Abstract

Near-field coupled plasmonic systems generally achieve plasmonically induced transparency (PIT) using only one-way bright–dark mode coupling. However, it is challenging to realize such well-designed devices, mainly because they depend significantly on the polarization direction. We exploit surface plasmons supported by two crossed layers of graphene nanoribbons (GNRs) to achieve dynamically tunable PIT, where each GNR operates as both the bright and dark modes simultaneously. The proposed PIT can result from either one-way bright–dark mode interactions or bidirectional bright–bright and bright–dark mode hybridized coupling when the polarization is perpendicular/parallel or at an angle to the GNRs, respectively. Additionally, identical ribbon widths yield polarization-insensitive single-window PIT, whereas different ribbon widths produce polarization-dependent double-window PIT. We examine the proposed technique using plasmon wave functions and the transfer matrix method; analytical and numerical results show excellent agreement. This study can provide physical insight into the PIT coupling mechanisms and advance the applicability and versatility of PIT-based sensing platforms and other active devices.

© 2018 Chinese Laser Press

Full Article  |  PDF Article
OSA Recommended Articles
Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers

Sheng-Xuan Xia, Xiang Zhai, Ling-Ling Wang, Bin Sun, Jian-Qiang Liu, and Shuang-Chun Wen
Opt. Express 24(16) 17886-17899 (2016)

Tunable plasmon-induced absorption in an integrated graphene nanoribbon side-coupled waveguide

Qi Lin, Xiang Zhai, Yi Su, Haiyu Meng, and Lingling Wang
Appl. Opt. 56(34) 9536-9541 (2017)

References

  • View by:
  • |
  • |
  • |

  1. A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
    [Crossref]
  2. H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).
  3. P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
    [Crossref]
  4. O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
    [Crossref]
  5. Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
    [Crossref]
  6. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
    [Crossref]
  7. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
    [Crossref]
  8. D. K. Efetov and P. Kim, “Controlling electron–phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
    [Crossref]
  9. F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
    [Crossref]
  10. Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
    [Crossref]
  11. L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
    [Crossref]
  12. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
    [Crossref]
  13. W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
    [Crossref]
  14. Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
    [Crossref]
  15. H. Nasari, M. S. Abrishamian, and P. Berini, “Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators,” Opt. Express 24, 708–723 (2016).
    [Crossref]
  16. S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
    [Crossref]
  17. X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41, 5470–5473 (2016).
    [Crossref]
  18. B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
    [Crossref]
  19. C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
    [Crossref]
  20. D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
    [Crossref]
  21. T. H. Qiu, “Electromagnetically induced holographic imaging in hybrid artificial molecule,” Opt. Express 23, 24537–24546 (2015).
    [Crossref]
  22. S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
    [Crossref]
  23. J. Q. Liu, Y. X. Zhou, L. Li, P. Wang, and A. V. Zayats, “Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field,” Opt. Express 23, 12524–12532 (2015).
    [Crossref]
  24. Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
    [Crossref]
  25. H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
    [Crossref]
  26. J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
    [Crossref]
  27. S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
    [Crossref]
  28. H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
    [Crossref]
  29. L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, and C. Wang, “Discerning electromagnetically induced transparency from Autler–Townes splitting in plasmonic waveguide and coupled resonators system,” Opt. Express 23, 23817–23826 (2015).
    [Crossref]
  30. Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
    [Crossref]
  31. H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28, 1454–1457 (2016).
    [Crossref]
  32. Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20, 24348–24355 (2012).
    [Crossref]
  33. X. Shi, D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
    [Crossref]
  34. C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
    [Crossref]
  35. Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25, 12251–12259 (2017).
    [Crossref]
  36. W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
    [Crossref]
  37. X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
    [Crossref]
  38. X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
    [Crossref]
  39. S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
    [Crossref]
  40. J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
    [Crossref]
  41. F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
    [Crossref]
  42. F. J. García de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7, 11409–11419 (2013).
    [Crossref]
  43. R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
    [Crossref]
  44. I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4, e241 (2015).
    [Crossref]
  45. D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
    [Crossref]
  46. D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
    [Crossref]
  47. W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
    [Crossref]
  48. Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
    [Crossref]
  49. S. Balci, O. Balci, N. Kakenov, F. B. Atar, and C. Kocabas, “Dynamic tuning of plasmon resonance in the visible using graphene,” Opt. Lett. 41, 1241–1244 (2016).
    [Crossref]
  50. S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
    [Crossref]
  51. S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
    [Crossref]
  52. J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
    [Crossref]
  53. F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
    [Crossref]
  54. X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
    [Crossref]
  55. S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
    [Crossref]
  56. G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
    [Crossref]
  57. Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
    [Crossref]
  58. M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
    [Crossref]
  59. P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
    [Crossref]
  60. D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge University, 2010).
  61. O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
    [Crossref]
  62. S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
    [Crossref]
  63. H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40, 3647–3650 (2015).
    [Crossref]

