Abstract

The quickly increasing data transfer load requires an urgent revolution in current optical communication. Orbital angular momentum (OAM) multiplexing is a potential candidate with its ability to considerably enhance the capacity of communication. However, the lack of a compact, efficient, and integrated OAM (de)multiplexer prevents it from being widely applied. By attaching vortex gratings onto the facets of a few-mode fiber, we demonstrate an integrated fiber-based OAM (de)multiplexer. A vortex grating fabricated on the fiber facet enables the direct multiplexing of OAM states at one port and the demultiplexing of OAM states at the other port. The measured bit error rate of the carrier signal after propagating through a 5-km few-mode fiber confirms the validity and effectiveness of the proposed approach. The scheme offers advantages in future high-capacity OAM communication based on optical fiber.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Optical communications using orbital angular momentum beams

A. E. Willner, H. Huang, Y. Yan, Y. Ren, N. Ahmed, G. Xie, C. Bao, L. Li, Y. Cao, Z. Zhao, J. Wang, M. P. J. Lavery, M. Tur, S. Ramachandran, A. F. Molisch, N. Ashrafi, and S. Ashrafi
Adv. Opt. Photon. 7(1) 66-106 (2015)

Free-space coherent optical communication with orbital angular, momentum multiplexing/demultiplexing using a hybrid 3D photonic integrated circuit

Binbin Guan, Ryan P. Scott, Chuan Qin, Nicolas K. Fontaine, Tiehui Su, Carlo Ferrari, Mark Cappuzzo, Fred Klemens, Bob Keller, Mark Earnshaw, and S. J. B. Yoo
Opt. Express 22(1) 145-156 (2014)

Demonstration of free space coherent optical communication using integrated silicon photonic orbital angular momentum devices

Tiehui Su, Ryan P. Scott, Stevan S. Djordjevic, Nicolas K. Fontaine, David J. Geisler, Xinran Cai, and S. J. B. Yoo
Opt. Express 20(9) 9396-9402 (2012)

References

  • View by:
  • |
  • |
  • |

  1. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
    [Crossref]
  2. J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4, B14–B28 (2016).
  3. S. Yu, “Potentials and challenges of using orbital angular momentum communications in optical interconnects,” Opt. Express 23, 3075–3087 (2015).
    [Crossref]
  4. L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
    [Crossref]
  5. E. Wisniewski-Barker and M. J. Padgett, Photonics: Scientific Foundations, Technology and Applications (Wiley, 2015), pp. 321–340.
  6. L. Allen and M. Padgett, The Orbital Angular Momentum of Light: An Introduction (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).
  7. A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
    [Crossref]
  8. G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’Ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
    [Crossref]
  9. J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
    [Crossref]
  10. G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
    [Crossref]
  11. A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24, 11716–11726 (2016).
    [Crossref]
  12. L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24, 16934–16944 (2016).
    [Crossref]
  13. M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
    [Crossref]
  14. M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
    [Crossref]
  15. A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
    [Crossref]
  16. J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
    [Crossref]
  17. H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).
  18. P. García-Martínez, M. M. Sánchez-López, J. A. Davis, D. M. Cottrell, D. Sand, and I. Moreno, “Generation of Bessel beam arrays through Dammann gratings,” Appl. Opt. 51, 1375–1381 (2012).
    [Crossref]
  19. S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
    [Crossref]
  20. T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
    [Crossref]
  21. G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
    [Crossref]
  22. M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
    [Crossref]
  23. M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
    [Crossref]
  24. H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
    [Crossref]
  25. P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
    [Crossref]
  26. G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
    [Crossref]
  27. Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
    [Crossref]
  28. H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
    [Crossref]
  29. S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
    [Crossref]
  30. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
    [Crossref]
  31. T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
    [Crossref]

2017 (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

2016 (7)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref]

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref]

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

J. Wang, “Advances in communications using optical vortices,” Photon. Res. 4, B14–B28 (2016).

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24, 11716–11726 (2016).
[Crossref]

L. Zhu, J. Liu, Q. Mo, C. Du, and J. Wang, “Encoding/decoding using superpositions of spatial modes for image transfer in km-scale few-mode fiber,” Opt. Express 24, 16934–16944 (2016).
[Crossref]

2015 (3)

S. Yu, “Potentials and challenges of using orbital angular momentum communications in optical interconnects,” Opt. Express 23, 3075–3087 (2015).
[Crossref]

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

2014 (1)

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

2013 (3)

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

2012 (3)

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

P. García-Martínez, M. M. Sánchez-López, J. A. Davis, D. M. Cottrell, D. Sand, and I. Moreno, “Generation of Bessel beam arrays through Dammann gratings,” Appl. Opt. 51, 1375–1381 (2012).
[Crossref]

2011 (2)

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
[Crossref]

2010 (1)

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

2004 (2)

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’Ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

2001 (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

2000 (1)

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

1996 (1)

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[Crossref]

1994 (1)

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[Crossref]

1992 (1)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Ahmed, N.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Allen, L.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

L. Allen and M. Padgett, The Orbital Angular Momentum of Light: An Introduction (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

Arlt, J.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[Crossref]

Arzenbacher, K.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

Barnett, S.

