Abstract

Strong plasmonic focal spots, excited by radially polarized light on a smooth thin metallic film, have been widely applied to trap various micro- and nano-sized objects. However, the direct transmission part of the incident light leads to the scattering force exerted on trapped particles, which seriously affects the stability of the plasmonic trap. Here we employ a novel perfect radially polarized beam to solve this problem. Both theoretical and experimental results verify that such a beam could strongly suppress the directly transmitted light to reduce the piconewton scattering force, and an enhanced plasmonic trapping stiffness that is 2.6 times higher is achieved in experiments. The present work opens up new opportunities for a variety of research requiring the stable manipulations of particles.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
FDTD approach to optical forces of tightly focused vector beams on metal particles

Jian-Qi Qin, Xi-Lin Wang, Ding Jia, Jing Chen, Ya-Xian Fan, Jianping Ding, and Hui-Tian Wang
Opt. Express 17(10) 8407-8416 (2009)

Optical trapping of gold nanoparticles by cylindrical vector beam

Lu Huang, Honglian Guo, Jiafang Li, Lin Ling, Baohua Feng, and Zhi-Yuan Li
Opt. Lett. 37(10) 1694-1696 (2012)

Dark-field optical tweezers for nanometrology of metallic nanoparticles

Kellie Pearce, Fan Wang, and Peter J. Reece
Opt. Express 19(25) 25559-25569 (2011)

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
    [Crossref]
  2. K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
    [Crossref]
  3. P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
    [Crossref]
  4. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
    [Crossref]
  5. P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
    [Crossref]
  6. R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
    [Crossref]
  7. O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
    [Crossref]
  8. T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
    [Crossref]
  9. C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
    [Crossref]
  10. Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
    [Crossref]
  11. P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
    [Crossref]
  12. L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
    [Crossref]
  13. L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
    [Crossref]
  14. Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
    [Crossref]
  15. M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
    [Crossref]
  16. Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
    [Crossref]
  17. Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
    [Crossref]
  18. M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
    [Crossref]
  19. D. Bhalothia and Y. T. Yang, “Trapping of micro particles in nanoplasmonic optical lattice,” J. Visualized Exp.e56151 (2017).
    [Crossref]
  20. K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
    [Crossref]
  21. A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
    [Crossref]
  22. Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
    [Crossref]
  23. K. Kitamura, K. Sakai, and S. Noda, “Sub-wavelength focal spot with long depth of focus generated by radially polarized, narrow-width annular beam,” Opt. Express 18, 4518–4525 (2010).
    [Crossref]
  24. A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizon, “Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator,” Opt. Lett. 38, 534–536 (2013).
    [Crossref]
  25. P. Vaity and L. Rusch, “Perfect vortex beam: Fourier transformation of a Bessel beam,” Opt. Lett. 40, 597–600 (2015).
    [Crossref]
  26. M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
    [Crossref]
  27. Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
    [Crossref]
  28. M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
    [Crossref]
  29. L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
    [Crossref]
  30. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).
  31. M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19, 115001 (2014).
    [Crossref]
  32. G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
    [Crossref]
  33. J. P. Staforelli, E. Vera, J. M. Brito, P. Solano, S. Torres, and C. Saavedra, “Superresolution imaging in optical tweezers using high-speed cameras,” Opt. Express 18, 3322–3331 (2010).
    [Crossref]
  34. A. van der Horst and N. R. Forde, “Power spectral analysis for optical trap stiffness calibration from high-speed camera position detection with limited bandwidth,” Opt. Express 18, 7670–7677 (2010).
    [Crossref]
  35. M. Druckmuller, “Phase correlation method for the alignment of total solar eclipse images,” Astrophys. J. 706, 1605–1608 (2009).
    [Crossref]
  36. K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
    [Crossref]

2017 (5)

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

2016 (2)

M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

2015 (1)

2014 (4)

M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19, 115001 (2014).
[Crossref]

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

2013 (4)

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

A. S. Ostrovsky, C. Rickenstorff-Parrao, and V. Arrizon, “Generation of the “perfect” optical vortex using a liquid-crystal spatial light modulator,” Opt. Lett. 38, 534–536 (2013).
[Crossref]

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

2012 (1)

2011 (2)

L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

2010 (3)

2009 (2)

M. Druckmuller, “Phase correlation method for the alignment of total solar eclipse images,” Astrophys. J. 706, 1605–1608 (2009).
[Crossref]

Q. W. Zhan, “Cylindrical vector beams: from mathematical concepts to applications,” Adv. Opt. Photon. 1, 1–57 (2009).
[Crossref]

2008 (4)

G. M. Gibson, J. Leach, S. Keen, A. J. Wright, and M. J. Padgett, “Measuring the accuracy of particle position and force in optical tweezers using high-speed video microscopy,” Opt. Express 16, 14561–14570 (2008).
[Crossref]

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[Crossref]

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

2005 (1)

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

2004 (2)

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

1996 (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

1994 (1)

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Aadhi, A.