2018 (2)

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

2017 (7)

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
[Crossref]

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
[Crossref]

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25, 12251–12259 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
[Crossref]

2016 (12)

H. Nasari, M. S. Abrishamian, and P. Berini, “Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators,” Opt. Express 24, 708–723 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref]

X. Zhao, L. Zhu, C. Yuan, and J. Yao, “Tunable plasmon-induced transparency in a grating-coupled double-layer graphene hybrid system at far-infrared frequencies,” Opt. Lett. 41, 5470–5473 (2016).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28, 1454–1457 (2016).
[Crossref]

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

S. Balci, O. Balci, N. Kakenov, F. B. Atar, and C. Kocabas, “Dynamic tuning of plasmon resonance in the visible using graphene,” Opt. Lett. 41, 1241–1244 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

2015 (9)

H. Lu, B. P. Cumming, and M. Gu, “Highly efficient plasmonic enhancement of graphene absorption at telecommunication wavelengths,” Opt. Lett. 40, 3647–3650 (2015).
[Crossref]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref]

I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4, e241 (2015).
[Crossref]

T. H. Qiu, “Electromagnetically induced holographic imaging in hybrid artificial molecule,” Opt. Express 23, 24537–24546 (2015).
[Crossref]

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

J. Q. Liu, Y. X. Zhou, L. Li, P. Wang, and A. V. Zayats, “Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field,” Opt. Express 23, 12524–12532 (2015).
[Crossref]

L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, and C. Wang, “Discerning electromagnetically induced transparency from Autler–Townes splitting in plasmonic waveguide and coupled resonators system,” Opt. Express 23, 23817–23826 (2015).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

2014 (5)

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
[Crossref]

2013 (8)

F. J. García de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7, 11409–11419 (2013).
[Crossref]

X. Shi, D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

2012 (8)

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref]

Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20, 24348–24355 (2012).
[Crossref]

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

2011 (4)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

2010 (1)

D. K. Efetov and P. Kim, “Controlling electron–phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

2008 (1)

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

2007 (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

2005 (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

2001 (1)

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

2000 (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[Crossref]

Abrishamian, M. S.

Ajayan, P. M.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Altug, H.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

Arigong, B.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Atar, F. B.

Avouris, P.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

Bai, Z.

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

Balci, O.

Balci, S.

Bao, Q.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Basov, D. N.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Bechte, H. A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Berini, P.

H. Nasari, M. S. Abrishamian, and P. Berini, “Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators,” Opt. Express 24, 708–723 (2016).
[Crossref]

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[Crossref]

Cai, X.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Cao, C.

Cao, W.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Carrier, J. P.

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

Chai, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Challener, W.

D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge University, 2010).

Chang, D. E.

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Chang, W. S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Chen, H.

Chen, J.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Chen, S.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Chen, W.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Chen, Z.

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Cheng, H.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Christensen, J.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

Cox, J. D.

R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
[Crossref]

Cumming, B. P.

Dai, S.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Dai, Y. Y.

de Abajo, F. J. G.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

de La Peña, F.

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Deng, X.

Diaz, J. S. G.

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

Ding, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Dong, Z.

Drew, H. D.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Du, J.

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Duan, X.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Ducati, C.

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Efetov, D. K.

D. K. Efetov and P. Kim, “Controlling electron–phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Fang, Z.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Farmer, D. B.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref]

Fei, Z.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Fleischhauer, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Fogler, M. M.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Fu, G. L.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

Fuhrer, M. S.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Gao, W.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Gao, Y. P.

García de Abajo, F. J.

R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
[Crossref]

I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4, e241 (2015).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
[Crossref]

F. J. García de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7, 11409–11419 (2013).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Gaskill, D. K.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Geim, A. K.