Barnett, S. M.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

Beijersbergen, M. W.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Berkhout, G. C.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Berkhout, G. C. G.

M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
[Crossref]

Boyd, R. W.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Bozinovic, N.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Capasso, F.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref]

Cheah, K. W.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Chen, J.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Chen, S.

A. Wang, L. Zhu, S. Chen, C. Du, Q. Mo, and J. Wang, “Characterization of LDPC-coded orbital angular momentum modes transmission and multiplexing over a 50-km fiber,” Opt. Express 24, 11716–11726 (2016).
[Crossref]

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Cottrell, D. M.

Courtial, J.

M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
[Crossref]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’Ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

Cui, H. L.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Cui, L.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

D’Ambrosio, V.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Davis, J. A.

Dolinar, S.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Du, C.

Fazal, I. M.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Feng, S.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Feng, S. F.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Franke-Arnold, S.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’Ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

García-Martínez, P.

Genevet, P.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref]

Gibson, G.

Giessen, H.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref]

Gissibl, T.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

Gong, J. F.

H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).

Gu, M.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref]

Han, P.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Harris, M.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[Crossref]

He, J. S.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Herkommer, A.

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref]

Herkommer, A. M.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

Hill, C. A.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[Crossref]

Huang, H.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Jia, P.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Kang, M.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Kats, M. A.

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref]

Khonina, S. N.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Klar, P. J.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Kotlyar, V. V.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Kristensen, P.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Laakkonen, P.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Lavery, M. P.

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Lavery, M. P. J.

M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
[Crossref]

Leach, J.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

Lei, T.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Li, G.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Li, J.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Li, X.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref]

Li, Y.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Li, Z.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Lin, J.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref]

Liu, G.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Liu, J.

Mair, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Malik, M.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Marrucci, L.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Min, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Mirhosseini, M.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Mo, Q.

Moreno, I.

Niu, H.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Padgett, M.

G. Gibson, J. Courtial, M. Padgett, M. Vasnetsov, V. Pas’Ko, S. Barnett, and S. Franke-Arnold, “Free-space information transfer using light beams carrying orbital angular momentum,” Opt. Express 12, 5448–5456 (2004).
[Crossref]

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[Crossref]

L. Allen and M. Padgett, The Orbital Angular Momentum of Light: An Introduction (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

Padgett, M. J.

M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
[Crossref]

A. M. Yao and M. J. Padgett, “Orbital angular momentum: origins, behavior and applications,” Adv. Opt. Photon. 3, 161–204 (2011).
[Crossref]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

E. Wisniewski-Barker and M. J. Padgett, Photonics: Scientific Foundations, Technology and Applications (Wiley, 2015), pp. 321–340.

Pas’Ko, V.

Pun, E. Y.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Ramachandran, S.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Ren, H.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref]

Ren, X.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Ren, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Sánchez-López, M. M.

Sand, D.

Sciarrino, F.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Shi, Z.

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

Simpson, N.

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[Crossref]

Skeldon, K.

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

Skidanov, R. V.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Slussarenko, S.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Soifer, V. A.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Sponselli, A.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Spreeuw, R. J.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Sun, W.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Sun, W. F.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Tapster, P. R.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[Crossref]

Thiele, S.

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref]

Tur, M.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Turunen, J.

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Vallone, G.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Vasnetsov, M.

Vaughan, J. M.

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[Crossref]

Vaziri, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Villoresi, P.

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

Wang, A.

Wang, H.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Wang, J.

Wang, P.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Wang, X.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Wang, X. K.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Wang, Y.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Weihs, G.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Willner, A. E.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Wisniewski-Barker, E.

E. Wisniewski-Barker and M. J. Padgett, Photonics: Scientific Foundations, Technology and Applications (Wiley, 2015), pp. 321–340.

Woerdman, J. P.

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

Xie, H. Y.

H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).

