Abstract

Periodic surface structures were fabricated by irradiating lithium niobate (LN) crystals with femtosecond laser pulses at sample temperatures ranging from 28°C to 800°C. Carrier density and conductivity of the samples were increased via heating LN, which inhibited coulomb explosion to obtain a uniform periodic surface structure. The periodic surface structures cover an area of 8  mm×8  mm and have an average spacing of 174±5  nm. Meanwhile, the absorption of the processed sample is about 70% in the spectral range of 400–1000 nm, which is one order of magnitude higher than that of pure LN. Fabrication of periodic surface structures on heating LN with femtosecond laser pulses provides a possibility to generate nanogratings or nanostructures on wide-bandgap transparent crystals.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Time-resolved measurement of single pulse femtosecond laser-induced periodic surface structure formation induced by a pre-fabricated surface groove

K. R. P. Kafka, D. R. Austin, H. Li, A. Y. Yi, J. Cheng, and E. A. Chowdhury
Opt. Express 23(15) 19432-19441 (2015)

Femtosecond laser induced periodic surface structure on poly-L-lactic acid

Shuhei Yada and Mitsuhiro Terakawa
Opt. Express 23(5) 5694-5703 (2015)

Laser-writing inside uniaxially birefringent crystals: fine morphology of ultrashort pulse-induced changes in lithium niobate

P. Karpinski, V. Shvedov, W. Krolikowski, and C. Hnatovsky
Opt. Express 24(7) 7456-7476 (2016)

References

  • View by:
  • |
  • |
  • |

  1. K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
    [Crossref]
  2. T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
    [Crossref]
  3. H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
    [Crossref]
  4. Y. Dai, G. Wu, X. Lin, G. Ma, and J. Qiu, “Femtosecond laser induced rotated 3D self-organized nanograting in fused silica,” Opt. Express 20, 18072–18078 (2012).
    [Crossref]
  5. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
    [Crossref]
  6. M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
    [Crossref]
  7. Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33, 2713–2715 (2008).
    [Crossref]
  8. G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83, 559–563 (2006).
    [Crossref]
  9. A. Bouchier, G. Lucas-Leclin, and P. Georges, “Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978  nm in a periodically-poled MgO:LiNbO3 waveguide,” Opt. Express 13, 6974–6979 (2005).
    [Crossref]
  10. Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
    [Crossref]
  11. L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
    [Crossref]
  12. R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
    [Crossref]
  13. P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
    [Crossref]
  14. S. Kroesen, W. Horn, J. Imbrock, and C. Denz, “Electro-optical tunable waveguide embedded multiscan Bragg gratings in lithium niobate by direct femtosecond laser writing,” Opt. Express 22, 23339–23348 (2014).
    [Crossref]
  15. F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
    [Crossref]
  16. B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
    [Crossref]
  17. H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
    [Crossref]
  18. J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
    [Crossref]
  19. D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
    [Crossref]
  20. R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
    [Crossref]
  21. N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
    [Crossref]
  22. J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
    [Crossref]
  23. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
    [Crossref]
  24. J. Reif, “Processing with ultrashort laser pulses,” in Laser Processing of Materials: Fundamentals, Applications and Developments, R. M. Osgood, ed. (Springer, 2010), Chap. 6.
  25. M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
    [Crossref]
  26. L. Kovacs and K. Polgar, “Electrical and pyroelectric properties,” in Properties of Lithium Niobate, K. K. Wong, ed. (Inspec, 2002), Chap. 6.
  27. S. A. Basun, G. Cook, and D. R. Evans, “Direct temperature dependence measurements of dark conductivity and two-beam coupling in LiNbO3:Fe,” Opt. Express 16, 3993–4000 (2008).
    [Crossref]
  28. A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
    [Crossref]
  29. M. Yang, Q. Wu, Z. Chen, B. Zhang, B. Tang, J. Yao, I. D. Olenik, and J. Xu, “Generation and erasure of femtosecond laser-induced periodic surface structures on nanoparticle-covered silicon by a single laser pulse,” Opt. Lett. 39, 343–346 (2014).
    [Crossref]
  30. J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
    [Crossref]
  31. J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).
  32. J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92, 1019–1024 (2008).
    [Crossref]
  33. M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
    [Crossref]
  34. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
    [Crossref]
  35. J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
    [Crossref]

2017 (1)

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

2016 (1)

D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

2014 (2)

2013 (1)

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

2012 (3)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

Y. Dai, G. Wu, X. Lin, G. Ma, and J. Qiu, “Femtosecond laser induced rotated 3D self-organized nanograting in fused silica,” Opt. Express 20, 18072–18078 (2012).
[Crossref]

J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).