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Geng, B.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Genov, D. A.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Girit, C.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Goldflam, M. D.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Grigorenko, A. N.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Gu, C.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Gu, J.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Gu, M.

Guan, Y.

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

Guinea, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

Guo, Y. H.

Guo, Z.

Halas, N. J.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Han, D. Z.

Han, J.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Han, T.

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Hao, Z.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

He, L. Y.

Holland, D. J.

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Horng, J.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Hu, C.

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Hu, F.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Huang, G.

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

Huang, P. N.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

Huang, Y.

Jadidi, M. M.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Janssen, G. C. A. M.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Ju, L.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Kakenov, N.

Khanikaev, A. B.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

Khatua, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Kim, P.

D. K. Efetov and P. Kim, “Controlling electron–phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

Kocabas, C.

Koppens, F. H.

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

Koppens, F. H. L.

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Lassiter, J. B.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Leary, R. K.

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Li, H. J.

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28, 1454–1457 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

Li, J.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Li, L.

Li, Q.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Li, Y.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Li, Z.

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liang, M. Z.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

Liang, X.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Limaj, O.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

Lin, Q.

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
[Crossref]

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

Lin, Y.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Link, S.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Liu, G.

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

Liu, G. D.

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Liu, J. P.

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

Liu, J. Q.

Liu, M.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Liu, T.

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Liu, W.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Liu, X. H.

Liu, Z.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Loh, K. P.

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Low, T.

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

Lu, H.

Lu, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Luan, Y.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Lukin, M. D.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Luo, B.

Luo, X.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

Luo, X. G.

Ma, L.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Ma, X.

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Mair, A.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Manjavacas, A.

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

Maradudin, A. A.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Martin, M.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Midgley, P. A.

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Mosig, J. R.

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

Murphy, T. E.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Myers-Ward, R. L.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Nasari, H.

Nicoletti, O.

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Nordlander, P.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Nori, F.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Nosich, A. I.

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

Novoselov, K. S.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nyakiti, L. O.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Ortega, J. M. P.

I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4, e241 (2015).
[Crossref]

Ozdemir, S. K.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Palubski, I. Z.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Pan, W.

Peng, B.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Phillips, D. F.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Polini, M.

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Post, K. W.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Pruneri, V.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

Qi, J.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Qian, J.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Qin, M.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

Qiu, C.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Qiu, T. H.

Raether, H.

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

Ren, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Rodrigo, D.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref]

Saavedra, J. R.

R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
[Crossref]

Sarid, D.

D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge University, 2010).

Schlather, A.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Schlather, A. E.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Shan, X.

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

Shang, X. J.

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Shao, J.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Shapoval, O. V.

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

Shen, Y. R.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Shi, X.

Shu, J.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Shvets, G.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

Si, J.

Silveiro, I.

I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4, e241 (2015).
[Crossref]

Singh, R.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Smolyaninov, I. I.

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Sobhani, H.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Sun, B.

Sun, C.

Sun, Q.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Sun, Y.

Sushkov, A. B.

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Swanglap, P.

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Tao, N.

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

Thongrattanasiri, S.

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

Tian, J.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Tian, Z.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Tittl, A.

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

Walsworth, R. L.

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

Wang, B.

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

Wang, B. X.

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Wang, C.

Wang, F.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Wang, L.

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

Wang, L. L.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28, 1454–1457 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref]

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Wang, P.

Wang, S.

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

Wang, T.

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Wang, T. J.

Wang, W.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Wang, Y.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Wen, K. H.

Wen, M.

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

Wen, S. C.

Wu, C.

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

Wu, J.-S.

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

Xia, F.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

Xia, S.

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

Xia, S. X.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
[Crossref]

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

Xiao, S. Y.

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xie, B.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

Xie, F.

Xu, C.

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Xu, J.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Xu, P.

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Xu, Q.

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

Yan, H.

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

Yan, L. S.

Yan, X.

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Yang, H.

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Yang, L.

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Yao, J.

Yu, P.

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

Yu, R.

R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
[Crossref]

Yu, Z. F.

Yuan, C.

Zayats, A. V.

Zettl, A.

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Zhai, X.