M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Anvari, B.

M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19, 115001 (2014).
[Crossref]

Arrizon, V.

Ashkin, A.

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Berg-Sorensen, K.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Bevan, M. A.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Bhalothia, D.

D. Bhalothia and Y. T. Yang, “Trapping of micro particles in nanoplasmonic optical lattice,” J. Visualized Exp.e56151 (2017).
[Crossref]

Bhatia, V. K.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Block, S. M.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994).
[Crossref]

Born, M.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Brito, J. M.

Chaitanya, N. A.

M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Chikkaraddy, R.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Coughlan, A. C. H.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Crozier, K. B.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Dan, D.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Dasgupta, A.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Dholakia, K.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[Crossref]

Dienerowitz, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[Crossref]

Dou, X.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Dou, X. J.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Druckmuller, M.

M. Druckmuller, “Phase correlation method for the alignment of total solar eclipse images,” Astrophys. J. 706, 1605–1608 (2009).
[Crossref]

Du, L.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Du, L. P.

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
[Crossref]

El-Sayed, I. H.

P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

El-Sayed, M. A.

P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Enger, J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Fan, D. Y.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Fang, H.

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
[Crossref]

Ferrari, A. C.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Flyvbjerg, H.

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

Forde, N. R.

Friese, M. E. J.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Gao, P.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Gibson, G. M.

Girard, C.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

Gu, B. B.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Gucciardi, P. G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Hansen, P. M.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Harrit, N.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Heckenberg, N. R.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Hu, Z. J.

Huang, X. H.

P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Jabir, M. V.

M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Jain, P. K.

P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Jones, P. H.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Ke, Y. G.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Keen, S.

Kitamura, K.

Kumar, G. V. P.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Leach, J.

Lei, M.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Lei, T.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Li, Z.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Lin, J.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Lin, L. H.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Lin, Y. N.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Liu, J.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

Liu, Y. C.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Liu, Y. Y.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Luo, H. L.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Man, Z. S.

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

Mao, Z. M.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Marago, O. M.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Mazilu, M.

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[Crossref]

Meng, F.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Min, C.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Min, C. J.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
[Crossref]

Neuman, K. C.

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Noda, S.

Oddershede, L.

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Ostrovsky, A. S.

Padgett, M. J.

Panwar, N.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Patra, P. P.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Peng, X. L.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Qi, Y. J.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Qian, J.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Qu, J. L.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Quidant, R.

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

Rickenstorff-Parrao, C.

Rubinsztein-Dunlop, H.

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Rusch, L.

Saavedra, C.

Sakai, K.

Samanta, G. K.

M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Sarshar, M.

M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19, 115001 (2014).
[Crossref]

Schonbrun, E.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Shen, J. F.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Shen, Z.

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
[Crossref]

Shi, W.

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

Shoji, T.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

Solano, P.

Song, J.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Staforelli, J. P.

Steinvurzel, P.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Svoboda, K.

Tang, D. Y.

L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
[Crossref]

Tjin, S. C.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Torres, S.

Tripathi, R. P. N.

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

Tsuboi, Y.

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

Urbach, H. P.

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

Vaity, P.

van der Horst, A.

Vera, E.

Volpe, G.

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Wang, J.

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

Wang, K.

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Wen, S. C.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Wolf, E.

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Wong, W. S. T.

M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19, 115001 (2014).
[Crossref]

Wright, A. J.

Wu, Z. L.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Xie, Z. W.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Yan, S. H.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Yang, A.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Yang, Y. L.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Yang, Y. T.

D. Bhalothia and Y. T. Yang, “Trapping of micro particles in nanoplasmonic optical lattice,” J. Visualized Exp.e56151 (2017).
[Crossref]

Yao, B. L.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Ye, T.

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Yong, K. T.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Yuan, G. H.

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
[Crossref]

L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
[Crossref]

Yuan, X.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Yuan, X. C.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Z. Shen, Z. J. Hu, G. H. Yuan, C. J. Min, H. Fang, and X. C. Yuan, “Visualizing orbital angular momentum of plasmonic vortices,” Opt. Lett. 37, 4627–4629 (2012).
[Crossref]

L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
[Crossref]

Yuan, Y. F.

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

Zeng, Y. J.

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Zhan, Q. W.

Zhang, C.

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

Zhang, J. L.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Zhang, L. C.

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Zhang, Y. Q.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Zheng, Y. B.