Xie, Z.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Xie, Z. W.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Xu, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Yan, Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yang, J. Y.

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Yao, A. M.

Ye, J.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Ye, J. S.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Yu, C.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Yu, S.

Yuan, X.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Yue, Y.

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Zeilinger, A.

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Zhai, T.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Zhang, K. X.

H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).

Zhang, L.

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Zhang, M.

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Zhang, M. L.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Zhang, Q.

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref]

Zhang, S.

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Zhang, Y.

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Zhu, L.

Zhu, W. H.

H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).

Zou, H.

H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).

Adv. Opt. Mater. (1)

Z. Xie, S. Feng, P. Wang, L. Zhang, X. Ren, L. Cui, T. Zhai, J. Chen, Y. Wang, X. Wang, W. Sun, J. Ye, P. Han, P. J. Klar, and Y. Zhang, “Demonstration of a 3D radar-like SERS sensor micro- and nanofabricated on an optical fiber,” Adv. Opt. Mater. 3, 1232–1239 (2015).
[Crossref]

Adv. Opt. Photon. (1)

Am. J. Phys. (1)

M. Padgett, J. Arlt, N. Simpson, and L. Allen, “An experiment to observe the intensity and phase structure of Laguerre–Gaussian laser modes,” Am. J. Phys. 64, 77–82 (1996).
[Crossref]

Appl. Opt. (1)

J. Opt. (1)

M. P. J. Lavery, G. C. G. Berkhout, J. Courtial, and M. J. Padgett, “Measurement of the light orbital angular momentum spectrum using an optical geometric transformation,” J. Opt. 13, 064006 (2011).
[Crossref]

Light Sci. Appl. (1)

T. Lei, M. Zhang, Y. Li, P. Jia, G. Liu, X. Xu, Z. Li, C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, “Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings,” Light Sci. Appl. 4, e257 (2015).
[Crossref]

Nano Lett. (1)

G. Li, M. Kang, S. Chen, S. Zhang, E. Y. Pun, K. W. Cheah, and J. Li, “Spin-enabled plasmonic metasurfaces for manipulating orbital angular momentum of light,” Nano Lett. 13, 4148–4151 (2013).
[Crossref]

Nat. Commun. (3)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres,” Nat. Commun. 7, 11763 (2016).
[Crossref]

M. Mirhosseini, M. Malik, Z. Shi, and R. W. Boyd, “Efficient separation of the orbital angular momentum eigenstates of light,” Nat. Commun. 4, 2781 (2013).
[Crossref]

P. Genevet, J. Lin, M. A. Kats, and F. Capasso, “Holographic detection of the orbital angular momentum of light with plasmonic photodiodes,” Nat. Commun. 3, 1278 (2012).
[Crossref]

Nat. Photonics (2)

T. Gissibl, S. Thiele, A. Herkommer, and H. Giessen, “Two-photon direct laser writing of ultracompact multi-lens objectives,” Nat. Photonics 10, 554–560 (2016).
[Crossref]

J. Wang, J. Y. Yang, I. M. Fazal, N. Ahmed, Y. Yan, H. Huang, Y. Ren, Y. Yue, S. Dolinar, and M. Tur, “Terabit free-space data transmission employing orbital angular momentum multiplexing,” Nat. Photonics 6, 488–496 (2012).
[Crossref]

Nature (1)

A. Mair, A. Vaziri, G. Weihs, and A. Zeilinger, “Entanglement of the orbital angular momentum states of photons,” Nature 412, 313–316 (2001).
[Crossref]

Opt. Commun. (1)

S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss-Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000).
[Crossref]

Opt. Express (4)

Opt. Laser Technol. (1)

H. Wang, Z. W. Xie, M. L. Zhang, H. L. Cui, J. S. He, S. F. Feng, X. K. Wang, W. F. Sun, J. S. Ye, P. Han, and Y. Zhang, “[INVITED] A miniaturized optical fiber microphone with concentric nanorings grating and microsprings structured diaphragm,” Opt. Laser Technol. 78, 110–115 (2016).
[Crossref]

Photon. Res. (1)

Phys. Rev. A (2)

L. Allen, M. W. Beijersbergen, R. J. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992).
[Crossref]

M. Harris, C. A. Hill, P. R. Tapster, and J. M. Vaughan, “Laser modes with helical wave-fronts,” Phys. Rev. A 49, 3119–3122 (1994).
[Crossref]

Phys. Rev. Lett. (3)