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Graphene surface plasmons with dielectric metasurfaces,” J. Lightwave Technol. 35, 4553–4558 (2017).
[Crossref]

S. X. Xia, X. Zhai, Y. Huang, J. Q. Liu, L. L. Wang, and S. C. Wen, “Multi-band perfect plasmonic absorptions using rectangular graphene gratings,” Opt. Lett. 42, 3052–3055 (2017).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref]

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28, 1454–1457 (2016).
[Crossref]

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

Zhang, H.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Zhang, S.

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhang, W.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

Zhang, X.

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

Zhao, X.

Zhou, M.

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Zhou, Y. X.

Zhu, J. J.

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

Zhu, L.

Zhu, X.

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

Zi, J.

ACS Nano (7)

Q. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012).
[Crossref]

Z. Fang, S. Thongrattanasiri, A. Schlather, Z. Liu, L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas, and F. J. García de Abajo, “Gated tunability and hybridization of localized plasmons in nanostructured graphene,” ACS Nano 7, 2388–2395 (2013).
[Crossref]

Z. Chen, X. Shan, Y. Guan, S. Wang, J. J. Zhu, and N. Tao, “Imaging local heating and thermal diffusion of nanomaterials with plasmonic thermal microscopy,” ACS Nano 9, 11574–11581 (2015).
[Crossref]

S. Thongrattanasiri, A. Manjavacas, and F. J. García de Abajo, “Quantum finite-size effects in graphene plasmons,” ACS Nano 6, 1766–1775 (2012).
[Crossref]

J. Christensen, A. Manjavacas, S. Thongrattanasiri, F. H. Koppens, and F. J. García de Abajo, “Graphene plasmon waveguiding and hybridization in individual and paired nanoribbons,” ACS Nano 6, 431–440 (2011).
[Crossref]

F. J. García de Abajo, “Multiple excitation of confined graphene plasmons by single free electrons,” ACS Nano 7, 11409–11419 (2013).
[Crossref]

W. Gao, J. Shu, C. Qiu, and Q. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012).
[Crossref]

ACS Photon. (2)

R. Yu, J. D. Cox, J. R. Saavedra, and F. J. García de Abajo, “Analytical modeling of graphene plasmons,” ACS Photon. 4, 3106–3114 (2017).
[Crossref]

F. J. García de Abajo, “Graphene plasmonics: challenges and opportunities,” ACS Photon. 1, 135–152 (2014).
[Crossref]

Appl. Phys. Express (2)

Q. Lin, X. Zhai, L. L. Wang, X. Luo, G. D. Liu, J. P. Liu, and S. X. Xia, “A novel design of plasmon-induced absorption sensor,” Appl. Phys. Express 9, 062002 (2016).
[Crossref]

C. Hu, L. Wang, Q. Lin, X. Zhai, X. Ma, T. Han, and J. Du, “Tunable double transparency windows induced by single subradiant element in coupled graphene plasmonic nanostructure,” Appl. Phys. Express 9, 052001 (2016).
[Crossref]

Appl. Phys. Lett. (2)

H. Cheng, S. Chen, P. Yu, X. Duan, B. Xie, and J. Tian, “Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips,” Appl. Phys. Lett. 103, 203112 (2013).
[Crossref]

X. Duan, S. Chen, H. Yang, H. Cheng, J. Li, W. Liu, C. Gu, and J. Tian, “Polarization-insensitive and wide-angle plasmonically induced transparency by planar metamaterials,” Appl. Phys. Lett. 101, 143105 (2012).
[Crossref]

Carbon (1)

S. Y. Xiao, T. Wang, T. Liu, X. Yan, Z. Li, and C. Xu, “Active modulation of electromagnetically induced transparency analogue in terahertz hybrid metal-graphene metamaterials,” Carbon 126, 271–278 (2018).
[Crossref]

Europhys. Lett. (2)

Q. Lin, X. Zhai, L. Wang, B. Wang, G. Liu, and S. Xia, “Combined theoretical analysis for plasmon-induced transparency in integrated graphene waveguides with direct and indirect couplings,” Europhys. Lett. 111, 34004 (2015).
[Crossref]

M. Wen, L. Wang, X. Zhai, Q. Lin, and S. Xia, “Dynamically tunable plasmon-induced absorption in resonator-coupled graphene waveguide,” Europhys. Lett. 116, 44004 (2017).
[Crossref]

IEEE J. Sel. Top. Quantum Electron. (1)