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Zhou, J. X.

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

Zhu, S. W.

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

Acc. Chem. Res. (1)

P. K. Jain, X. H. Huang, I. H. El-Sayed, and M. A. El-Sayed, “Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine,” Acc. Chem. Res. 41, 1578–1586 (2008).
[Crossref]

Adv. Opt. Photon. (1)

Astrophys. J. (1)

M. Druckmuller, “Phase correlation method for the alignment of total solar eclipse images,” Astrophys. J. 706, 1605–1608 (2009).
[Crossref]

Coord. Chem. Rev. (1)

Y. F. Yuan, Y. N. Lin, B. B. Gu, N. Panwar, S. C. Tjin, J. Song, J. L. Qu, and K. T. Yong, “Optical trapping-assisted SERS platform for chemical and biosensing applications: design perspectives,” Coord. Chem. Rev. 339, 138–152 (2017).
[Crossref]

J. Biomed. Opt. (1)

M. Sarshar, W. S. T. Wong, and B. Anvari, “Comparative study of methods to calibrate the stiffness of a single-beam gradient-force optical tweezers over various laser trapping powers,” J. Biomed. Opt. 19, 115001 (2014).
[Crossref]

J. Nanophoton. (1)

M. Dienerowitz, M. Mazilu, and K. Dholakia, “Optical manipulation of nanoparticles: a review,” J. Nanophoton. 2, 021875 (2008).
[Crossref]

J. Phys. Chem. Lett. (1)

T. Shoji and Y. Tsuboi, “Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping,” J. Phys. Chem. Lett. 5, 2957–2967 (2014).
[Crossref]

Laser Photon. Rev. (1)

R. Quidant and C. Girard, “Surface-plasmon-based optical manipulation,” Laser Photon. Rev. 2, 47–57 (2008).
[Crossref]

Nano Lett. (2)

Y. Q. Zhang, J. Wang, J. F. Shen, Z. S. Man, W. Shi, C. J. Min, G. H. Yuan, S. W. Zhu, H. P. Urbach, and X. C. Yuan, “Plasmonic hybridization induced trapping and manipulation of a single Au nanowire on a metallic surface,” Nano Lett. 14, 6430–6436 (2014).
[Crossref]

P. M. Hansen, V. K. Bhatia, N. Harrit, and L. Oddershede, “Expanding the optical trapping range of gold nanoparticles,” Nano Lett. 5, 1937–1942 (2005).
[Crossref]

Nanoscale (2)

L. C. Zhang, X. J. Dou, C. J. Min, Y. Q. Zhang, L. P. Du, Z. W. Xie, J. F. Shen, Y. J. Zeng, and X. C. Yuan, “In-plane trapping and manipulation of ZnO nanowires by a hybrid plasmonic field,” Nanoscale 8, 9756–9763 (2016).
[Crossref]

Y. Q. Zhang, J. F. Shen, Z. W. Xie, X. J. Dou, C. J. Min, T. Lei, J. Liu, S. W. Zhu, and X. C. Yuan, “Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering,” Nanoscale 9, 10694–10700 (2017).
[Crossref]

Nat. Commun. (3)

P. P. Patra, R. Chikkaraddy, R. P. N. Tripathi, A. Dasgupta, and G. V. P. Kumar, “Plasmofluidic single-molecule surface-enhanced Raman scattering from dynamic assembly of plasmonic nanoparticles,” Nat. Commun. 5, 4357 (2014).
[Crossref]

C. J. Min, Z. Shen, J. F. Shen, Y. Q. Zhang, H. Fang, G. H. Yuan, L. P. Du, S. W. Zhu, T. Lei, and X. C. Yuan, “Focused plasmonic trapping of metallic particles,” Nat. Commun. 4, 2891 (2013).
[Crossref]

K. Wang, E. Schonbrun, P. Steinvurzel, and K. B. Crozier, “Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink,” Nat. Commun. 2, 469 (2011).
[Crossref]

Nat. Nanotechnol. (1)

O. M. Marago, P. H. Jones, P. G. Gucciardi, G. Volpe, and A. C. Ferrari, “Optical trapping and manipulation of nanostructures,” Nat. Nanotechnol. 8, 807–819 (2013).
[Crossref]

Opt. Express (4)

Opt. Lett. (4)

Phys. Rev. A (1)

M. E. J. Friese, J. Enger, H. Rubinsztein-Dunlop, and N. R. Heckenberg, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593–1596 (1996).
[Crossref]

Phys. Rev. Lett. (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156–159 (1970).
[Crossref]

Plasmonics (2)

