi, Y.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Orobtchouk, R.

Passaro, V. M. N.

Peacock, A. C.

Penades, J. S.

Phare, C. T.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Picque, N.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Poitras, C. B.

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Pospischil, A.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Prather, D.

Radosavljevic, S.

Read, A.

Richardson, K.

Roelkens, G.

Selvaraja, S. K.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Shankar, R.

Shen, L.

Shimura, Y.

Singh, V.

Sinobad, M.

Smith, C. J.

Song, J. F.

Soref, R.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110, 011301 (2011).
[Crossref]

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Takagi, S.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42, 259–263 (2016).
[Crossref]

Takegami, A.

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Takenaka, M.

Tan, C. S.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

Tan, Y. H.

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

Tian, H.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Troia, B.

Tsang, H. K.

Van Campenhout, J.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

A. Malik, S. Dwivedi, L. Van Landschoot, M. Munceb, Y. Shimura, G. Lepage, J. Van Campenhout, W. Vanherle, T. Van Opstal, R. Loo, and G. Roelkens, “Ge-on-Si and Ge-on-SOI thermo-optic phase shifters for the mid-infrared,” Opt. Express 22, 28479–28488 (2014).
[Crossref]

Van Landschoot, L.

Van Opstal, T.

Van Thourhout, D.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Van Vaerenbergh, T.

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Vanherle, W.

Vanslembrouck, M.

Verheyen, P.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Wada, K.

H. T. Lin, Z. Q. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2018).
[Crossref]

Wang, H.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Xia, F. N.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Xia, Q. F.

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Xiao, T. H.

Xu, X. C.

Yan, M.

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Yu, M. J.

S. A. Miller, M. J. Yu, X. C. Ji, A. G. Griffith, J. Cardenas, A. L. Gaeta, and M. Lipson, “Low-loss silicon platform for broadband mid-infrared photonics,” Optica 4, 707–712 (2017).
[Crossref]

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

Yu, X.

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42, 259–263 (2016).
[Crossref]

Zhang, L.

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

Zhao, Z.

Zhou, W.

Zou, Y.

Appl. Phys. Lett. (2)

S. Khan, J. Chiles, J. Ma, and S. Fathpour, “Silicon-on-nitride waveguides for mid- and near-infrared integrated photonics,” Appl. Phys. Lett. 102, 121104 (2013).
[Crossref]

W. Li, P. Anantha, S. Y. Bao, K. H. Lee, X. Guo, T. Hu, L. Zhang, H. Wang, R. Soref, and C. S. Tan, “Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics,” Appl. Phys. Lett. 109, 241101 (2016).
[Crossref]

J. Appl. Phys. (3)

N. K. Hon, R. Soref, and B. Jalali, “The third-order nonlinear optical coefficients of Si, Ge, and Si1-xGex in the midwave and longwave infrared,” J. Appl. Phys. 110, 011301 (2011).
[Crossref]

K. H. Lee, S. Y. Bao, G. Y. Chong, Y. H. Tan, E. A. Fitzgerald, and C. S. Tan, “Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer,” J. Appl. Phys. 116, 103506 (2014).
[Crossref]

N. Hiramatsu, F. Kusa, K. Imasaka, I. Morichika, A. Takegami, and S. Ashihara, “Propagation length of mid-infrared surface plasmon polaritons on gold: impact of morphology change by thermal annealing,” J. Appl. Phys. 120, 173103 (2016).
[Crossref]

Laser Photon. Rev. (1)

W. Bogaerts, P. De Heyn, T. Van Vaerenbergh, K. De Vos, S. K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. Van Thourhout, and R. Baets, “Silicon microring resonators,” Laser Photon. Rev. 6, 47–73 (2012).
[Crossref]

Mater. Sci. Semicond. Process. (1)

J. Kang, X. Yu, M. Takenaka, and S. Takagi, “Impact of thermal annealing on Ge-on-insulator substrate fabricated by wafer bonding,” Mater. Sci. Semicond. Process. 42, 259–263 (2016).
[Crossref]

Nano Lett. (1)

Q. S. Guo, A. Pospischil, M. Bhuiyan, H. Jiang, H. Tian, D. Farmer, B. C. Deng, C. Li, S. J. Han, H. Wang, Q. F. Xia, T. P. Ma, T. Mueller, and F. N. Xia, “Black phosphorus mid-infrared photodetectors with high gain,” Nano Lett. 16, 4648–4655 (2016).
[Crossref]

Nanophotonics (1)

H. T. Lin, Z. Q. Luo, T. Gu, L. C. Kimerling, K. Wada, A. Agarwal, and J. J. Hu, “Mid-infrared integrated photonics on silicon: a perspective,” Nanophotonics 7, 393–420 (2018).
[Crossref]

Nat. Commun. (2)

A. G. Griffith, R. K. W. Lau, J. Cardenas, Y. Okawachi, A. Mohanty, R. Fain, Y. H. D. Lee, M. J. Yu, C. T. Phare, C. B. Poitras, A. L. Gaeta, and M. Lipson, “Silicon-chip mid-infrared frequency comb generation,” Nat. Commun. 6, 6299 (2015).
[Crossref]

B. Kuyken, T. Ideguchi, S. Holzner, M. Yan, T. Hansch, J. Van Campenhout, P. Verheyen, S. Coen, F. Leo, R. Baets, G. Roelkens, and N. Picque, “An octave-spanning mid-infrared frequency comb generated in a silicon nanophotonic wire waveguide,” Nat. Commun. 6, 6310 (2015).
[Crossref]

Nat. Photonics (1)

R. Soref, “Mid-infrared photonics in silicon and germanium,” Nat. Photonics 4, 495–497 (2010).
[Crossref]

Opt. Express (5)

Opt. Lett. (5)

Opt. Mater. Express (1)

Optica (3)

Photon. Res. (2)

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1.
Fig. 1. Schematic of the monolithically integrated on-chip MIR germanium device that contains a high- Q nanocavity, two suspended-membrane waveguides, and two focusing subwavelength grating couplers. The inset to the bottom left shows the design of the high- Q nanocavity. The inset to the bottom right shows a cross-sectional view of a suspended-membrane waveguide.
Fig. 2.
Fig. 2. SEM images of the MIR germanium device, including the high- Q nanocavity. (a) Top view of the device. Scale bar: 10 μm. (b) Top view of the high- Q nanocavity. Scale bar: 500 nm.
Fig. 3.
Fig. 3. Experimental characterization of the MIR germanium device, including the high- Q nanocavity. (a) Measured transmission spectrum of the device (blue) and measured coupling efficiency of the focusing subwavelength grating couplers (red). (b) Lorentzian fitting of the measured nanocavity resonant mode. The inset shows the electric field magnitude distribution of the resonant mode.

Tables (1)

Tables Icon

Table 1. Comparison of MIR Germanium Cavities