X. Zhang, Q. Li, W. Cao, J. Gu, R. Singh, Z. Tian, J. Han, and W. Zhang, “Polarization-independent plasmon-induced transparency in a fourfold symmetric terahertz metamaterial,” IEEE J. Sel. Top. Quantum Electron. 19, 8400707 (2013).
[Crossref]

IEEE Photon. Technol. Lett. (1)

H. J. Li, L. L. Wang, and X. Zhai, “Plasmonically induced absorption and transparency based on MIM waveguides with concentric nanorings,” IEEE Photon. Technol. Lett. 28, 1454–1457 (2016).
[Crossref]

IEEE Trans. Terahertz Sci. Technol. (1)

O. V. Shapoval, J. S. G. Diaz, J. P. Carrier, J. R. Mosig, and A. I. Nosich, “Integral equation analysis of plane wave scattering by coplanar graphene strip gratings in the THz range,” IEEE Trans. Terahertz Sci. Technol. 3, 666–674 (2013).
[Crossref]

J. Lightwave Technol. (1)

J. Opt. (1)

W. Wang, Y. Li, P. Xu, Z. Chen, J. Chen, J. Qian, J. Qi, Q. Sun, and J. Xu, “Polarization-insensitive plasmonic-induced transparency in planar metamaterial consisting of a regular triangle and a ring,” J. Opt. 16, 125013 (2014).
[Crossref]

Light: Sci. Appl. (2)

I. Silveiro, J. M. P. Ortega, and F. J. García de Abajo, “Quantum nonlocal effects in individual and interacting graphene nanoribbons,” Light: Sci. Appl. 4, e241 (2015).
[Crossref]

D. Rodrigo, A. Tittl, O. Limaj, F. J. G. de Abajo, V. Pruneri, and H. Altug, “Double-layer graphene for enhanced tunable infrared plasmonics,” Light: Sci. Appl. 6, e16277 (2017).
[Crossref]

Nano Lett. (7)

D. B. Farmer, D. Rodrigo, T. Low, and P. Avouris, “Plasmon–plasmon hybridization and bandwidth enhancement in nanostructured graphene,” Nano Lett. 15, 2582–2587 (2015).
[Crossref]

F. Hu, Y. Luan, Z. Fei, I. Z. Palubski, M. D. Goldflam, S. Dai, J.-S. Wu, K. W. Post, G. C. A. M. Janssen, M. M. Fogler, and D. N. Basov, “Imaging the localized plasmon resonance modes in graphene nanoribbons,” Nano Lett. 17, 5423–5428 (2017).
[Crossref]

X. Cai, A. B. Sushkov, M. M. Jadidi, L. O. Nyakiti, R. L. Myers-Ward, D. K. Gaskill, T. E. Murphy, M. S. Fuhrer, and H. D. Drew, “Plasmon-enhanced terahertz photodetection in graphene,” Nano Lett. 15, 4295–4302 (2015).
[Crossref]

Z. Fang, Y. Wang, A. E. Schlather, Z. Liu, P. M. Ajayan, F. J. García de Abajo, P. Nordlander, X. Zhu, and N. J. Halas, “Active tunable absorption enhancement with graphene nanodisk arrays,” Nano Lett. 14, 299–304 (2013).
[Crossref]

H. Yan, T. Low, F. Guinea, F. Xia, and P. Avouris, “Tunable phonon-induced transparency in bilayer graphene nanoribbons,” Nano Lett. 14, 4581–4586 (2014).
[Crossref]

F. H. Koppens, D. E. Chang, and F. J. García de Abajo, “Graphene plasmonics: a platform for strong light–matter interactions,” Nano Lett. 11, 3370–3377 (2011).
[Crossref]

W. S. Chang, J. B. Lassiter, P. Swanglap, H. Sobhani, S. Khatua, P. Nordlander, N. J. Halas, and S. Link, “A plasmonic Fano switch,” Nano Lett. 12, 4977–4982 (2012).
[Crossref]

Nat. Commun. (1)

B. Peng, S. K. Ozdemir, W. Chen, F. Nori, and L. Yang, “What is and what is not electromagnetically induced transparency in whispering-gallery microcavities,” Nat. Commun. 5, 5082 (2014).
[Crossref]

Nat. Mater. (1)

A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007).
[Crossref]

Nat. Nanotechnol. (1)

L. Ju, B. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechte, X. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011).
[Crossref]

Nat. Photonics (1)