2009 (3)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

2008 (6)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Q. Sun, F. Liang, R. Vallée, and S. L. Chin, “Nanograting formation on the surface of silica glass by scanning focused femtosecond laser pulses,” Opt. Lett. 33, 2713–2715 (2008).
[Crossref]

S. A. Basun, G. Cook, and D. R. Evans, “Direct temperature dependence measurements of dark conductivity and two-beam coupling in LiNbO3:Fe,” Opt. Express 16, 3993–4000 (2008).
[Crossref]

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92, 1019–1024 (2008).
[Crossref]

2007 (1)

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

2006 (1)

G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83, 559–563 (2006).
[Crossref]

2005 (3)

A. Bouchier, G. Lucas-Leclin, and P. Georges, “Frequency doubling of an efficient continuous wave single-mode Yb-doped fiber laser at 978  nm in a periodically-poled MgO:LiNbO3 waveguide,” Opt. Express 13, 6974–6979 (2005).
[Crossref]

L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

2003 (1)

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

2002 (1)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

2000 (2)

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

1999 (1)

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

1998 (1)

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

1996 (1)

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

1994 (1)

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

1987 (1)

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[Crossref]

1986 (1)

A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
[Crossref]

1985 (1)

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Ashkenasi, D.

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

Basun, S. A.

Bestehorn, M.

J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).

Bonse, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

Bouchier, A.

Brown, A.

A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
[Crossref]

Bulgakova, N. M.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

Campbell, E. E. B.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

Carey, J. E.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

Chen, F.

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

Chen, S.

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

Chen, Z.

Cheng, Y.

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Chin, S. L.

Chu, W.

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

Cook, G.

Costache, F.

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92, 1019–1024 (2008).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Cristiani, I.

L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

Crouch, C. H.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

Dai, N.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Dai, Y.

Delaporte, P.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Deliwala, S.

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Denz, C.

Eccles, A. J.

A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
[Crossref]

Etienne, H.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Evans, D. R.

Feit, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Finlay, R. J.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Friend, C. M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

Furusawa, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Gattass, R. R.

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Gaylord, T. K.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Georges, P.

Halbwax, M.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Henyk, M.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Her, T.-H.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Herman, S.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Hertel, I. V.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

Höhm, S.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

Horn, W.

Huang, M.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Imbrock, J.

Jaque, D.

G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83, 559–563 (2006).
[Crossref]

Kong, Y.

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

Koppitz, J.

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[Crossref]

Kovacs, L.

L. Kovacs and K. Polgar, “Electrical and pyroelectric properties,” in Properties of Lithium Niobate, K. K. Wong, ed. (Inspec, 2002), Chap. 6.

Kroesen, S.

Krüger, J.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

Kumagai, H.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Kuznetsov, A. I.

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[Crossref]

Li, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Liang, F.

Liao, Y.

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

Lin, X.

Liu, H.

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

Liu, S.

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

Liu, Z.

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

Lu, P.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Lucas-Leclin, G.

Ma, G.

Marine, W.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

Martinuzzi, S.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Mazur, E.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Mendez, C.

G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83, 559–563 (2006).
[Crossref]

Midorikawa, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Minzioni, P.

L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

Nakamura, S.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Obara, G.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

Obara, M.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Okamoto, T.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Olenik, I. D.

Pandelov, S. V.

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Perichaud, I.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Perry, M. D.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Polgar, K.

L. Kovacs and K. Polgar, “Electrical and pyroelectric properties,” in Properties of Lithium Niobate, K. K. Wong, ed. (Inspec, 2002), Chap. 6.

Qi, J.

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

Qiu, J.

Qiu, J. R.

D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Razzari, L.

L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

Reif, J.

J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92, 1019–1024 (2008).
[Crossref]

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

J. Reif, “Processing with ultrashort laser pulses,” in Laser Processing of Materials: Fundamentals, Applications and Developments, R. M. Osgood, ed. (Springer, 2010), Chap. 6.

Rosenfeld, A.

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

Rubenchik, A. M.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Sarnet, T.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Schirmer, O. F.

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[Crossref]

Sentis, M.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Sharafudeen, K. N.

D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Sheehy, M.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

Shen, M. Y.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

Shimizu, H.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

Shore, B. W.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Stoian, R.

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

Stuart, B. C.

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Sun, Q.

Takahashi, K.

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

Tan, D.

D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Tang, B.

Terakawa, M.

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

Torchia, G. A.

G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83, 559–563 (2006).
[Crossref]

Torregrosa, F.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Toyoda, K.

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Vallée, R.

van den Berg, J. A.

A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
[Crossref]

Varlamov, S.

J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).

Varlamova, O.