A. Yang, L. Du, X. Dou, F. Meng, C. Zhang, C. Min, J. Lin, and X. Yuan, “Sensitive gap-enhanced Raman spectroscopy with a perfect radially polarized beam,” Plasmonics 13, 991–996 (2017).
[Crossref]

L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011).
[Crossref]

PLoS ONE (1)

M. Lei, Z. Li, S. H. Yan, B. L. Yao, D. Dan, Y. J. Qi, J. Qian, Y. L. Yang, P. Gao, and T. Ye, “Long-distance axial trapping with focused annular laser beams,” PLoS ONE 8, e57984 (2013).
[Crossref]

Rev. Sci. Instrum. (2)

K. Berg-Sorensen and H. Flyvbjerg, “Power spectrum analysis for optical tweezers,” Rev. Sci. Instrum. 75, 594–612 (2004).
[Crossref]

K. C. Neuman and S. M. Block, “Optical trapping,” Rev. Sci. Instrum. 75, 2787–2809 (2004).
[Crossref]

Sci. Adv. (1)

L. H. Lin, J. L. Zhang, X. L. Peng, Z. L. Wu, A. C. H. Coughlan, Z. M. Mao, M. A. Bevan, and Y. B. Zheng, “Opto-thermophoretic assembly of colloidal matter,” Sci. Adv. 3, e1700458 (2017).
[Crossref]

Sci. Rep. (2)

Y. C. Liu, Y. G. Ke, J. X. Zhou, Y. Y. Liu, H. L. Luo, S. C. Wen, and D. Y. Fan, “Generation of perfect vortex and vector beams based on Pancharatnam-Berry phase elements,” Sci. Rep. 7, 44096 (2017).
[Crossref]

M. V. Jabir, N. A. Chaitanya, A. Aadhi, and G. K. Samanta, “Generation of ‘perfect’ vortex of variable size and its effect in angular spectrum of the down-converted photons,” Sci. Rep. 6, 21877 (2016).
[Crossref]

Other (2)

D. Bhalothia and Y. T. Yang, “Trapping of micro particles in nanoplasmonic optical lattice,” J. Visualized Exp.e56151 (2017).
[Crossref]

M. Born and E. Wolf, Principles of Optics (Cambridge University, 1999).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1.
Fig. 1. Dynamic plasmonic tweezer system construction and two types of excitation optical beam generation. (a) Technical schematic of the generating RPB and PRPB for the optical tweezer system. The RPB generated by vortex retarder (VR) is also the PRPB generated by changing telescope system (L3, L4) with two axicons (A1, A2). (b) Technical schematic of the SPP excitation process for a focusing RPB. The black arrows indicate the radial polarization directions. (c) The profile of the reflected light obtained at the back focal plane for RPB. (e) The profile of the reflected light obtained at the back focal plane for PRPB.
Fig. 2.
Fig. 2. Calculated electric field intensities at the gold–water interface for focused RPB and PRPB. (a), (b), (c) Cross-section distribution and focused state for RPB, PRPB and RPB with no SPP excitation mode. (d), (g) Electric field intensities at the gold–water interface (horizontal x-y plane) and in the x-z plane for RPB. (e), (h) Electric field intensities at the gold–water interface (x-y plane) and in the x-z plane for the PRPB. (f), (i) Electric field intensities at the gold–water interface (x-y plane) and in the x-z plane for the RPB with no SPP excitation mode. The white lines in the bottom of (g), (h), and (i) indicate the gold–water interface.
Fig. 3.
Fig. 3. Calculated force distributions at the gold–water interface for the focused RPB and PRPB. (a) Distributing curve of force for gold particles in the radial direction with the RPB and PRPB. (b) Distributing curve of force for gold particles in axial direction with the RPB and PRPB.
Fig. 4.
Fig. 4. Position tracking and power spectra analysis of the trapped gold particles with a diameter of 1±0.5  μm for (a)–(c) RPB and (d)–(f) PRPB. The laser powers at the BFP are about 13.9 mW and 12.4 mW for the RPB and PRPB, respectively. (a) Scattering distribution of the position for the gold particle in RPB. (b) Displacement of the particle versus time for RPB. (c) The power spectra of the particle for RPB fitting with a Lorentzian curve. (d) Scattering distribution of the position for the gold particle in PRPB. (e) Displacement of the particle versus time for PRPB. (f) The power spectra of the particle for PRPB fitting with a Lorentzian curve.
Fig. 5.
Fig. 5. Trapping stiffness as a function of laser power and particle diameter. (a) Transverse trapping stiffness as a function of laser power for 1 μm gold particles trapped by RPB and PRPB. (b) Transverse trapping stiffness as a function of gold particles diameter for laser power at 12.4 mW trapped by RPB and PRPB.

Metrics