A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012).
[Crossref]

Nature (1)

O. Nicoletti, F. de La Peña, R. K. Leary, D. J. Holland, C. Ducati, and P. A. Midgley, “Three-dimensional imaging of localized surface plasmon resonances of metal nanoparticles,” Nature 502, 80–84 (2013).
[Crossref]

Opt. Commun. (1)

P. N. Huang, S. X. Xia, G. L. Fu, M. Z. Liang, M. Qin, X. Zhai, and L. L. Wang, “Tunable plasmon-induced absorption effects in a graphene-based waveguide coupled with graphene ring resonators,” Opt. Commun. 410, 148–152 (2018).
[Crossref]

Opt. Express (11)

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Excitation of crest and trough surface plasmon modes in in-plane bended graphene nanoribbons,” Opt. Express 24, 427–436 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, Q. Lin, and S. C. Wen, “Localized plasmonic field enhancement in shaped graphene nanoribbons,” Opt. Express 24, 16336–16348 (2016).
[Crossref]

J. P. Liu, X. Zhai, L. L. Wang, H. J. Li, F. Xie, S. X. Xia, X. J. Shang, and X. Luo, “Graphene-based long-range SPP hybrid waveguide with ultra-long propagation length in mid-infrared range,” Opt. Express 24, 5376–5386 (2016).
[Crossref]

H. Nasari, M. S. Abrishamian, and P. Berini, “Nonlinear optics of surface plasmon polaritons in subwavelength graphene ribbon resonators,” Opt. Express 24, 708–723 (2016).
[Crossref]

S. X. Xia, X. Zhai, L. L. Wang, B. Sun, J. Q. Liu, and S. C. Wen, “Dynamically tunable plasmonically induced transparency in sinusoidally curved and planar graphene layers,” Opt. Express 24, 17886–17899 (2016).
[Crossref]

T. H. Qiu, “Electromagnetically induced holographic imaging in hybrid artificial molecule,” Opt. Express 23, 24537–24546 (2015).
[Crossref]

J. Q. Liu, Y. X. Zhou, L. Li, P. Wang, and A. V. Zayats, “Controlling plasmon-induced transparency of graphene metamolecules with external magnetic field,” Opt. Express 23, 12524–12532 (2015).
[Crossref]

L. Y. He, T. J. Wang, Y. P. Gao, C. Cao, and C. Wang, “Discerning electromagnetically induced transparency from Autler–Townes splitting in plasmonic waveguide and coupled resonators system,” Opt. Express 23, 23817–23826 (2015).
[Crossref]

Z. Dong, C. Sun, J. Si, and X. Deng, “Tunable polarization-independent plasmonically induced transparency based on metal-graphene metasurface,” Opt. Express 25, 12251–12259 (2017).
[Crossref]

Y. H. Guo, L. S. Yan, W. Pan, B. Luo, K. H. Wen, Z. Guo, and X. G. Luo, “Electromagnetically induced transparency (EIT)-like transmission in side-coupled complementary split-ring resonators,” Opt. Express 20, 24348–24355 (2012).
[Crossref]

X. Shi, D. Z. Han, Y. Y. Dai, Z. F. Yu, Y. Sun, H. Chen, X. H. Liu, and J. Zi, “Plasmonic analog of electromagnetically induced transparency in nanostructure graphene,” Opt. Express 21, 28438–28443 (2013).
[Crossref]

Opt. Lett. (4)

Phys. Rep. (1)

A. V. Zayats, I. I. Smolyaninov, and A. A. Maradudin, “Nano-optics of surface plasmon polaritons,” Phys. Rep. 408, 131–314 (2005).
[Crossref]

Phys. Rev. A (1)

Z. Bai and G. Huang, “Plasmon dromions in a metamaterial via plasmon-induced transparency,” Phys. Rev. A 93, 013818 (2016).
[Crossref]

Phys. Rev. B (1)

P. Berini, “Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures,” Phys. Rev. B 61, 10484–10503 (2000).
[Crossref]

Phys. Rev. Lett. (5)

D. K. Efetov and P. Kim, “Controlling electron–phonon interactions in graphene at ultrahigh carrier densities,” Phys. Rev. Lett. 105, 256805 (2010).
[Crossref]

S. Zhang, D. A. Genov, Y. Wang, M. Liu, and X. Zhang, “Plasmon-induced transparency in metamaterials,” Phys. Rev. Lett. 101, 047401 (2008).
[Crossref]