J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92, 1019–1024 (2008).
[Crossref]

Vervisch, V.

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Vickerman, J. C.

A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
[Crossref]

Wang, P.

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

Wang, X.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Wang, Y.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Weis, R. S.

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Wu, C.

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

Wu, G.

Wu, Q.

Xu, J.

Xu, N.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Xu, Z.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Yang, M.

Yao, J.

Younkin, R.

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

Yu, B.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Yue, Y. Z.

D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Zhang, B.

Zhao, F.

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

Zhao, Y.

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

Zheng, Q.

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

ACS Nano (1)

M. Huang, F. Zhao, Y. Cheng, N. Xu, and Z. Xu, “Origin of laser-induced near-subwavelength ripples: interference between surface plasmons and incident laser,” ACS Nano 3, 4062–4070 (2009).
[Crossref]

AIP Conf. Proc. (1)

J. Reif, O. Varlamova, S. Varlamov, and M. Bestehorn, “The role of asymmetric excitation in self-organized nanostructure formation upon femtosecond laser ablation,” AIP Conf. Proc. 1464, 428–441 (2012).

Appl. Phys. A (5)

J. Reif, O. Varlamova, and F. Costache, “Femtosecond laser induced nanostructure formation: self-organization control parameters,” Appl. Phys. A 92, 1019–1024 (2008).
[Crossref]

N. M. Bulgakova, R. Stoian, A. Rosenfeld, I. V. Hertel, W. Marine, and E. E. B. Campbell, “A general continuum approach to describe fast electronic transport in pulsed laser irradiated materials: the problem of Coulomb explosion,” Appl. Phys. A 81, 345–356 (2005).
[Crossref]

K. Furusawa, K. Takahashi, H. Kumagai, K. Midorikawa, and M. Obara, “Ablation characteristics of Au, Ag, and Cu metals using a femtosecond Ti:sapphire laser,” Appl. Phys. A 69, S359–S366 (1999).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, and E. Mazur, “Femtosecond laser-induced formation of spikes on silicon,” Appl. Phys. A 70, 383–385 (2000).
[Crossref]

R. S. Weis and T. K. Gaylord, “Lithium niobate: summary of physical properties and crystal structure,” Appl. Phys. A 37, 191–203 (1985).
[Crossref]

Appl. Phys. B (1)

G. A. Torchia, C. Mendez, and D. Jaque, “Laser gain in femtosecond microstructured Nd:MgO:LiNbO3 crystals,” Appl. Phys. B 83, 559–563 (2006).
[Crossref]

Appl. Phys. Express (1)

H. Shimizu, G. Obara, M. Terakawa, E. Mazur, and M. Obara, “Evolution of femtosecond laser-induced surface ripples on lithium niobate crystal surfaces,” Appl. Phys. Express 6, 112701 (2013).
[Crossref]

Appl. Phys. Lett. (6)

M. Y. Shen, C. H. Crouch, J. E. Carey, R. Younkin, E. Mazur, M. Sheehy, and C. M. Friend, “Formation of regular arrays of silicon microspikes by femtosecond laser irradiation through a mask,” Appl. Phys. Lett. 82, 1715–1717 (2003).
[Crossref]

T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett. 73, 1673–1675 (1998).
[Crossref]

A. J. Eccles, J. A. van den Berg, A. Brown, and J. C. Vickerman, “Evidence of a charge induced contribution to the sputtering yield of insulating and semiconducting materials,” Appl. Phys. Lett. 49, 188–190 (1986).
[Crossref]

H. Kumagai, K. Midorikawa, K. Toyoda, S. Nakamura, T. Okamoto, and M. Obara, “Ablation of polymer films by a femtosecond high‐peak‐power Ti:sapphire laser at 798  nm,” Appl. Phys. Lett. 65, 1850–1852 (1994).
[Crossref]

Y. Kong, S. Liu, Y. Zhao, H. Liu, S. Chen, and J. Xu, “Highly optical damage resistant crystal: zirconium-oxide-doped lithium niobate,” Appl. Phys. Lett. 91, 081908 (2007).
[Crossref]

L. Razzari, P. Minzioni, and I. Cristiani, “Photorefractivity of Hafnium-doped congruent lithium-niobate crystals,” Appl. Phys. Lett. 86, 131914 (2005).
[Crossref]

Appl. Surf. Sci. (1)

J. Reif, F. Costache, M. Henyk, and S. V. Pandelov, “Ripples revisited: non-classical morphology at the bottom of femtosecond laser ablation craters in transparent dielectrics,” Appl. Surf. Sci. 197, 891–895 (2002).
[Crossref]

Europhys. Lett. (1)