G. Vallone, V. D’Ambrosio, A. Sponselli, S. Slussarenko, L. Marrucci, F. Sciarrino, and P. Villoresi, “Free-space quantum key distribution by rotation-invariant twisted photons,” Phys. Rev. Lett. 113, 060503 (2014).
[Crossref]

J. Leach, J. Courtial, K. Skeldon, S. M. Barnett, S. Franke-Arnold, and M. J. Padgett, “Interferometric methods to measure orbital and spin, or the total angular momentum of a single photon,” Phys. Rev. Lett. 92, 013601 (2004).
[Crossref]

G. C. Berkhout, M. P. Lavery, J. Courtial, M. W. Beijersbergen, and M. J. Padgett, “Efficient sorting of orbital angular momentum states of light,” Phys. Rev. Lett. 105, 153601 (2010).
[Crossref]

Sci. Adv. (1)

S. Thiele, K. Arzenbacher, T. Gissibl, H. Giessen, and A. M. Herkommer, “3D-printed eagle eye: compound microlens system for foveated imaging,” Sci. Adv. 3, e1602655 (2017).
[Crossref]

Science (2)

H. Ren, X. Li, Q. Zhang, and M. Gu, “On-chip noninterference angular momentum multiplexing of broadband light,” Science 352, 805–809 (2016).
[Crossref]

N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013).
[Crossref]

Other (3)

E. Wisniewski-Barker and M. J. Padgett, Photonics: Scientific Foundations, Technology and Applications (Wiley, 2015), pp. 321–340.

L. Allen and M. Padgett, The Orbital Angular Momentum of Light: An Introduction (Wiley-VCH Verlag GmbH & Co. KGaA, 2011).

H. Zou, W. H. Zhu, J. F. Gong, K. X. Zhang, and H. Y. Xie, The Study of Various Dammann Grating (IEEE, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1.
Fig. 1. Schematic of an all fiber OAM communication system based on the integrated (de)multiplexer. Through the multiplexing grating, the incident Gaussian beams are converted to optical vortex beams carrying OAM states. After propagation in the few-mode fiber, the coaxial OAM beams are demultiplexed to Gaussian beams by an identical grating at the output facet of the fiber.
Fig. 2.
Fig. 2. Simulated mode purity of (a) +2 and (b) 2 order OAM beams converted from incident Gaussian beams at various coupling angles. (c) Simulated coupling efficiency for the +2 (black) and 2 (red) OAM modes with various numerical apertures.
Fig. 3.
Fig. 3. FDTD simulation of the excitation and evolution of OAM modes with an integrated multiplexer on the fiber facet. (a) Intensity and (b) phase excitation and evolution of the OAM mode of order +2. Corresponding (c) intensity and (d) phase of the 2-order OAM mode.
Fig. 4.
Fig. 4. Experimental setup of the OAM multiplexing fiber communication system. (a) Experimental setup comprises a transmitter, OAM (de)multiplexer, and receiver. The inserts show the measured intensity of the incident Gaussian beam, the generated OAM mode, and the two demultiplexed Gaussian beams, respectively. PC: polarization controller; SMF: single-mode fiber; EDFA: erbium-doped fiber amplifier; AWG: arbitrary-waveform generator; MZM: Mach–Zehnder electro-optical modulator; VOA: variable optical attenuator; BPF: band-pass filter; PD: photodiode; OSC: oscilloscope. (b) and (c) are the measured intensity and interferograms, respectively, for the generated +2-order OAM mode. (d) and (e) are the corresponding measured results for the 2-order OAM mode.
Fig. 5.
Fig. 5. Experimental results of OAM multiplexing fiber communication using integrated vortex grating. Demultiplexing results of (a) +2 mode, (b) 2 mode, (c) +2 and 2 modes. (d) Measured bit error rate (BER) of the OAM communication system.
Fig. 6.
Fig. 6. Image showing the fabrication of a vortex grating on the facet of a few-mode fiber using two-photon lithography. (a) Fiber holder used to adjust and to fix the position of the fiber tip with respect to the 3D writing system. (b) Schematic of the geometrical arrangement of the few-mode fiber, photoresist, glass slide, optical matching oil, and objective lens during 3D writing using two-photon lithography.
Fig. 7.
Fig. 7. Coupling efficiency for the +2 OAM mode as a function of numerical aperture obtained from FDTD simulations (red) and from measurements (cyan).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ψ=[nx=NNEnxeinx(2πxT+lxφ)]×[ny=MMEnyeiny(2πyT+lyφ)]=nx=NNny=MMEexp{i[2π(nxx+nyy)T+lφ]},
h=λψ2π(np1),

Metrics