C. Wu, A. B. Khanikaev, and G. Shvets, “Broadband slow light metamaterial based on a double-continuum Fano resonance,” Phys. Rev. Lett. 106, 107403 (2011).
[Crossref]

D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin, “Storage of light in atomic vapor,” Phys. Rev. Lett. 86, 783–786 (2001).
[Crossref]

S. Thongrattanasiri, F. H. L. Koppens, and F. J. García de Abajo, “Complete optical absorption in periodically patterned graphene,” Phys. Rev. Lett. 108, 047401 (2012).
[Crossref]

Plasmonics (1)

G. D. Liu, X. Zhai, L. L. Wang, B. X. Wang, Q. Lin, and X. J. Shang, “Actively tunable Fano resonance based on a T-shaped graphene nanodimer,” Plasmonics 11, 381–387 (2016).
[Crossref]

Sci. Rep. (1)

J. Ding, B. Arigong, H. Ren, M. Zhou, J. Shao, M. Lu, Y. Chai, Y. Lin, and H. Zhang, “Tuneable complementary metamaterial structures based on graphene for single and multiple transparency windows,” Sci. Rep. 4, 6128 (2014).
[Crossref]

Other (2)

H. Raether, Surface Plasmons on Smooth Surfaces (Springer, 1988).

D. Sarid and W. Challener, Modern Introduction to Surface Plasmons: Theory, Mathematica Modeling, and Applications (Cambridge University, 2010).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1.
Fig. 1. Schematic of the PIT system. Two layers of periodic GNRs with crossed ribbon directions are placed parallel to the xy plane; the upper and lower layers have ribbon widths W1 and W2 and transverse periods Λ1 and Λ2, respectively. The layers are separated by a distance d. The ribbon layers are assumed to be separated by a conductive Si or SiO2 spacer with refractive index n2 and further covered by two independent ion-gel gates with refractive indices n1=n3. The Fermi levels of the GNRs can be tuned simultaneously by applying two independent bias voltages between the two top gold gates and the conductive spacer. A normally incident plane wave with wave number β0 and polarization angle θ with respect to the x axis strikes the surface of the periodically structured graphene system.
Fig. 2.
Fig. 2. (a) Transmission and (b) absorption spectra of the structure with normal incidence and polarization angle θ=0°. Solid green curves and symbols represent the analytical and numerical results, respectively. (c) Transmission phase (left vertical axis) and delay time (right vertical axis) of the spectra shown in (a) and (b).
Fig. 3.
Fig. 3. Two-dimensional plots of normal-incidence transmission showing the wavelength versus the polarization angle θ for the proposed system with (a) only ULGNRs (upper panel) and only LLGNRs (lower panel) and (b) two-layer GNRs. The left inset in (a) shows the Ez component of the incoming beam at 4.26 µm with only ULGNRs; the right inset plots the transmission dips for only ULGNRs (dark line) and only LLGNRs (red line) versus the polarization angle θ. The inset in (b) depicts the transmission dips of the QAM and QSM versus the polarization angle θ. Spatial distributions of (c)–(e), (i)–(k) the electric field and (f)–(h), (l)–(n) the corresponding z component of the (c)–(h) QAMs and (i)–(n) QSMs at polarization angles θ of (c), (f), (i), (l) 0°, (d), (g), (j), (m) 45°, and (e), (h), (k), (n) 90°. Plus and minus signs denote the oscillating surface charges; darker color represents higher charge density.
Fig. 4.
Fig. 4. Transmission maps of the system at a polarization angle θ of 0° showing the incident wavelength versus (a) the ribbon width W1 of the ULGNRs, (b) the ribbon width W2 of the LLGNRs, and (c) the distance d between the two layers.
Fig. 5.
Fig. 5. (a) Two-dimensional transmission map of the system plotted as the wavelength versus the Fermi level EF. The inset, which has the same coordinates as the main plot, compares the analytically calculated resonant wavelengths (lines) and the numerical solutions of the system (symbols). (b) Refractive index sensitivity of the QAM and QSM as a function of polarization angle θ.
Fig. 6.
Fig. 6. (a) Transmission map of the symmetry-broken PIT system with W1=40  nm and W2=60  nm plotted as the wavelength versus the polarization angle θ. (b) Transmission spectra of the system for polarization angles of 0°, 45°, and 90°. Green circles represent the ULGNR-only case with W1=40  nm, and blue circles represent the LLGNR-only case with W2=60  nm. The red solid curves are obtained using the analytical model, and the numerical results are presented as black circles. (c)−(f) Spatial distributions of the electric fields at the positions of the transmission dips extracted from (b) for θ=45°. Plus and minus signs indicate the oscillating surface charges.
Fig. 7.
Fig. 7. (a) PWFs of the four lowest-ordered plasmon modes (j=14; see labels) in a graphene ribbon along the transverse ribbon direction. The symbols represent the numerical model, and the solid curves represent analytical functions. (b) Electric field Ez components of the first four modes (j=14; see labels). Note that the color bars are the same. The numerical results in this figure were obtained at a fixed wavelength (4547.4 nm) using eigenmode analyses with a ribbon width W of 50 nm and Fermi level of graphene EF of 0.6 eV.
Fig. 8.
Fig. 8. (a) Simulated transmission (red line) and absorption (blue line) spectra of a single GNR, where the ribbon width and graphene parameters are set to the same values as in Fig. 7. (b) Electric field Ez components of the first four modes (j=1, 3, 5, and 7; see labels) show excitation of only the odd-ordered modes at normal incidence. Note the differences between the color bars. (c) and (d) Spatial distributions of the normally excited electric fields for the first six lowest-ordered modes in the directions parallel and perpendicular to the graphene surface, respectively.
Fig. 9.
Fig. 9. Coupling strengths (a) for different coupling distances of the j=1 mode and (b) for different mode orders in the nearest-neighbor ribbon. The left panels show intralayer (l=1) and interlayer (l=2) coupling, whereas the right panels show the sums of the coupling strengths.