J. Koppitz, O. F. Schirmer, and A. I. Kuznetsov, “Thermal dissociation of bipolarons in reduced undoped LiNbO3,” Europhys. Lett. 4, 1055–1059 (1987).
[Crossref]

J. Appl. Phys. (2)

F. Chen, “Photonic guiding structures in lithium niobate crystals produced by energetic ion beams,” J. Appl. Phys. 106, 081101 (2009).
[Crossref]

J. Bonse, A. Rosenfeld, and J. Krüger, “On the role of surface plasmon polaritons in the formation of laser-induced periodic surface structures upon irradiation of silicon by femtosecond-laser pulses,” J. Appl. Phys. 106, 104910 (2009).
[Crossref]

J. Laser Appl. (1)

J. Bonse, J. Krüger, S. Höhm, and A. Rosenfeld, “Femtosecond laser-induced periodic surface structures,” J. Laser Appl. 24, 042006 (2012).
[Crossref]

J. Opt. A (1)

B. Yu, P. Lu, N. Dai, Y. Li, X. Wang, Y. Wang, and Q. Zheng, “Femtosecond laser-induced sub-wavelength modification in lithium niobate single crystal,” J. Opt. A 10, 035301 (2008).
[Crossref]

Nat. Photonics (1)

R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008).
[Crossref]

Opt. Express (4)

Opt. Lett. (2)

Phys. Rev. B (2)

R. Stoian, D. Ashkenasi, A. Rosenfeld, and E. E. B. Campbell, “Coulomb explosion in ultrashort pulsed laser ablation of Al2O3,” Phys. Rev. B 62, 13167–13173 (2000).
[Crossref]

B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, “Nanosecond-to-femtosecond laser-induced breakdown in dielectrics,” Phys. Rev. B 53, 1749–1761 (1996).
[Crossref]

Prog. Mater. Sci. (1)

D. Tan, K. N. Sharafudeen, Y. Z. Yue, and J. R. Qiu, “Femtosecond laser induced phenomena in transparent solid materials: fundamentals and applications,” Prog. Mater. Sci. 76, 154–228 (2016).
[Crossref]

Sci. Rep. (1)

P. Wang, J. Qi, Z. Liu, Y. Liao, W. Chu, and Y. Cheng, “Fabrication of polarization-independent waveguides deeply buried in lithium niobate crystal using aberration-corrected femtosecond laser direct writing,” Sci. Rep. 7, 41211–41217 (2017).
[Crossref]

Thin Solid Films (1)

M. Halbwax, T. Sarnet, P. Delaporte, M. Sentis, H. Etienne, F. Torregrosa, V. Vervisch, I. Perichaud, and S. Martinuzzi, “Micro and nano-structuration of silicon by femtosecond laser: application to silicon photovoltaic cells fabrication,” Thin Solid Films 516, 6791–6795 (2008).
[Crossref]

Other (2)

L. Kovacs and K. Polgar, “Electrical and pyroelectric properties,” in Properties of Lithium Niobate, K. K. Wong, ed. (Inspec, 2002), Chap. 6.

J. Reif, “Processing with ultrashort laser pulses,” in Laser Processing of Materials: Fundamentals, Applications and Developments, R. M. Osgood, ed. (Springer, 2010), Chap. 6.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1.
Fig. 1. Schematic illustration of the experimental setup. HWP, half-wave plate; GTP, Glan–Taylor polarizer; L1, convex lens of focal length 50 cm; LN, lithium niobate; PC, personal computer.
Fig. 2.
Fig. 2. SEM images of a fs laser processed LN surface in N2 environment with sample temperature of (a) 28°C, (b) 100°C, (c) 200°C, (d) 300°C, (e) 400°C, (f) 500°C, (g) 600°C, and (h) 800°C, respectively. Fluence, 7.0  kJ/m2; N2 pressure, 500 Torr; scanning speed, 2 mm/s. The red double arrow indicates the direction of polarization of the incident laser.
Fig. 3.
Fig. 3. (a) Absorption spectra of fs laser processed LN; (b) absorption at 800 nm dependence of LN processed under the different temperatures. All samples were fabricated with the fluence of 7.0  kJ/m2 at 2 mm/s scanning speed, 500 Torr N2 pressure, and the temperatures of 28°C, 100°C, 200°C, 300°C, 400°C, 500°C, 600°C, and 800°C, respectively.
Fig. 4.
Fig. 4. SEM images of the periodic surface structures formed by the irradiation of a linearly polarized laser under the sample temperature of 500°C. Fluences: (a) 5.0, (b) 6.0, (c) 7.0, (d) 8.0  kJ/m2, respectively. The red double arrow indicates the direction of polarization of the incident laser.

Metrics