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

E(r,ω)=Eext(r,ω)+iϵωrd2r|rr|[r·σ(r,ω)E(r,ω)],
E(R,ω)=Wf(R)E(R,ω).
E(R,ω)=Eext(R,ω)+η(ω)d2R[R·M(R,R)E(R,ω)],
M(R,R)=f(R)f(R)RR1|RR|
Ej(R)=ηjd2RM(R,R)·Ej(R)
d2REj(R)·Ej(R)=δjj
jEj(R)Ej(R)=δ(RR)I3,
E(R,ω)=jAj1η(ω)/ηjEj(R),
Aj=d2REj(R)·Eext(R,ω),
Eext(R,ω)=jAjEj(R),
Eind(R,ω)=jAjηj/η(ω)1Ej(R).
ρj(R)=R·f(R)Ej(R),
d2Rd2Rρj(R)·ρj(R)|RR|=δjjηj.
ρind(R,ω)=ϵWjAj1/ηj1/η(ω)ρj(R).
Aj=Wζj·Eext,
ζj=d2Rρj(R)R,
pind(ω)=W3d2Rρind(R,ω)R.
α(ω)=ϵW3jζjζj1/η(ω)1/ηj,
ρind(R,ω)=lnjalnj(ω)ρlnj(R),
alnj(ω)=ϵWln·11/ηlnj1/ηln(ω)×[Alnj+lnlnjClnj,lnjalnj(ω)],
Clnj,lnj=Wln2ϵlnd2Rlnd2Rρlnj(R)·ρlnj(R)|WlnRWlnR+dlnln|
Pln=jWln3alnj·ζlnj.
Pln=αln(ω)·(Eext+lnlnClnlnPln),
Clnln=jClnj,lnjWln4ζlnjζlnj
αln(ω)=ϵWln3·jζlnjζlnj1/ηln(ω)1/ηlnj
Pl=Eextαl(ω)Cl,
tl=2nl+nl++nl[αl(ω)Cαl(ω)CiS],
rl=tl1,
Al=1|rl|2|tl|2·nl/nl+.
[Elt+Elr+]=|1/tlrl/tlrl/tl1/tl|[El+1tEl+1r]=Ml[El+1tEl+1r],
[E1t+E1r+]=M1M2[E3tE3r]=|M11M12M21M22|[E3tE3r],
R=|E1r+/E1t+|2=|M21/M11|2=|(r1+r2)/(1+r1r2)|2,
T=|E3t/E1t+|2=|1/M11|2=|(t1t2)/(1+r1r2)|2,
A=1RT.